EXHIBIT C

City of Keene, New Hampshire Wastewater Treatment Plant: NPDES Permit No. NH0100790 Draft Permit Comments, dated July 17, 2020 ("Keene Draft Comments")

July 17, 2020

Michael Cobb, Acting Chief
Municipal Permits Section
Water Division
United States Environmental Protection Agency
Region 1
Office of Environmental Stewardship
5 Post Office Square, Suite 100
Boston, MA 02109-3912
VIA EMAIL Cobb.Michael@epa.gov

George Papadopoulos
United States Environmental Protection Agency
Region 1
Office of Environmental Stewardship
5 Post Office Square, Suite 100
Boston, MA 02109-3912
VIA EMAIL papadopuoulos.george@epa.gov

RE: City of Keene, New Hampshire Wastewater Treatment Plant: NPDES Permit No. NH0100790
Draft Permit Comments

Dear Mr. Cobb and Mr. Papadopoulos:

On May 20, 2020, Region 1 of the United States Environmental Protection Agency (EPA) issued draft National Pollutant Discharge Elimination System (NPDES) Permit No. NH0100790 (the Draft Permit) to the City of Keene, New Hampshire (the City) in electronic form. In conjunction with the issuance of the Draft Permit, EPA regulations require a comment period of at least 30 days after issuance of a draft permit per 40 C.F.R § 124.10(b). During this time, the public may submit comments associated with the permit and the permit fact sheet and/or may request a public hearing pursuant to 40 C.F.R § 124.11.

The City submitted a formal request to extend the comment period an additional 90 calendar days beyond the stated 30-day comment period noted in the Draft Permit. The City received a formal response from EPA that an additional 30-day extension was granted. The modified deadline to submit comments to the draft permit was therefore extended to July 20, 2020. The City utilized the additional time to evaluate the proposed limits and to confirm that each proposed limit is achievable without causing adverse effects to remaining compliant with any other limit. This analysis has led the City to develop comments and questions in response to the requirements set forth in the draft permit.

City of Keene, Public Works Department • 350 Marlboro Street • Keene, NH • 03431 • www.ci.keene.nh.us

The highest priority comments of concern are related to the following parameters:

- Total Nitrogen Rolling Annual Average Effluent Limit: The overall scientific basis and methodology used to develop the numerical effluent limitation are nonexistent and any generalized approach used to establish a numerical effluent limitation is without merit. Without any sound scientific study or rationale, the proposed permit limitations are impermissibly arbitrary and capricious. Further commentary regarding Total Nitrogen may be found in the following Draft Permit Comments report.
- Winter Ammonia Chronic Effluent Limit: The Draft Permit proposes a new winter chronic effluent limitation. The pH used to develop this limitation is based on data specific to the City's performance at the point of discharge rather than accounting for receiving water conditions and site-specific characteristics. Chronic criteria calculated utilizing low pH values which are representative of the receiving water yield less stringent effluent limits. Site-specific characteristics should be considered as data is available. Further commentary regarding Winter Ammonia may be found in the following Draft Permit Comments report.
- 7Q10: The Draft Permit proposes a conservative upstream 7Q10 low flow as the basis for determining the available dilution and effluent limits for multiple constituents. Alternative low flow approaches have been evaluated by many state organizations, including NHDES, such as utilizing an August median flow. Further detail on this approach applied to the City's dilution factor and to other permit parameters may be found in the following Draft Permit Comments report.
- pH Range: Since 1997, the City has implemented pH adjustment by way of chemical addition to remain compliant with the required pH effluent limitation range of 6.5 to 8.0 S.U. The Draft Permit and associated regulations allow the City the ability to modify the pH range dependent on if it can be demonstrated that the change should be made due to naturally occurring conditions in the receiving water or the receiving water would not be significantly impacted by the discharge. Data collected by both the City and volunteer watershed stakeholder organizations confirm the relatively low pH of the receiving water. The City seeks approval to investigate site-specific conditions; further commentary may be found in the following Draft Permit Comments report.
- Total Recoverable Aluminum: The Draft Permit establishes effluent limitations for this parameter using the obsolete 1988 criteria. This has been superseded with a more appropriate methodology, which was finalized by EPA in 2018. To impose a new stringent numerical effluent limitation using superseded and since-updated science during the intermediate period between adoption of a new EPA-authored criteria and adoption by NHDES as a new Water Quality Standard does not reflect a collaborative environment and can be interpreted as operating in bad faith; at a minimum, it is the result of an erroneous approach that causes undue hardship to the City. The City has sampled for DOC, pH and hardness and the calculations have confirmed that the proposed 108 μg/L effluent limitation is inappropriate, given that the new criteria does not accurately account for the bioavailability of aluminum. Further commentary regarding Total Recoverable Aluminum may be found in the following Draft Permit Comments report.
- Total Recoverable Copper: The proposed Draft Permit effluent limitations for Total Recoverable Copper are more stringent than the limits that the City currently operates under, which were carried forward from the 1994 NPDES Permit. The current EPA approach to developing copper limitations is hardness dependent. However, the Draft Permit fails to consider the latest data and development of

a new downstream hardness concentration when determining the proposed copper effluent limits. Further, site-specific approaches that are not hardness dependent also warrant consideration. Detailed commentary on Total Recoverable Copper may be found in the following Draft Permit Comments report.

• Total Phosphorus: The Draft Permit proposes a more stringent effluent limitation for Total Phosphorus. Existing treatment operations have been proved successful to meet current effluent limits given that there are no violations and data collected by volunteer watershed stakeholder organizations on the receiving water have shown that concentrations consistently meet water quality standards. Site-specific approaches to determining effluent limitations have also warrant consideration. Further commentary on Total Phosphorus may be found in the following Draft Permit Comments report.

The prepared comments are enclosed in the following report, which expand on the listed contentions in greater detail as well as addressing multiple additional issues. The City will also be submitting a letter under separate cover outlining a request and rationale for a public hearing to the Draft Permit. All of these documents have been submitted in a timely manner, in advance of the July 20, 2020 close of the comment period.

Since the City was only provided limited time to prepare comments in response to the Draft Permit, the City requests that, should there be a need for additional details or to address any unintended omissions, we will be contacted and provided an opportunity to provide clarity in the form of a subsequent formal response.

The City is confident that EPA will consider each comment in its entirety and fully recognizes that Keene has long striven to be a steward of our environment and approaches our day-to-day responsibility to protect our water resources for the benefit of today's residents and future generations with the utmost seriousness and diligence. Thank you for your attention to this matter.

Very truly yours,

C 2 3

Elizabeth A. Dragon

City Manager

cc: Stergios Spanos, NHDES
Kürt Blomquist, City of Keene
Tom Moran, City of Keene
Aaron Costa, City of Keene
Mary Ley, City of Keene
Tom Mullins, Esq., City of Keene
Joanna Tourangeau, Esq., Drummond Woodsum
Chris Perkins, Weston & Sampson

John Sykora, Weston & Sampson

TABLE OF CONTENTS

Page
COVER LETTERCV-1
INTRODUCTION IN-1
TABLE OF CONTENTSi
LIST OF TABLESiii
LIST OF APPENDICESiv
1.0 TOTAL NITROGEN
2.0 7Q10 LOW FLOW2-1 2.1 Alternative Low Flow2-1
3.0 PH RANGE
4.0TOTAL RECOVERABLE ALUMINUM.4-14.1Numerical Limit and Compliance Schedule.4-14.2Reporting Requirements.4-34.3Alternative Low Flow on Total Recoverable Aluminum Limit Development.4-3
5.0 TOTAL RECOVERABLE COPPER
6.0 TOTAL PHOSPHORUS
7.0ADDITIONAL DRAFT PERMIT COMMENTS7-17.1Technical Based Industrial Limits7-17.2Dissolved Organic Carbon (DOC)7-17.3Alternate Dilution Water7-1

7.4	Collection System	7-1
	Maintenance Staff	
7.4.2	Operation and Maintenance Plan	7-2
7.5 li	ndustrial Pretreatment Reporting Requirements	7-2
	Clarification on Language	
	Clarification on Language	
	Section G.3 Nitrogen	
	Notice of Bypass or Upset	
	Vater Reservoirs and Wells	

LIST OF TABLES

Table 1.1	Upstream pH Data from 2018 Sampling
Table 1.2	VRAP Receiving Water pH Data at 18-ASH, 2015-2019
Table 3.1	VRAP Receiving Water pH Data, 2015-2019
Table 4.1	EPA 2018 Aluminum Criteria Keene Estimate

LIST OF APPENDICES

Appendix A	
Appendix B	Receiving Water pH Data
Appendix C	Parallel WET Tests Unadjusted pH
Appendix D	VRAP Annual Reports, 2007-2010
Appendix E	
Appendix F	1994 Metals Limit, Total Recoverable Copper
Appendix G	Industrial Users List

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

......

INTRODUCTION

On May 20, 2020, Region 1 of the United States Environmental Protection Agency (EPA) issued draft National Pollutant Discharge Elimination System (NPDES) Permit No. NH0100790 and Fact Sheet (the Draft Permit) to the City of Keene, New Hampshire (Keene) and co-permittees the Town of Marlborough, New Hampshire and the Swanzey Sewer Commission. In conjunction with the issuance of the Draft Permit, EPA regulations require a comment period of at least 30 days after issuance of a Draft Permit per 40 C.F.R § 124.10(b). During this time, the public may submit comments associated with the permit and the permit fact sheet and/or may request a public hearing pursuant to 40 C.F.R § 124.11.

The City submitted a formal request of a 90-day extension of the public comment period to the Environmental Protection Agency (EPA) on May 29, 2020. In response, EPA granted the City an additional 30-day extension to the public comment period, extending the submission of public comments deadline to July 20, 2020.

Keene, New Hampshire (NH) owns and operates a wastewater treatment facility (WWTF) that discharges treated effluent to Assessment Unit ID NHRIV802010301-38 of the Ashuelot River, a Class B classified warm water. The Ashuelot River flows to the Connecticut River and ultimately Long Island Sound. The City of Keene WWTF collects and treats domestic, commercial, and industrial wastewater throughout the City, the Town of Marlborough and the Town of Swanzey. The system is a separate system as there are no combined sewer stormwater structures. Marlborough and Swanzey are considered co-permittees to the NPDES Permit and are bound to the requirements specific to proper operation and maintenance of their collection systems. The WWTF receives millions of gallons of septage and holding tank waste annually from communities throughout NH, and communities located in Massachusetts (MA) and Vermont (VT).

The WWTF has a design flow of 6.0 million gallons per day (MGD) to treat collected wastewater via an activated sludge aeration treatment process. Process flow begins with a main pumping station where influent is injected with liquid oxygen, then passes through an aerated grit chamber and on to two primary clarifier tanks. Wastewater is conveyed to two aeration basins and then flows to one of the two secondary clarifiers. Treated effluent is conveyed through the UV disinfection building to its discharge point at the Ashuelot River.

The WWTF has undergone multiple operational improvements since the issuance of the 2007 NPDES Permit. These improvements were divided into three Phases; Phase 1 equates to approximately \$8.9 million, Phase 2 equates to approximately \$2.7 million, and Phase 3 equates to approximately \$1.8 million capital cost. A brochure outlining the list of improvements is provided in Appendix A. Keene is committed to operate while using sound and reliable infrastructure in order to remain compliant with permit effluent limitations.

The State of NH outlines requirements specific to surface water discharges to a Class B warm water fishery. The water quality standards (WQS) required by the State are considered in the development of the effluent restrictions and provide the basis to EPA's methodology in establishing numerical effluent limits.

The City has reviewed the Draft Permit and has developed multiple comments and questions regarding the constituents and requirements outlined in the Draft Permit and the Draft Permit's Fact Sheet. This report presents the City's comments specific to each permit parameter.

1.0 TOTAL NITROGEN

Keene has evaluated the requirements set forth in the Draft Permit for Total Nitrogen and has developed the following comments.

I. Limitations Unsupported by Federal or State Law Are Impermissible because they are Arbitrary and Capricious

1.1 Rolling Annual Average Total Nitrogen and Special Condition I.G.3

The proposed Rolling Average Total Nitrogen limitation and Special Condition I.G.3 in the Draft Permit. are not based on water quality standards, or site-specific data. The conclusion that a uniform 10 mg/L Total Nitrogen concentration for Keene and other NH permittees in the Connecticut, Housatonic, and Thames rivers watersheds is not based on sound and peer-reviewed science.

The assessment of a design flow-based Total Nitrogen concentration for NH WWTFs within the LISW is not linked to any study, research, or available data. The 10 mg/L concentration imposed upon Keene in the writing of their Draft Permit does not indicate how their discharge is similar or differs from that of the other five (5) WWTFs with design flows between 1.5 mgd and 6 mgd, how each specific discharge location and characteristics within the LISW. There is no published data indicating a specific Total Nitrogen concentration manifests itself into a particular outcome of benefit to the LISW. In short, there is no rationale for the imposition of this limitation.

EPA's inclusion of total nitrogen rolling annual average mass-based loading limits does not adhere to any of the available methods for establishing effluent limits. Though EPA acknowledges that the Total Maximum Daily Load (TMDL) target of a 25% reduction from 1998 baseline loading is currently being met – and that the overall loading from WWTF discharges in to the Connecticut River is actually 15% below the TMDL Waste Load Allocation (WLA) – EPA expresses concern that future hypothetical growth of cities and towns in NH may reverse the current reductions. Moreover, though Waste Load Allocations resulted in these reductions, EPA posits that these are not enough, in and of themselves, to protect the waters of the Connecticut River (as they have continually done) if cities and towns grow. Despite EPA's stated goal, the EPA must still comply with the requirements for setting effluent limits as required in 40 CFR § 122.44(d)(vi). This provision requires effluent limits to be established using: (1) the use of a calculated numeric water quality criterion, which is derived using a proposed state criterion or an explicit state policy or regulation interpreting its narrative water quality criterion; (2) using EPA's water quality criteria developed pursuant to Section 304(a) of the CWA on a case-by-case basis; or (3) an indicator parameter for the pollutant, provided certain requirements are met. EPA's proposed total nitrogen limit of 10 mg/L was developed using proposed future population growth as a critical criterion; this is not a listed basis for developing the effluent limitations, and therefore, is not a permitted approach under 40 CFR § 122.44(d)(vi).

Without such a foundation, these proposed permit limits are impermissibly arbitrary and capricious.

These issues are described in further detail below and therefore, Keene respectfully requests removal of the Rolling Average Total Nitrogen limit from the Final Permit.

1.1.1 Total Nitrogen Numerical Limit is not based on Water Quality Standards

The Draft Permit indicates that the TMDL and associated WLA related to the Long Island Sound watershed (LISW) requires an aggregate 25% reduction from the baseline total nitrogen loading estimated in the TMDL. However, the data provided in the Draft Permit indicates that the 25% reduction is "currently being met", with overall discharges from MA, NH, and VT WWTFs being 11% below the WLA.

EPA utilized a 10 mg/L Total Nitrogen concentration to implement a Rolling Average Total Nitrogen mass-based limit in the Draft Permit based solely on its receipt of LISW stakeholder input expressing concern regarding theoretical, possible future loading increases.¹. EPA further indicates its intent to apply these limitations to all permittees within the above watersheds based on the design flow of the respective WWTFs.

This approach does not meet the standard set forth in 40 CFR § 122.44(d)(vi)(A) which specifies that effluent limits are to be established "using a calculated numeric water quality criterion for the pollutant". Thus, in order to properly impose a Total Nitrogen effluent limit, EPA must first establish a numeric WQS criterion. The 10 mg/L Total Nitrogen concentration included in the Draft Permit for the assessment of the Rolling Average Total Nitrogen limitation, and Special Condition I.G.3.a., are thus not founded on a proper basis. Permit effluent limits should be imposed to be protective of receiving water conditions with consideration for water quality characteristics in establishing criteria, not based on performance of permittee discharge. There has been no implementation plan developed based on the TMDL to allocate each discharger a portion of the allowable Total Nitrogen load, and therefore attempting to develop a WLA through individual permits is inappropriate.

1.1.2 Total Nitrogen Numerical Limit is not based on Site-Specific Data

EPA determined that permittees in the LISW which experience population growth or new industrial discharges shall be subject to the 10 mg/L Total Nitrogen concentration. EPA further specifies in the Draft Permit that any WWTF within the LISW that has a design flow equal to or greater than 1.5 mgd and up to 6 mgd is subject to the 10 mg/L Total Nitrogen concentration. However, the Draft Permit contains no information linking design flow to either increased population or new industrial discharges in Keene.

Imposition of effluent limitations without site specific supporting data is impermissibly arbitrary and capricious. Further, Keene's data does not support EPA's underlying assumptions as described below:

 Assumption: only communities served by larger WWTFs can experience population growth or be the site of new industrial dischargers.

Response: There is no indication that this is accurate. Such projections are the result of numerous, individual demographic decisions and long-term societal shifts. These types of projections are further complicated by the availability of developable and redevelopable property

¹ The documents cited in footnote 13 on page 26 of the Fact Sheet: Connecticut Department of Energy and Environmental Protection letters to EPA dated February 7, 2018 and April 27, 2018; Connecticut Fund for the Environment letter to EPA dated February 7, 2018; and Connecticut River Conservancy letter to EPA dated February 18, 2018 are not readily available for review by Keene. The propriety of reliance on these letters in developing the total nitrogen rolling annual average mass-based loading limits in the Draft Permit cannot properly be commented upon without provision of full and accurate copies of each.

in many communities in the region, including many not served by any centralized wastewater infrastructure. This is borne out by data derived from the U.S Census Bureau, Population Division which indicates that from 2010 to 2019, Keene's population dropped from 23,515 to 22,786.

 Assumption: Permittees and associated WWTFs that experience an increase in industrial dischargers will result in increased nitrogen loadings.

Response: A number of industrial users in Keene and elsewhere across the U.S. do not discharge greater concentrations of various forms of nitrogen. There is no documentation indicating that the mere presence of industrial users translates to increased nitrogen loading. In fact, the data indicates that increased residential and CSO discharge are more likely to increase nitrogen loading. The City is aware that the main contributors to the collection system are residential, with a total of 98% of users as residential. Further, data shows that the number of industrial users classified in the City have not greatly increased from 2015 to 2020. This period of societal disruption and comprehensive state-wide executive orders due to the COVID-19 pandemic can also be expected to negatively impact the number of industrial users. It is anticipated that there will be no increase in industrial users at this time due to the implications of this pandemic. The implications have already led to the discontinuation of one of the largest industrial users in Keene, and Keene State College has temporarily closed normal operations and seasonal activities.

 Assumption: The Draft Permit optimization requirements for nitrogen removal are insufficient to address increased nitrogen load from industrial dischargers to the WWTF.

Response: The Draft Permit requires documentation of nitrogen removal optimization efficiencies per Special Condition I.G.3.b. The annual report required under this condition documents actual nitrogen loadings to the WWTF and Total Nitrogen discharged from the WWTF. Keene implements an Industrial Pretreatment Program which requires industrial dischargers to obtain authorization for discharge to the WWTF. Significant Industrial Users from 2015 to 2020 have increased by one.

• Assumption: Increased nitrogen loadings to a specific WWTF will cause an exceedance of the 25% reduction required by the WLA.

Response: There is no evidence that an increased WWTF Total Nitrogen load will cause an exceedance of the LISW WLA. Facilities are designed to remove pollutant loadings to reach enforced criteria. The Draft Permit and the 2007 Permit outline requirements specific to industrial users to monitor the loadings received at the WWTF, of which the type of treatment can remove. Quantifying the relationship between influent loadings and removal success is specific to each permittee's type of treatment methods and should not be based on assumptions.

1.1.3 The Rolling Annual Average of Total Nitrogen limitation does not utilize sound and peer-reviewed science in the application of a WWTF design flow threshold 10 mg/L. Total Nitrogen concentration to this and other NH permittees within the LISW.

1-3

Table 3 of the Fact Sheet of the Draft Permit presents the methodology used to assess Annual Average Total Nitrogen limitations for NH WWTFs in the LISW. This methodology appears without science-based support. Specifically:

- There is no background data provided within the Draft Permit indicating why a Total Nitrogen
 concentration was selected or why a specific concentration or alternate optimization or
 monitor-only requirement is imposed.
- There is no indication that a specific Total Nitrogen concentration will provide a specific outcome to the LISW. The LISW TMDL and associated WLA do not indicate that such numeric Total Nitrogen concentrations from NH WWTFs are required, nor that the baseline loadings and associated 25% aggregate reduction is impacted by this numerical permit limitation.
- There is no WLA provision stating that further reductions in Total Nitrogen loadings are required at present.
- A review of available Long Island Sound Study (LISS) documents does not identify additional requirements or recommendations for numeric Total Nitrogen limitations to be imposed upon NH point source discharges. In fact, LISS published material indicates that the 2017 goal to reduce nitrogen loads into LISW from WWTFs has been met. (Graphic source: https://longislandsoundstudy.net/ecosystem-target-indicators/nitrogen-loading/)

Subsequent goals are focused on nonpoint sources and are therefore irrelevant to Keene's Draft Permit.

 The Rolling Average methodology is an average of averages, which does not account for the variability from month to month, the number of weeks per month, and actual flow on a sample day versus other non-sampling days. All of this causes inaccuracies.

1.1.4 Special Condition I.G.3 requirements are Unsupported by the CWA

The one year requirement to conduct "an evaluation of alternative methods of operating the existing waste water treatment facility to optimize the removal of nitrogen in order to minimize the annual average discharge of total nitrogen and submit a report to EPA and NHDES documenting this evaluation and presenting a description of recommended operational changes" is not consistent with the goals of the CWA. It is also unclear by whom and to whom the recommendations are to be made, and what subsequent actions are expected in response to the recommendations.

As previously indicated, the basis of the Rolling Average Total Nitrogen limitation is arbitrary, and the further mandate to evaluate how to "minimize" the annual average mass discharge of total nitrogen is highly subjective. This condition is open to broad interpretation and therefore represents real financial risk to Keene and its users.

Given there is no WQS rationale for further reductions in nitrogen discharge loadings, the requirement for this evaluation, and more specifically the requirement to provide "recommendations", Keene respectfully requests Special Condition G.3. be removed in its entirety from the Final Permit.

1.1.5 Reporting Requirements is Inappropriate for a WWTF in New England

Nitrogen removal during cold weather months is well understood to be a challenge. Operational modes vary greatly from summer months to winter months. All reporting requirements associated with all nitrogen effluent characteristics, with the exception of Rolling Average Total Nitrogen, which is addressed elsewhere in this section, and Ammonia Nitrogen as N, are respectfully requested to be modified to "Report Only" seasonal rolling averages bracketed for the periods May 1 through October 31 and November 1 through April 30.

II. Technical or Factual Errors Underlying Proposed Limits

1.1.6 Winter Ammonia Chronic Effluent Limit

The Draft Permit proposes a winter ammonia effluent limit of 9.9 mg/L, based on the criteria calculated using an assumed pH of 6.5 for both winter and summer, as well as a winter temperature of 5°C and a summer temperature of 25°C. The assumed pH of 6.5 represents the median value of the effluent monitoring data reported in Appendix A of the Draft Permit. pH has an indirect relationship with chronic ammonia based on the NHDES 2016 criteria calculation; a lower pH yields a higher ammonia criteria value. The development of criteria for each constituent, based on state and federal approved standards, should consider the receiving water characteristics in order to fully evaluate the amount of a specific parameter that the receiving water can take and maintain protective of the environment and its existing conditions. The assumed pH based on the effluent of the discharge fails to account for the receiving water conditions.

Keene collected ambient pH data in the receiving water upstream of the discharge in 2018 and is included as part of Appendix B of this report. The following table represents the median of the summer and winter months; this was a substantial commitment that resulted in a robust dataset, as indicated by the number of samples collected.

Table 1.1 Upstream pH Data from 2018 Sampling				
Months Number of Samples Median pH (S.U.)				
Summer (June 1- Oct. 31)	73	6.0		
Winter (Nov. 1- May 31)	63	5.8		

In addition to the data collected by the City, other Ashuelot River data is available as part of the Volunteer River Assessment Program (VRAP). The intention of this program, as referenced in the 2007 VRAP report, is "to assist NHDES in evaluating water quality throughout the state". NHDES provides reports

and available data collected through VRAP for public viewing. The samples collected as part of VRAP are collected in the summer months (June 1- October 31). The annual reports published between 2007 and 2010 utilize collected data which is interpreted as they relate to the surface WQS; available data is also collected by VRAP and published through NHDES for the years 2011 through 2019. Sampling station locations are arranged by VRAP staff annually. In 2007, data was collected at a total of 13 sampling stations in the Ashuelot River Watershed.

The data presented in Table 1.1 was collected upstream of Keene's discharge at the Martell Court Bridge. Based on the description of VRAP sampling locations identified on the NHDES website, VRAP's sampling station 17-ASH is located at the Martell Court, similar to the location of Keene's 2018 data collection. However, there is no available data in the past 10 years collected at 17-ASH. Therefore, the data collected at sampling station 18-ASH, located at Route 101, was analyzed. A comprehensive review of the data collected through VRAP may be found in Table 3.1 of Section 3.0. Data collected over the past 5 years at sampling station 18-ASH may be found below in Table 1.2. The data collected as part of VRAP confirm the low pH range values found as part of Keene's data collection.

Table 1.2 VRAP Receiving Water pH Data at 18-ASH, 2015-2019				
Sampling Station	Year	Samples Collected	pH Data Range	
18-ASH	2019	5	5.94-6.15	
18-ASH	2018	5	5.97-6.35	
18-ASH	2017	5	5.08-5.99	
18-ASH	2016	5	6.30-6.57	
18-ASH	2015	4	6.36-6.68	

Of the dataset shown in Table 1.2, 21 out of the 24 samples collected had a pH below the water quality standard of 6.5. There is a notable amount of variability in this dataset, likely due to the limited number of samples collected annually. Based on Keene's robust and comprehensive dataset throughout 2018, Keene is satisfied that the dataset presented in Table 1.1 most appropriately depicts receiving water conditions upstream of the discharge and therefore Keene evaluated the winter ammonia criteria based on the median of the pH values collected by the City.

Since the winter chronic ammonia was the only parameter determined to require a more stringent limit based on the new criteria calculated with 6.5 pH, the criteria was recalculated using a site-specific pH of 5.8 representing seasonal receiving water conditions. The calculation for chronic winter ammonia criteria may be found below:

$$\text{Criteria} = 0.8876 * \left[\left(\frac{0.0278}{1 + 10^{7.688 - 5.8}} \right) + \left(\frac{1.1994}{1 + 10^{5.8 - 7.688}} \right) \right] * \left[2.126 * 10^{0.028*(20 - 7)} \right]$$

The criteria for chronic winter ammonia using the above equation yields a value of 5.2 mg/L. If a new limit were to be calculated based on the revised criteria, the chronic winter ammonia limit would be 11.5 mg/L. The 2007 permit established a chronic winter ammonia effluent limit of 12 mg/L. Keene respectfully requests that EPA review the site-specific calculations and considerations depicted in

.....

Section 1.1.7 below and that the effluent limits be re-evaluated considering the seasonal receiving water pH data.²

1.1.7 Alternative Low Flow on Ammonia Limit Development

Section 2.0 of this report outlines comments requesting the use of an alternative low flow in place of the 7Q10. The 7Q10 calculated for the facility and identified in the Fact Sheet of the Draft Permit is used to establish the reasonable potential for a constituent to cause or contribute to an exceedance of WQS, as well as to developing permit effluent limits for constituents. If the request for the use of an alternative low flow is granted through the Final Permit, Keene respectfully requests that the Reasonable Potential Analysis Table in Appendix B of the Draft Permit reflect this modification, and that the pollutant effluent limits be adjusted.

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

² The new information available to complete these calculations justifies this revised limit as does good cause. 40 CFR 122.44(I)(2)(i)(B)(1); *Great Basin Mine Watch v. State of Nevada*, No. 43943, 2006 WL 1668890, at *3 (Nev. Apr. 19, 2006).

2.0 7Q10 LOW FLOW

The City has assessed EPA's approach to developing the 7Q10 upstream flow conditions used to establish the permit limits and has included the following comments.

2.1 Alternative Low Flow

The permit includes a calculation for WWTF_{ACTUAL} of 4.22 cfs. The correct value, based on a 2.65 mgd value, is 4.10 cfs. **The value of 4.10 cfs should be used for WWTF_{ACTUAL} through-out the calculations.** This is noted in full recognition that the change in value does not drastically change the resultant calculations.

State of NH law supports use of August median stream flows in lieu of 7Q10 calculations to establish nutrient discharge limits for aquatic life and human health criteria. NH RSA 485-A:8(II). The NH. Department of Environmental Services (NHDES) published a presentation by the NH Water Quality Standards Advisory Committee, dated October 11, 2018, entitled "Alternatives to 7Q10 for Nutrient Permitting." This presentation (which discusses total phosphorus) includes extensive discussion of appropriate alternatives to 7Q10 to establish nutrient discharge limits. For instance, Vermont uses the Summer low median monthly flow (generally August) for an index flow. NHDES concludes:

August median flow may be appropriate for NH nutrient permitting because it:

- Is similar to VT and ME (and other states);
- Addresses duration concern with the 7Q10; and
- Flow is less than or equal to the August median flow ~17% of the year (62 days) and ~ 0.5% (2 days) for the 7Q10 flow. 62 days is sufficient time for a river to respond to nutrients."

https://www.des.nh.gov/organization/divisions/water/wmb/wqs/meetings/2018/documents/20181011-7q10-alternatives.pdf

Based on August data at for the Ashuelot River at West Swanzey, USGS gage 01160350 for the years 1994 through 2019, and USGS gage 01158000 for the Ashuelot River below the Surry Mt Dam August data for 1946 through 2019, the dilution factor calculations would be modified as follows:

Permit unadjusted downstream = 26.3 cfs.

August 1994-2019 mean of monthly discharge, USGS gage 01160350 downstream = 255 cfs

Permit unadjusted upstream = 2.65 cfs.

August 1946-2019 median flow, USGS gage 01158000 upstream = 56 cfs

$$Q_{DSG,adj} = Q_{DSG} + (0.28)(Q_{WWTF,actual}) - (Q_{WWTF,actual})$$

 $Q_{DSG,adj} = 255 + (0.28 * 4.10) - 4.10 = 252.02 \text{ cfs}$

$$7Q10_{\text{unadj}} = ((Q_{\text{DSG,adj}} - Q_{\text{USG}})(\frac{Q_{\text{D1}}}{Q_{\text{D2}}}) + Q_{\text{USG}} = 166.57 \text{ cfs}$$

$$7Q10_{unadj} = ((252.05 - 56) \left(\frac{10.6}{18.8}\right) + 56 = 166.57 \text{ cfs}$$

$$7Q10_{final} = 7Q10_{unadj} - (0.28)(Q_{WWTF,design})$$

$$7Q10_{final} = 166.57 - (0.28)(9.28) = 163.97 \text{ cfs}$$

$$Dilution Factor = (0.9) * (Q_s + Q_{WWTF,design})/Q_{WWTF,design}$$

$$Dilution Factor = (0.9) * \frac{163.97 + 9.28}{9.28} = 16.88$$

There are significant impacts from this calculation; namely, all WQBEL will need to be revised as a result of this change in methodology. Keene respectfully requests approval of this modified Dilution Factor calculation and further asked that it be incorporated into the Final Permit, with reasonable potential analyses and WQBEL modified and adjusted accordingly and in accordance with the CWA.

Further, Appendix B outlines the Reasonable Potential Analysis Table, which identifies permit effluent limits for pollutants if a reasonable potential is found to cause or contribute to an exceedance to WQS. The upstream 7Q10 flow listed in the Reasonable Potential Analysis Table is listed as 11.4 cfs. Keene respectfully requests that the Reasonable Potential Analysis Table in Appendix B be modified in the Final Permit to represent 11.7 cfs to remain consistent with the 7Q10 set forth in the Draft Permit.

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

3.0 PH RANGE

The Draft Permit includes an effluent pH range of 6.5 - 8.0 S.U. Keene has been operating since 1997 with an additional chemical feed system that adjusts effluent pH to achieve compliance with the low-level 6.5 S.U. effluent limitation. The receiving water pH has consistently been measured to have a pH well below that of the effluent, based on data collected in the upstream receiving water. See Appendix B. The implications of the varying pH levels may be causing an adverse effect by producing a pH "curtain wall" in the vicinity of Outfall Serial Number 001. Due to the drastic changes in water conditions, migration routes of native fish may be adversely impacted. In addition, the injection of caustic soda to the discharge pipe from Secondary Clarifier #1 for pH adjustment requires additional operational efforts by WWTF staff and approximately \$140,000 annually (in FY20 dollars) in additional operational costs to meet the pH range.

The Draft Permit states in Part I.I.5 (page. 22 of the Draft Permit) that a change to the pH Range may be implemented if either of the following two cases are applicable and can be demonstrated to NHDES that the range should be modified: (1) due to naturally occurring conditions in the receiving water or (2) the naturally occurring receiving water pH would not be significantly changed by the Permittee's discharge. To determine whether Keene's discharge affects the naturally occurring pH in the receiving water, the City would need to conduct a pH demonstration study. This would entail developing proposed study parameters and NHDES approval prior to the initiation of the project. Accordingly, Keene respectfully requests the Final Permit include language indicating that the development of a site-specific study to evaluate if either of the written conditions apply to the City's discharge is an accepted approach. If the study determines either of the conditions apply, it is further requested that the Final Permit language include confirmation that EPA shall accept the results of the study.

Keene has collected data simulating the results of an unadjusted pH to the effluent. In 2018, Keene collected and performed Whole Effluent Toxicity (WET) tests on an unadjusted Secondary Clarifier #2 in parallel and concurrent with their typical testing requirements. There were no violations or failures in toxicity evaluated under the unadjusted pH. Refer to Appendix C for these parallel WET test results. The pH values recorded in the WET testing are notably high given the unadjusted condition, however, still did not fail a toxicity test. The pH analysis of the unadjusted data was conducted at a contract lab and therefore exceeds the 15-minute hold time of the samples given the currier travel time. The process that the lab takes to conduct the WET testing for pH includes warming the sample to test temperature and aerating to bring the dissolved oxygen (DO) into equilibrium. The process of warming and aerating a sample has major effects to a sample's pH level. Therefore, this lab analysis is not a representative indication of the level of pH at the time of collection. Keene requests that the receiving water pH data collected during 2018, attached to this document as Appendix B and mentioned in the winter ammonia comment, be considered.

NHDES provides reports for public viewing on the data collected in the Ashuelot River Watershed as part of VRAP. The intention of this program, as referenced in the 2007 VRAP report is "to assist NHDES in evaluating water quality throughout the state". The annual reports published between 2007 and 2010 utilize collected data which is interpreted as they relate to the surface WQS; available data is also collected by VRAP and published through NHDES for the years 2011 through 2019. Sampling station locations are arranged by VRAP staff annually. In 2007, data was collected at a total of 13 sampling stations in the Ashuelot River Watershed. These stations are located both upstream and downstream of the Keene WWTF discharge point. It is notable that the majority of pH samples collected are below the

3-1

NH surface WQS. As stated in the 2007 VRAP report, "lower pH measurements are likely the result of natural conditions such as the soils, geology, or the presence of wetlands in the area"; further, the report stated, "it is important to note that the New Hampshire water quality standard for pH is fairly conservative, thus pH levels slightly below the standard are not necessarily harmful to aquatic life." These statements are repeated verbatim in the 2008, 2009 and 2010 reports.

Data collected over the past 5 years through this program are presented in Table 3.1. Available data over the past 5 years is based on characteristics at 15 sampling stations. Data collected at sampling stations 16D-ASH and 16A-ASH are representative of conditions 40 feet upstream of the Keene WWTF and at the mouth of the South Branch, downstream of the Keene WWTF. VRAP reports and data from 2007-2010 are included as part of Appendix D.

A review of the available data from 2011 through 2019 confirmed that the majority of the data has consistently been below the surface WQS. Moreover, as partially depicted in Table 3.1, the sampling stations upstream of the Keene WWTF have lower pH measurements than those of the sampling stations downstream of the Keene WWTF.

Table 3.1: VRAP Receiving Water pH Data, 2015-2019				
Sampling Station	Year	Samples Collected	pH Range	Acceptable Samples Not Meeting WQS
28-ASH	2015	4	5.56-6.18	4 (100%)
27-ASH	2015	4	5.74-6.14	4 (100%)
24A-ASH	2015	4	5.87-6.43	4 (100%)
23-ASH	2015	4	6.01-6.73	0 (0%)
20A-ASH	2015	4	6.38-6.55	3 (75%)
18-ASH	2015	4	6.36-6.68	1 (25%)
16D-ASH	2015	5	6.34-6.72	3 (60%)
16A-ASH	2015	5	6.26-6.56	3 (60%)
16-ASH	2015	5	6.41-6.65	2 (40%)
02B-SBA	2015	4	6.08-6.56	3 (75%)
02-SBA	2015	4	6.38-6.56	2 (50%)
15A-ASH	2015	5	6.44-6.72	1 (20%)
07-ASH	2015	5	6.63-6.72	0 (0%)
02-ASH	2015	4	5.69-7.38	1 (25%)
01-ASH	2015	5	6.78-7.23	0 (0%)
28-ASH	2016	5	5.67-6.04	5 (100%)
27-ASH	2016	5	4.90-6.14	5 (100%)
24A-ASH	2016	5	5.09-6.22	5 (100%)
23-ASH	2016	5	6.04-6.59	3 (60%)
20A-ASH	2016	5	6.20-6.46	5 (100%)
18-ASH	2016	5	6.30-6.57	5 (100%)
16D-ASH	2016	5	6.40-6.75	1 (20%)
16A-ASH	2016	5	6.30-6.90	1 (20%)
16-ASH	2016	5	6.39-6.74	1 (20%)

.....

Table 3.1: VRAP Receiving Water pH Data, 2015-2019				
Sampling Station	Year	Samples Collected	pH Range	Acceptable Samples Not Meeting WQS
02B-SBA	2016	5	6.31-6.61	3 (60%)
02-SBA	2016	5	6.21-6.73	3 (60%)
15A-ASH	2016	5	6.23-6.99	3 (60%)
07-ASH	2016	5	6.32-6.79	2 (40%)
02-ASH	2016	4	7.01-7.51	0 (0%)
01-ASH	2016	5	6.32-7.19	1 (20%)
28-ASH	2017	5	4.90-5.56	5 (100%)
27-ASH	2017	4	4.98-5.64	4 (100%)
24A-ASH	2017	5	5.10-6.01	5 (100%)
23-ASH	2017	5	5.11-5.85	5 (100%)
20A-ASH	2017	5	5.12-5.78	5 (100%)
18-ASH	2017	5	5.08-5.99	5 (100%)
16D-ASH	2017	5	6.28-6.51	3 (60%)
16A-ASH	2017	5	6.35-6.61	3 (60%)
16-ASH	2017	5	6.37-6.64	3 (60%)
02B-SBA	2017	5	5.17-6.07	5 (100%)
02-SBA	2017	5	5.01-6.04	5 (100%)
15A-ASH	2017	5	6.11-6.55	4 (80%)
07-ASH	2017	5	5.22-6.43	5 (100%)
02-ASH	2017	4	6.27-7.01	2 (50%)
01-ASH	2017	5	5.93-6.71	3 (60%)
28-ASH	2018	5	5.26-5.71	5 (100%)
27-ASH	2018	5	5.48-5.82	5 (100%)
24A-ASH	2018	5	5.53-5.92	5 (100%)
23-ASH	2018	5	5.88-6.44	5 (100%)
20A-ASH	2018	5	6.12-6.56	4 (80%)
18-ASH	2018	5	5.97-6.35	5 (100%)
16D-ASH	2018	8	6.05-6.66	4 (50%)
16C-ASH	2018	3	6.41-6.85	1 (33%)
16A-ASH	2018	5	5.78-6.62	3 (60%)
16-ASH	2018	5	6.12-6.50	4 (80%)
02B-SBA	2018	5	5.73-6.48	5 (100%)
07U-SBA	2018	3	5.85-6.59	2 (67%)
08-SBA	2018	3	5.84-6.52	2 (67%)
02-SHK	2018	3	5.55-6.48	3 (100%)
02-SBA	2018	5	5.64-6.37	5 (100%)
15A-ASH	2018	5	5.79-6.71	4 (80%)
07-ASH	2018	5	5.68-6.46	5 (100%)
02-ASH	2018	4	6.58-7.44	0 (0%)
01-ASH	2018	5	6.04-7.04	1 (20%)

......

Table 3.1: VRAP Receiving Water pH Data, 2015-2019				
Sampling Station	Year	Samples Collected	pH Range	Acceptable Samples Not Meeting WQS
28-ASH	2019	5	5.65-5.71	5 (100%)
27-ASH	2019	5	5.56-5.81	5 (100%)
24A-ASH	2019	5	5.57-6.05	5 (100%)
23-ASH	2019	5	5.93-6.35	5 (100%)
20A-ASH	2019	5	5.83-6.12	5 (100%)
18-ASH	2019	5	5.94-6.15	5 (100%)
16D-ASH	2019	5	5.95-6.71	2 (40%)
16A-ASH	2019	5	6.01-6.75	1 (20%)
16-ASH	2019	5	6.00-6.71	1 (20%)
02B-SBA	2019	5	6.04-6.24	5 (100%)
02-SBA	2019	5	6.04-6.21	5 (100%)
15A-ASH	2019	5	6.14-6.35	5 (100%)
07-ASH	2019	5	6.12-6.33	5 (100%)
02-ASH	2019	4	6.78-7.28	0 (0%)
01-ASH	2019	5	6.31-6.71	2 (40%)

The percentages in the righthand column of Table 3.1 depict the percent of samples that did not meet the surface WQS of 6.5 to 8.0 S.U. Over the 5 years of data, the majority of the sampling stations yielded pH data below the surface WQS as representative by these percentages. Keene respectfully requests that this data collected through this program and in collaboration with the State be considered as part of this request.

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

4.0 TOTAL RECOVERABLE ALUMINUM

The City has evaluated the proposed effluent limit and associated compliance schedule outlined in the Draft Permit and has developed the following comments.

4.1 Numerical Limit and Compliance Schedule

The Draft Permit includes an Average Monthly (chronic) numerical effluent limitation of $108 \,\mu\text{g/L}$ for Total Recoverable Aluminum and a reporting requirement for the maximum day (acute) condition. The Draft Permit also includes a schedule of compliance for this limitation subject to modification depending on the status of NH's adoption of the revised aluminum criteria as well as EPA's approval of said criteria, along with several other considerations and mandated reporting requirements. The current permit does not include an effluent limitation for Total Recoverable Aluminum.

The compliance schedule set forth in the Draft Permit proposes a 3-year period to achieve the $108 \,\mu g/L$. Once the scheduled period is commenced, the $108 \,\mu g/L$ limit will be enforced. There is limited understanding behind the effectiveness of the $108 \,\mu g/L$ permit limit and the benefits that the threshold imposes to the receiving water. There is longstanding and significant regulatory controversy on the validity of the aluminum chronic criterion of $87 \,\mu g/L$. This criterion was published in 1988; Page 22 of the 1988 document states that the chronic criterion would have been $748 \,\mu g/L$ but was reduced to $87 \,\mu g/L$ to protect brook trout and striped bass. However, page 6 of the 1988 document states that $87.2 \,\mu g/L$ "did not kill any of the exposed organisms" (striped bass), and similar irregularities for the brook trout results.

Although the Draft Permit grants Keene the opportunity to modify the proposed limit if NHDES adopts the new criteria, the inclusion of the following language depicted below causes Keene immense concern:

"If new criteria are approved by EPA before the effective date of the final aluminum effluent limit, the Permittee may apply for a permit modification, pursuant to 40 C.F.R 122.62(a)(3), to revise the time to meet the final aluminum effluent limit and/or for revisions to the permit based on whether there is reasonable potential for the facility's aluminum discharge to cause or contribute to a violation of the newly approved aluminum criteria."

Keene has calculated potential aluminum criteria scenarios utilizing the EPA aluminum criteria calculator available for public use. Keene has been sampling DOC, pH, and hardness levels simultaneously as part of this analysis. See Appendix E for sampling data. This data represents samples collected for both the Ashuelot River upstream (samples labeled as ASHUP*DATE*) and the secondary effluent (samples labeled as SEC*DATE*).

Based on these calculations, it appears that Keene would not have the reasonable potential to cause or contribute to an exceedance of WQS for aluminum. The data used and criteria calculated is presented in Table 4.1 below:

Tale 4.1: EPA 2018 Aluminum Criteria Keene Estimate				
Parameter	Value			
DOC (mg/L)	4.10			
Hardness (mg/L)	29.79			
pH (S.U.)	6.43			
Aluminum (acute criteria) (µg/L)	680			
Aluminum (chronic criteria) (µg/L)	320			

To impose a new limit based on superseded science would be an error and would prevent Keene the ability to take advantage of the newly developed and more appropriate criteria. The new EPA criteria accurately characterizes the bioavailability of aluminum by accounting for site specific data for parameters that directly impact the amount of aluminum that is bioavailable. pH, DOC and hardness each affect the toxicity level of aluminum in the receiving water. The current criterion does not consider these parameters, and therefore it is questioned if the existing criterion accurately depicts how much of the constituent is bioavailable. A review of the City's data indicates that Keene would be in compliance with the criteria calculated using the new EPA standard. Keene should be able to operate under a limit that is backed by the latest information in science and that is technically defensible in preventing any exceedances in WQS. Keene feels strongly that the limit set forth in the Draft Permit is inappropriate and unfair given the availability to provide a limit that is supported by the latest science, and the advancement of the requirements of the Draft Permit as is will not lead to any better environmental outcomes. Keene intends to continue to dispute the validity of the Draft Permit methodology for aluminum, if requested changes are not reflected in the Final Permit.

Keene is concerned that EPA is issuing a new aluminum limit given the recent adoption of new national guidance and the intention of NHDES to adopt the criteria. The criteria used to develop the 108 μ g/L is an obsolete standard and should be delayed until such time as NHDES and EPA complete the process to adopt and approve the new WQS. If a new effluent limitation is anticipated to be re-calculated within the period of the Draft Permit, then it is inappropriate to impose a brand-new effluent limitation using an obsolete method. Regardless of the use of dated methodology to determine the permit limit, the proposed 108 μ g /L does not account for site-specific data on acid soluble and total recoverable aluminum. As described in the Draft Permit, the fraction of acid soluble to total recoverable was assumed to be 1.0. Keene respectfully requests that the Final Permit include language under a special condition that Keene has the option to submit a request to pursue a preliminary study evaluating the fraction of acid soluble aluminum to total recoverable aluminum. If Keene pursues this type of a study, additional language is requested to be in the Final Permit that the results of the study would be accepted and that a permit modification may be made to reflect site-specific limits.

Given the term of the Draft Permit, the anticipated timely adoption of a new criterion, and to avoid relying on an obsolete and thus arbitrary and capricious standard, Keene respectfully requests that the aluminum limit be removed from the Final Permit.

4.2 Reporting Requirements

Keene also respectfully requests removal of the aluminum reporting requirements specific to developing an evaluation of alternative modes of operation at the wastewater treatment facility in order to reduce the effluent levels of aluminum from the Final Permit (Refer to page 17 of Draft Permit). Licensed operators are understood to be responsible for achieving mandated effluent limitations in accordance with the NPDES permit. The manner in which this happens is understood to be at the discretion of these professionals and not subject to EPA scrutiny or oversight. Conducting such evaluations as proposed in the Draft Permit reporting requirements can present a financial burden on Keene. The process of conducting these evaluations would entail hiring a consultant to evaluate the current dynamic of the treatment process and conducting research to determine alternative approaches that may be applicable. The system installed for Keene is an interconnected process, and the adjustments of one chemical addition to treat one parameter to meet effluent limitations can adversely affect the efficacy in meeting another parameter's effluent limitations. Due to the nature of the system, evaluating entirely new and formal approaches to meeting the aluminum limit can be both timely and costly, and thus must be reserved for situations in which WQS are unmet.

4.3 Alternative Low Flow on Total Recoverable Aluminum Limit Development

Section 2.0 of this report outlines comments requesting the use of an alternative low flow in place of the 7Q10. The 7Q10 calculated for the facility and identified in the Fact Sheet of the Draft Permit is used to establish the reasonable potential for a constituent to cause or contribute to an exceedance of WQS, as well as to developing permit effluent limits for constituents. If the request for the use of an alternative low flow is granted through the Final Permit, Keene respectfully requests that the Reasonable Potential Analysis Table in Appendix B of the Draft Permit reflect this modification, and that the pollutant effluent limits be adjusted.

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

5.0 TOTAL RECOVERABLE COPPER

The Draft Permit includes average monthly (chronic) and maximum daily (acute) effluent limitations of 5.9 μ g/L and 7.9 μ g/L, respectively, for total recoverable copper. Based on the permit review period comprised of 5 years of data, exceedances to copper effluent limitations occurred on two occasions. The data evaluated within the permit review period is assessed against the effluent limits that the City has been operating under. Appendix A indicates effluent limits as 5.9 μ g/L and 7.9 μ g/L for the review period. Keene would like to clarify that the modified permit effluent limits for copper that the City has been operating under were carried over from the 1994 permit, as 6.2 μ g/L and 8.2 μ g/L. See Appendix F attached to this document. The 1994 permit limits carried forward for copper, zinc, and lead are as follows: 6.2 μ g/L chronic and 8.2 μ g/L acute, 55.7 μ g/L chronic and 61.5 μ g/L acute, and 0.92 μ g/L chronic and 23.8 μ g/L acute. The violations determined for total copper were evaluated against incorrect effluent limitations as they are listed as 5.9 and 7.9 μ g/L. Keene requests that this clarification be reflected in the Final Permit and that EPA acknowledge that the 1994 permit effluent limits of 6.2 μ g/L and 8.2 μ g/L are appropriate; these requests are made notwithstanding the results of any site specific studies and alternative low flow discussed in this section below.

The criteria were developed using the water quality standards equation dependent on the hardness (Env.-Wq. 1703). The Reasonable Potential Analysis Table is outlined in Appendix B and identifies the acute and chronic limits for copper. Although reasonable potential no longer applies to copper since limits have previously been enforced, Keene re-calculated limits based on the new criteria utilizing a hardness of 36.7 mg/L.

The Draft Permit states that limits may be developed utilizing a rearrangement of the mass balance equation and the use of the criterion in place of the downstream concentration. Keene reviewed EPA's approach to calculating the limits using the equation as understood below:

$$Limit = \frac{(Q_d * Criteria * 0.9 - Q_sC_s)}{Q_o}$$

Solving for this equation using the values given in the Reasonable Potential Analysis Table, an acute limit would be 10.91 μ g/L and a chronic limit would be 8.01 μ g/L. These limits are appropriately adjusted based on new data collected during the review period which established a higher hardness concentration. 40 CFR § 122.44(I)(2)(i)(B)(1); *Great Basin Mine Watch v. State of Nevada*, No. 43943, 2006 WL 1668890, at *3 (Nev. Apr. 19, 2006). Recalculated limits accounting for current effluent and receiving water conditions is a proper consideration in establishing permit limits.

Although the current approach is hardness-dependent, the toxicity of copper is characterized by other parameters that are not considered by this approach. Keene has never failed a toxicity test even when operating under less stringent effluent copper concentration limits. Specifically, Keene has operated under a 20 μ g/L copper concentration administrative testing, and never failed a toxicity test. In fact, due to the testing performance, EPA approved a reduction of WET testing frequency from four times annually to once annually.

There are additional studies that incorporate more data to characterize copper concentrations. NHDES water quality standards regulations allow for the use of approved methods including the Water Effect

Ratio (WER) and the Biotic Ligand Model (BLM) to characterize copper concentrations based on site-specific conditions (Env-Wq 1703.22 (d)). These are two options that NHDES specifies in their regulations, and therefore the opportunity is made available if Keene decides to advance with a site-specific approach. Accordingly, Keene respectfully requests that language be included as a special condition in the Final Permit indicating that Keene may submit a permit modification request to apply for site-specific effluent copper limits, including the WER and the BLM. If Keene decided to move forward with a site-specific approach, Keene also respectfully requests that additional language be included in the Final Permit indicating that the results of a site-specific approach will be accepted and a permit modification may be made to reflect revised effluent limits. Keene applied the BLM model previously in 2004 and the results confirmed that the corresponding criteria reflected in the state water quality standards are excessively conservative. Keene commented on the 2007 Draft Permit's proposed copper limits on a similar basis of toxicity and bioavailability stating that the limit: "...fails to take into account the fact that copper in municipal wastewater treatment facility effluents is not toxic.... Studies overwhelmingly support the conclusion that copper in biologically treated effluents exists in organocomplexes and is not bio available." Keene reiterates these arguments.

5.1 Alternative Low Flow on Total Recoverable Copper Limit Development

Section 2.0 of this report outlines comments requesting the use of an alternative low flow in place of the 7Q10. The 7Q10 calculated for the facility and identified in the Fact Sheet of the Draft Permit is used to establish the reasonable potential for a constituent to cause or contribute to an exceedance of WQS, as well as to developing permit effluent limits for constituents. If the request for the use of an alternative low flow is granted through the Final Permit, Keene respectfully requests that the Reasonable Potential Analysis Table in Appendix B of the Draft Permit reflect this modification, and that the pollutant effluent limits be adjusted.

P:\NH\Keene, NH\2160737 - NPDES Permitting Assistance\060 -Permitting\2020 Draft Permit Response\2020 Draft Permit Comments Documents\Draft Permit Comments.docx

6.0 TOTAL PHOSPHORUS

6.1 Alternative Low Flow on Phosphorus Numerical Limit Development

Section 2.0 of this report outlines comments requesting the use of an alternative low flow in place of the 7Q10. The 7Q10 calculated for the facility and identified in the Fact Sheet of the Draft Permit is used to establish the reasonable potential for a constituent to cause or contribute to an exceedance of WQS, as well as to developing permit effluent limits for constituents. NHDES has discussed the potential benefits of using alternative low flows in establishing nutrient effluent limits, as depicted in Section 2.0. If the request for the use of an alternative low flow is granted through the Final Permit, Keene respectfully requests that the Reasonable Potential Analysis Table in Appendix B of the Draft Permit reflect this modification, and that the pollutant effluent limits be adjusted.

Further, NHDES regulations allow mixing zone studies dependent on department approval. In conjunction with the request for an alternative low flow, Keene respectfully requests that language be included as a special condition of the Final Permit that allows Keene the option to conduct a CORMIX Mixing Zone model. If Keene decides to move forward with CORMIX modeling, it is requested that Keene be granted the ability to utilize alternative low flow conditions as described above. Further, additional language is requested to be included in the Final Permit indicating that the results of the study would be accepted, and a permit modification may be made to reflect the results.

6.2 Numerical Effluent Limit

The Draft Permit includes Average Monthly (chronic) effluent limitations of 0.18 mg/L and 1.0 mg/L, respectively, for the periods April 1 through October 31 and November 1 through March 31. The acute condition is report only. These are based on the NHDES narrative WQS for Class B waters which, including the 10% held in reserve for assimilative capacity, targets an instream concentration of 0.09 mg/L based on 7Q10 flow conditions. The 2007 permit enforced a summer average monthly effluent limit of 0.20 mg/L. As confirmed in Appendix A of the Draft Permit, Keene has been successful in complying with both seasonal effluent limits with no violations during the permit review period. Further, ortho-phosphorus monitoring confirmed that minimal dissolved phosphorus was detected during the review period.

The criteria is based on nationally recommended values since there is no site-specific criteria adopted by NHDES. However, the nationally recommended Gold Book criteria does not justify receiving water conditions and characterize the accepted amount of the constituent that would be protective of the receiving waters.

NHDES provides reports for public viewing on the data collected in the Ashuelot River Watershed as part of VRAP. The intention of this program, as referenced in the 2007 VRAP report is "to assist NHDES in evaluating water quality throughout the state". The annual reports published between 2007 and 2010 utilize collected data which is interpreted as they relate to the surface WQS; available data is also collected by VRAP and published through NHDES for the years 2011 through 2019. Sampling station locations are arranged by VRAP staff annually. In 2007, data was collected at a total of 10 sampling stations in the Ashuelot River Watershed. These stations are located both upstream and downstream of the Keene WWTF discharge point.

Although NHDES does not provide a numeric WQS for total phosphorus, the NHDES "level of concern" is 0.05 mg/L. Based on this threshold, it is noted in the 2007 VRAP, that the majority of the samples "had total phosphorus levels that were always below the NHDES "level of concern". This statement also applies to the data collected as part of the 2008, 2009 and 2010 reports. Data collected at sampling stations 16D-ASH and 16A-ASH are representative of conditions 40 feet upstream of the Keene WWTF and at the mouth of the South Branch, downstream of the Keene WWTF. Presented in Appendix D are the VRAP annual reports from 2007-2010, as well as an analysis of the total phosphorus data collected from 2015-2019. The data confirms that the receiving water conditions consistently remain below the NH "level of concern", with only 5 samples of data exceeding the "level of concern" over 5 years. ³

Based on Keene's success in meeting effluent limitations and the levels of total phosphorus in the receiving water, Keene believes that it would be appropriate to maintain the existing effluent limitations. For these reasons, Keene respectfully requests that the summer average monthly effluent limit remain 0.20 mg/L; notwithstanding, and subject to, the results of any site-specific studies and alternative low flow discussed in this Section 6.1.

6.3 Sampling Requirements

The Draft Permit proposes that Keene sample and collect data for ambient monitoring of total phosphorus to provide EPA with data for future use in their total phosphorus evaluation. Keene remains responsible for compliance with enforced effluent limitations to reduce potential to impair the receiving water. Keene does not believe that it would be appropriate to be required to sample and analyze data of the receiving water to confirm if EPA's enforced limits are protective. Monitoring of receiving water conditions is annually completed by state or volunteer organizations, such as the Volunteer River Assessment Program as discussed on page 30 of the Fact Sheet. Additional sampling requires operational efforts and monetary contributions from Keene. For these reasons, the City respectfully requests that the monitoring requirement for ambient total phosphorus data be removed from the Final Permit.

.....

³ It is the City's understanding that receiving water total phosphorus sampling conducted in support of the VRAP was discontinued in 2020 because the in-stream phosphorus concentrations are consistently below WQS concentrations.

7.0 ADDITIONAL DRAFT PERMIT COMMENTS

The City evaluated the Draft Permit requirements for parameters that do not constitute numerical effluent limits. Based on the evaluation, the City has developed several comments in response to the requirement changes set forth in the Draft Permit.

7.1 Technical Based Industrial Limits

Keene has previously conducted a study to develop specific effluent local limits for Industrial Users compliant with the requirements set forth in the Administrative Order, Docket No. 04-47. The comments were completed and submitted to EPA for review and approval in 2015. There was no further correspondence of comments or questions following the original submission. A re-evaluation of local limits should not be reiterated in this permit. The City is aware that the main contributors to the collection system are residential, with a total of 98% of users as residential. See Appendix G for significant industrial users list attached to this document. Further, data shows that the number of industrial users classified in the City have not greatly increased from 2015 to 2020. Given that the City has already completed such an assessment and that the number of users has primarily remained the same, a reassessment would not be appropriate. Accordingly, Keene respectfully requests that the Reassessment of Technically Based Industrial Discharge Limits (Attachment C) be removed from the Final Permit.

7.2 Dissolved Organic Carbon (DOC)

Keene respectfully requests clarification on Section 13 (Page 8, Draft Permit), which requires the addition of testing DOC as part of the Chemical Analysis for WET testing. Is data collection for DOC required for solely the initial effluent sample or for all three effluent samples?

In addition, the Draft Permit does not outline the minimum level for DOC in Attachments A and B for chronic and acute toxicity in the Part VI. Chemical Analysis table. Keene requests that clarification on the minimum level be provided, and that language be included in the Final Permit's Attachment A and B identifying DOC.

7.3 Alternate Dilution Water

Keene contracts out to a laboratory to conduct the WET Testing and has done so for years. They have been using laboratory soft water as the dilution water as part of the WET Testing procedure. Keene was previously granted the ability to use an alternate dilution water as EPA approved a request dated January 23, 1996, from the City. Keene respectfully requests that the existing practices for utilizing an alternate dilution water be written into the Final Permit.

7.4 Collection System

7.4.1 Maintenance Staff

The Draft Permit includes the following information specific to Operation and Maintenance of the Sewer System:

"The Permittee and co-Permittees shall each provide an adequate staff to carry out the operation, maintenance, repair, and testing functions required to ensure compliance with the terms and conditions of this permit."

This statement is vague and there is no regulatory authority cited for this requirement. The phrase "adequate staff" is unclear as there is no determination set forth that quantifies adequacy for staffing. Without a defined regulatory authority as part of this requirement, Keene respectfully requests that Part C.1. requirement be removed from the Final Permit.

7.4.2 Operation and Maintenance Plan

Section 5 of the Draft Permit (Pages 11-12) outlines requirements of the permittee and co-permittees regarding the Collection System Operation and Maintenance Plan. The annual summary reports and O&M Plan are required to be submitted to EPA and NHDES based on scheduled time frames as depicted in the Draft Permit. There is no authority cited for the submission of these items. This section does not consider authority of approval of the documents. Licensed operators and operations staff are understood to be responsible for achieving mandated effluent limitations in accordance with the NPDES permit. Therefore, operators are bound by effluent outcomes, not by the process to achieve that performance. The manner in which this happens is understood to be at the discretion of these professionals and not subject to EPA or NHDES scrutiny or oversight. Without a defined regulatory authority as part of this requirement, Keene respectfully requests that the requirements set forth under Section 5 of the Draft Permit, Collection System Operation and Maintenance Plan be removed from the Final Permit.

7.5 Industrial Pretreatment Reporting Requirements

7.5.1 Clarification on Language

Keene requests clarification on the following language:

"The permittee shall monitor according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR Part 136 or required under 40 CFR Chapter I, Subchapter N or O, for the analysis of pollutants parameters (except WET)."

Does the requirement for sufficiently sensitive test procedures apply solely to the pollutants identified in the Part I. A Table? The City is seeking clarification on if the language also applies to "NPDES Requirement for IPP Annual Report", item 5, pages 50-51 of the Draft Permit document.

7.5.2 Clarification on Language

Keene respectfully requests clarification on the following language:

The Draft Permit stipulates the Pretreatment Year as "... twelve (12) month period ending 60 days prior to the [report] due date..." of November 1st each year. Considering the 60 days prior to the report date, the Pretreatment Year would be from September 1st- August 31st. The City currently operates under a Pretreatment Year of October 1-September 30th. The City requests clarification on this change. **To remain consistent with current operating practices, Keene respectfully requests that the Pretreatment Year period remain the same**.

7.5.3 Section G.3 Nitrogen

Section G.3.b of the Draft Permit states, "... the annual report shall include a detailed explanation of the reasons why TN discharges have increased, including any changes in influent flows/loads and any operational changes." The City is not required by the permit to report or monitor data on influent TN.

.....

Therefore, Keene respectfully requests that the requirement to report on changes in influent TN be removed from the Final Permit.

7.5.4 Notice of Bypass or Upset

Keene respectfully requests clarification on the following language included under Notice of Bypass or Upset of the Draft Permit (Page 22 Draft Permit).

"...all public or privately owned water systems drawing water from the same receiving water and located within 20 mile downstream of the point of discharge regardless of whether or not it is on the same receiving water or not it is on the same receiving water or another surface water to which the receiving water is tributary."

This language does not provide a definition for "drawing water." Does this requirement apply to both surface water withdrawals and groundwater withdrawals? Keene is aware that there are no surface water withdrawals within 20 miles downstream of the effluent discharge. If this requirement pertains to only surface water withdrawals, and since Keene is aware that there are no existing surface water withdrawals within the defined distance, then Keene respectfully requests that this requirement be removed from the Draft Permit.

This section of the Draft Permit also requires that "a written notification, which shall be postmarked within 3 days of the bypass or upset." Keene does not have the ability to bypass their WWTF; accordingly, Keene respectfully requests the removal of the word "bypass" from this article. Further, Keene requests clarification on the term "upset" that would trigger this notification in advance of the issuance of the Final Permit such that the City can respond formally depending on the revised language and associated definition of the word "bypass."

7.6 Water Reservoirs and Wells

Section 2.3, Available Dilution, of the Draft Permit's Fact Sheet distinguishes Keene's water sources as two wells and the Babbidge Reservoir.

In Keene, there are three separate water supplies, with two surface water reservoirs located in Roxbury, NH. Surface water is conveyed from the Babbidge Reservoir to the Water Treatment Facility. The City's surface water supply is supplemented by four groundwater wells located on West Street and Court Street. Keene respectfully requests that the water sources be updated in the Final Permit to reflect the correct number of wells and reservoirs.

APPENDIX A

WWTF Upgrades

Phase 1, Investment \$8.9 million

Construction began in 2013 and was completed in 2017 and included the following:

- Construction of two chemical feed buildings equipped with bulk storage tanks for increased capacity and treatment reliability.
- Construction of electrical building, replaced and decentralized original motor control centers and electrical gear
- Construction of new UV disinfection building and installation of UV disinfection system
- Installation of two Neuros 150hp turbo blowers
- Replacement of original three return activated sludge and two waste activated sludge pumps
- Retrofit clarifiers scum removal system and installation of algae cleaning system
- Replacement of 4 original raw sewage pumps, motors and controls at Martell Court pump station
- Installation of "Green" equipment including a heat recovery system, passive solar panels and solar tubes for lighting

Phase 2, Investment \$2.7 million

Construction began in 2016 and was completed in 2017 and included the following:

- Replacement of original sludge dewatering equipment with two FKC screw presses and controls.
 - This equipment is more efficient and produces a drier material that saves money in hauling and disposal costs
- Replacement of original polymer feed system with two Velodyne liquid emulsion feed system and controls
- Installation of enclosed screw conveyance system
- Installation of odor control system
- Installation of digital truck scale
- Repair and replacement of duct work in sludge dewatering and polymer rooms

The Wastewater Treatment Plant and Martell Court pump station came online in 1985. These upgrades were the first major improvements to the facilities since they came online 33 years ago.

Phase 3, Estimated Investment \$1.8 million

Construction to begin in 2019 and be completed by 2021 and include the following:

 Installation of screening equipment to remove trash and non-flushable wipes at Martell Court pump station.

This upgrade replaces the existing obsolete grinding system that has been in service for over 20 years

- Repair duct work and replace original HVAC system at the Martell Court pump station
- Replace original electrical transformer and emergency power generator at Martell Court pump station
- Perform Emergency Preparedness Evaluation for the Martell Court pump station
- Replace original emergency power generator at the Wastewater Treatment Plant

The City of Keene would like to acknowledge the New Hampshire Department of Environmental Services and the United States Environmental Protection Agency for providing State Revolving Fund low interest rate loans and \$435,000 in grant funding for the phase 1 and phase 2 projects.

City of Keene Wastewater Treatment Plant

OPEN HOUSE JUNE 12, 2018

FKC Serew Press

APPENDIX B

Receiving Water pH Data

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
	S.U.	S.U.	S.U.	S.U.	S.U.		
1/04/0010 00 00	0.0						
1/24/2018 09:00	6.9						
1/24/2018 10:00							
1/24/2018 11:00			0.0	4.0			
1/24/2018 12:00			6.6	4.8			
1/25/2018 10:00			6.3	5.0			
1/25/2018 11:00	6.0						
1/25/2018 12:00	6.8						
1/26/2018 08:00	6.7		C F	4.7			
1/26/2018 09:00			6.5	4.7			
1/29/2018 08:00	6.0						
1/29/2018 09:00	6.9						
1/29/2018 10:00							
1/29/2018 11:00			7.0	4.0			
1/29/2018 12:00			7.2	4.8			
1/31/2018 09:00	7.0		6.0	4.0			
1/31/2018 10:00	7.0		6.9	4.9			
2/3/2018 07:00	6.7						
2/3/2018 08:00	6.7						
2/5/2018 10:00							
2/5/2018 11:00	7.0		7.0	4.0			
2/5/2018 12:00	7.0		7.3	4.9			
2/5/2018 13:00							
2/6/2018 11:00	7.0		6.7				
2/6/2018 12:00	7.2		6.7				
2/12/2018 07:00					2.0		
2/12/2018 08:00					3.9		
2/12/2018 09:00							
2/12/2018 10:00							
2/12/2018 11:00	7.0		6.4	4.7			
2/12/2018 12:00	7.0		6.4	4.7			
2/12/2018 13:00	6.6						
2/13/2018 12:00 2/13/2018 13:00	6.6		8.6				
	6.0		8.0				
2/14/2018 12:00 2/14/2018 13:00	6.9		7.6				
			6.9	4.0			
2/15/2018 11:00	7.0		0.9	4.9			
2/15/2018 12:00 2/16/2018 12:00	7.3 7.0						
2/16/2018 12:00	1.0		8.1	4.6			
2/26/2018 13:00	6.7		0.1	4.0			
	0.7		6.7	5.0			
2/26/2018 13:00 2/27/2018 12:00	6.6		U. /	3.0			
2/27/2018 12:00	0.0			4.9			
2/28/2018 13:00	6.6		7.1	4.9			
3/1/2018 09:00	6.9		<i>I</i> . 1				
3/1/2010 09.00	0.9						

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
	S.U.	S.U.	S.U.	S.U.	S.U.		
3/1/2018 10:00			6.9	6.1			
3/5/2018 10:00	6.6						
3/5/2018 11:00							
3/5/2018 12:00							
3/5/2018 13:00			7.2	6.1			
3/6/2018 12:00	6.8						
3/6/2018 13:00			6.8	5.6			
3/7/2018 10:00	6.3		6.9	5.1			
3/9/2018 12:00	7.0		7.2	5.8			
3/12/2018 12:00	6.6		7.3	5.4			
3/15/2018 10:00	7.1						
3/15/2018 11:00							
3/15/2018 12:00			7.2	6.4			
3/16/2018 12:00	7.2			6.3			
3/16/2018 13:00			7.9				
3/19/2018 12:00	6.9		7.5	6.2			
3/20/2018 11:00							
3/20/2018 12:00			8.1	6.2			
3/20/2018 13:00	7.1						
3/21/2018 12:00	7.2			5.4			
3/21/2018 13:00			8.3				
3/22/2018 12:00	7.1		8.6	6.4			
3/23/2018 12:00	7.2		7.5	6.7			
3/26/2018 12:00	7.0		7.9	6.6			
3/27/2018 12:00	7.2		8.9				
3/28/2018 11:00							
3/28/2018 12:00	7.2						
3/28/2018 13:00			7.3	5.5			
3/29/2018 11:00			7.6	6.1			
3/29/2018 12:00	7.1						
3/30/2018 12:00	7.1		8.5	6.6			
4/2/2018 12:00	6.9	6.2	7.3	6.0			
4/3/2018 13:00	7.1	6.5	7.4	6.0			
4/4/2018 06:00					4.6		
4/4/2018 12:00	7.0	6.6	8.2	5.9			
4/5/2018 12:00	7.0	6.7	7.3	5.7			
4/9/2018 12:00	7.2	7.0	8.2	6.1			
4/10/2018 12:00	7.1	6.4	7.6	6.3			
4/23/2018 10:00	7.0						
4/23/2018 11:00							
4/23/2018 12:00		6.3	7.4	6.5			
4/24/2018 13:00	7.0	6.4					
4/26/2018 10:00		6.2					
4/26/2018 11:00							
4/26/2018 12:00	7.0		8.0	6.1			
4/27/2018 09:00		6.4	7.2	6.0			
., =: , == : . = = : = = : = = : = = : = : = :		<u> </u>	· · -				

	2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH			
. /2= /22	S.U.	S.U.	S.U.	S.U.	S.U.			
4/27/2018 13:00	6.9							
4/28/2018 07:00	7.0							
4/30/2018 06:00					4.7			
4/30/2018 12:00			7.1	5.8				
4/30/2018 13:00	6.8	6.3						
5/1/2018 13:00	6.8	6.3	7.3	6.2				
5/2/2018 08:00	6.8			5.8				
5/2/2018 12:00		6.3	7.2					
5/3/2018 13:00	6.9	6.3	7.2	5.9				
5/4/2018 09:00		6.4						
5/4/2018 12:00	6.9		6.8	5.8				
5/7/2018 06:00					4.8			
5/7/2018 10:00	6.8	6.2	7.4	6.5				
5/8/2018 11:00		6.1						
5/8/2018 12:00			7.6	6.2				
5/8/2018 13:00								
5/8/2018 14:00	6.9							
5/9/2018 12:00	6.8	6.2	7.3	6.0				
5/10/2018 10:00			7.7	5.8				
5/10/2018 13:00	6.8	6.2						
5/14/2018 12:00			8.1					
5/14/2018 13:00				6.1				
5/15/2018 12:00	7.2		7.6					
5/15/2018 13:00		6.3		6.0				
5/16/2018 08:00					5.3			
5/16/2018 09:00								
5/16/2018 10:00		6.4						
5/16/2018 11:00								
5/16/2018 12:00								
5/16/2018 13:00	6.9		7.4	6.3				
5/18/2018 09:00	0.0	6.5	,	0.0				
5/18/2018 10:00	6.9	0.0	7.1	6.4				
5/20/2018 06:00	0.0		7.1	0.1	4.7			
5/21/2018 10:00		6.3			7.7			
5/21/2018 11:00		0.0						
5/21/2018 12:00								
5/21/2018 13:00	6.8		7.0	6.3				
5/22/2018 11:00	0.0	6.5	1.0	0.0				
5/22/2018 11:00		0.0						
5/22/2018 13:00	6.8		7.7	6.3				
5/23/2018 09:00	0.0	6.3	1.1	0.3				
· · · · · · · · · · · · · · · · · · ·		0.3						
5/23/2018 10:00								
5/23/2018 11:00	6.0		0.0	6.0				
5/23/2018 12:00	6.9		8.0	6.0				
5/23/2018 13:00		0.0						
5/24/2018 11:00		6.6						

Sampling Date	2018 pH Data Collected by Keene							
5/24/2018 12:00	Sampling Date	Primary Effluent Grab pH	Clarifier #2 pH	pН	Martell Court Bridge pH, upstream			
5/25/2018 10:00 5/25/2018 12:00 5/25/2018 13:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 11:00 5/25/2018 12:00 5/25/2018 12:00 5/25/2018 12:00 5/25/2018 10:00 6.8 5/25/2018 10:00 6.9 5/25/2018 10:00 6.9 5/30/2018 10:00 6.9 5/30/2018 10:00 6.9 6/4/2018 10:00 6.9 6/4/2018 00:00 6/4/2018 00:00 6/4/2018 00:00 6/5/2018 11:00 6/5/2018 11:00 6/5/2018 10:00 6/6/2018 00:00 6/7/2018 10:00 6/6/2018 10:00 6/7/2018			S.U.	S.U.	S.U.	S.U.		
5/25/2018 11:00		6.9						
5/25/2018 12:00 5/28/2018 10:00 5/28/2018 10:00 5/28/2018 10:00 5/28/2018 10:00 5/28/2018 10:00 5/28/2018 10:00 5/30/2018 09:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 6/3/2018 10:00 6/3/2018 10:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/4/2018 09:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/6/20			6.7					
5/28/2018 13:00 6.9 5/28/2018 10:00 6.3 5/28/2018 11:00 5/28/2018 13:00 5/28/2018 13:00 6.8 5/28/2018 10:00 7.0 5/30/2018 10:00 6.3 5/30/2018 10:00 6.3 5/30/2018 13:00 8.2 6.1 5/30/2018 13:00 8.2 6.1 5/31/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 7.6 6.4 6.4 6.4 6/1/2018 09:00 6.7 6.5 7.1 6.3 6.5/2018 10:00 5.3 6/5/2018 09:00 6.7 6.5 7.1 6.3 6.5/2018 10:00 5.3 6.5/2018 10:00 6.4 6.2 6.2 6.6 6.6 6.6 6				7.5	6.2			
5/28/2018 10:00 6.3								
5/28/2018 11:00 5/28/2018 13:00 6.8 7.5 6.2 5/28/2018 13:00 6.8 7.5 6.2 5/30/2018 10:00 5/30/2018 10:00 6.3 5/30/2018 11:00 5/30/2018 11:00 6.3 5/30/2018 12:00 5/30/2018 13:00 8.2 6.1 5/31/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 6.4 6.2 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.2 6.2 6.1 6.7<		6.9						
5/28/2018 12:00 6.8 7.5 6.2 5/30/2018 09:00 7.0 5/30/2018 10:00 6.3 5/30/2018 12:00 5/30/2018 12:00 5/30/2018 12:00 5/30/2018 12:00 5/31/2018 00:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 6.4 6.4 6.4 6.4 6/1/2018 09:00 6.4 6.4 6.4 6.4 6/4/2018 09:00 6.7 6.5 7.1 6.3 6.5/2018 00:00 5.3 6/5/2018 10:00 6.4 6.4 6.4 6.4 6.4 6.4 6/5/2018 11:00 6.4 6.4 6.4 6.5/2018 10:00 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.0 6.7/2018 10:00 6.7 6.7 6.7 6.7			6.3					
5/28/2018 13:00								
5/30/2018 10:00 5/30/2018 11:00 5/30/2018 11:00 5/30/2018 12:00 5/30/2018 10:00 5/30/2018 10:00 5/30/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 00:00 6.7 6/1/2018 10:00 6.7 6/1/2018 10:00 6.7 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 00:00 6/1/2018 10:00 6								
5/30/2018 10:00 5/30/2018 11:00 5/30/2018 12:00 5/30/2018 13:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4/2018 09:00 6.7 6.5 6/5/2018 09:00 6.7 6.5 6/5/2018 10:00 6.8 6/5/2018 10:00 6.8 6/5/2018 10:00 6.9 6/5/2018 10:00 6.9 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/6/2018 09:00 6/6/2018 09:00 6/7/2018 10:				7.5	6.2			
5/30/2018 11:00 5/30/2018 13:00 5/30/2018 13:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 6.4 6/4/2018 09:00 6.4 6/4/2018 09:00 6.7 6.5 7.1 6.3 6/4/2018 09:00 6.7 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/5/2018 10:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 09:00 6/7/2018 10:00 6/7/		7.0						
5/30/2018 12:00 8.2 6.1 5/30/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 7.6 6.4 6.4 6.4 6/1/2018 07:00 6.4 6.4 6.4 6.4 6/4/2018 08:00 6.7 6.5 7.1 6.3 6.5/2018 06:00 6.3 5.3 6/5/2018 06:00 6.4 6.4 6.4 6.4 6.5/2018 10:00 6.6 6.5/2018 10:00 6.6 6.5 7.1 6.3 5.3 6.6/5/2018 10:00 6.6 6.6/5/2018 10:00 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.7/2018 10:00 6.6 6.7/2018 10:00 6.6 6.7/2018 10:00 6.6 6.8/2018 10:00 6.6 6.6 6.8/2018 10:00 6.6 6.6 6.8/2018 10:00 6.6 6.6 6.8/2018 10:00 6.7 6.7 6.1 6.1 6.1 6.1 6.1/1/2018 10:00 6.6 6.2 6.1 6.1 6.1	<u> </u>		6.3					
5/30/2018 13:00 8.2 6.1 5/31/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 7.6 6.4 6.4 6/4/2018 07:00 6.4 6.4 6.4 6/4/2018 08:00 6.7 6.5 7.1 6.3 6/5/2018 09:00 6.7 6.5 7.1 6.3 6/5/2018 10:00 6.4 6.4 6.5 6.3 6/5/2018 10:00 6.4 6.4 6.3 6.5 6/5/2018 10:00 6.4 6.4 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.7 6.7 6.6 6.0 6.7 6.7 6.7 6.0 6.7 6.7 6.7 6.0 6.7 6.7 6.7 6.0 6.7 6.7 6.7 6.0 6.7 6.7 6.1 6.0 6.7 6.7 6.2 6.2 6.8 6.2 6.2 6.2 6.2 6.2 6.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5/31/2018 10:00 6.9 6.4 7.4 6.2 6/1/2018 09:00 7.6 6.4 6.4 6/1/2018 07:00 5.3 5.3 6/4/2018 08:00 6.7 6.5 7.1 6.3 6/5/2018 06:00 6.7 6.5 7.1 6.3 6/5/2018 10:00 6.4 6.4 6.6 6.5 6/5/2018 11:00 7.0 7.5 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.7 6.7 6.7 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.0 6.7 6.7 6.0 6.7 6.0 6.7 6.0 6.7 6.0 6.7 6.0 6.7 6.1 6.2 6.1 6.2 6.1 6.2 6.2 6.2<								
6/1/2018 09:00 6/1/2018 10:00 6/4/2018 07:00 6/4/2018 08:00 6/4/2018 09:00 6/4/2018 09:00 6/5/2018 10:00 6/5/2018 11:00 6/5/2018 11:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/7/20								
6/1/2018 10:00 6.4 6.4 6.4 6.4 6.4 6.4 6.4/2018 07:00 5.3 6.4/2018 08:00 6.7 6.5 7.1 6.3 5.3 6.4/2018 08:00 6.7 6.5 7.1 6.3 5.3 6.5/2018 10:00 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4		6.9	6.4		6.2			
6/4/2018 07:00 6/4/2018 08:00 6/4/2018 09:00 6/5/2018 10:00 6/5/2018 11:00 6/5/2018 12:00 7.0 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 12:00 7.0 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/7/2018 11:00 6/7/2018 11:00 6/7/2018 11:00 6/7/2018 11:00 6/7/2018 11:00 6/6/2018 10:00 6/7/2018 11:00 6/6/2018 10:00 6/7/2018 11:00 6/6/2018 10:00 6/7/2018 11:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/6/2018 10:00 6/11/2018 10:00 6/1				7.6				
6/4/2018 08:00 6/4/2018 09:00 6/5/2018 06:00 6/5/2018 10:00 6/5/2018 11:00 6/5/2018 12:00 7.0 6/6/2018 09:00 6/6/2018 09:00 6/6/2018 12:00 7.0 6/6/2018 12:00 7.0 6/6/2018 12:00 7.0 6/6/2018 12:00 7.0 6/7/2018 09:00 6/7/2018 10:00 6			6.4		6.4			
6/4/2018 09:00 6.7 6.5 7.1 6.3 5.3 6/5/2018 10:00 6.4 6.5/2018 11:00 6.5/2018 12:00 7.0 7.5 6.0 6.6/2018 09:00 6.6 6.6 6.6 6.6 6.6 6.6 6.7/2018 12:00 7.0 6.7/2018 09:00 6.7/2018 10:00 6.7/2018 11:00 7.0 6.7/2018 10:00 7.0 6.7/2018 11:00 7.0 6.7/2018 11:00 7.0 6.7/2018 11:00 7.0 6.7/2018 11:00 7.0 6.7/2018 11:00 7.0 6.6 6.0 6.7/2018 11:00 7.0 6.7/2018 11:00 7.0 6.8/2018 11:00 7.0 6.8/2018 11:00 6.6 6.6 6.6 6.6 6.6 6.0 6.0 6.7/2018 11:00 7.0 6.6 6.0 6.0 6.7/2018 10:00 6.6 6.6 6.0 6.0 6.7/2018 10:00 6.7 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1						5.3		
6/5/2018 06:00 6.4 5.3 6.5/2018 10:00 6.4 6.5/2018 11:00 6.5/2018 12:00 7.0 7.5 6.0 6.6/2018 08:00 7.1 6.1 6.6/2018 09:00 6.6/6/2018 09:00 6.7 6.7/2018 10:00 7.0 6/7/2018 10:00 7.0 6/7/2018 10:00 7.0 6/7/2018 10:00 7.0 6.7/2018 10:00 7.0 6.7/2018 10:00 7.0 6.7/2018 10:00 7.0 6/8/2018 08:00 7.3 6.1 6.1 6.6/2018 10:00 6.8/2018 10:00 6.8/2018 10:00 6.7 6.6 6.0 6/8/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.7 6.1/2018 10:00 6.9 6.2 6.2 6/13/2018 10:00 6.9 6.2 6/13/2018 10:00 6.8 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1								
6/5/2018 10:00 6.4 6/5/2018 11:00 7.0 7.5 6.0 6/5/2018 12:00 7.0 7.1 6.1 6.1 6.6/2018 09:00 6.6 6/6/2018 09:00 6.6 6/6/2018 12:00 7.0 6.7/2018 09:00 6.7 6/7/2018 10:00 7.0 6/7/2018 10:00 7.0 6/7/2018 11:00 7.6 6.0 6/7/2018 11:00 7.6 6.0 6/7/2018 11:00 7.0 6/7/2018 11:00 7.0 6/7/2018 11:00 7.0 6/8/2018 11:00 7.0 6/8/2018 11:00 7.0 6.6 6.0 6/7/2018 11:00 7.0 6.6 6.0 6/8/2018 11:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.9 6/13/2018 09:00 6.9 6.2 6/13/2018 10:00 6.9 6/13/2018 10:00 6.9 6/14/2018 09:00 6.2 6/14/2018 09:00 6.2 6/14/2018 09:00 6.8 6.2 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8	6/4/2018 09:00	6.7	6.5	7.1	6.3			
6/5/2018 11:00 6/5/2018 12:00 7.0 7.5 6.0 6/6/2018 08:00 7.1 6.1 6/6/2018 09:00 6.6 6/6/2018 12:00 7.0 6/7/2018 09:00 6.7 6/7/2018 10:00 6/7/2018 11:00 6/7/2018 11:00 7.6 6/7/2018 12:00 7.0 6/7/2018 12:00 7.0 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/8/2018 10:00 6/11/2018 10:00	6/5/2018 06:00					5.3		
6/5/2018 12:00 7.0 7.5 6.0 6.0 6/6/2018 08:00 6.6 7.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6	6/5/2018 10:00		6.4					
6/6/2018 08:00 7.1 6.1 6/6/2018 09:00 6.6 6.6 6/6/2018 12:00 7.0 6.7 6/7/2018 09:00 6.7 6.0 6/7/2018 11:00 7.6 6.0 6/7/2018 12:00 7.0 6.0 6/8/2018 12:00 7.0 6.6 6/8/2018 10:00 6.6 6.6 6/8/2018 11:00 6.6 6.6 6/8/2018 12:00 6.7 6.4 6/11/2018 10:00 6.7 6.4 6/11/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 13:00 6.9 6.1 6/14/2018 09:00 6.2 6.1 6/14/2018 13:00 6.8 6.2 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.3	6/5/2018 11:00							
6/6/2018 09:00 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6	6/5/2018 12:00	7.0		7.5	6.0			
6/6/2018 12:00 7.0 6/7/2018 09:00 6.7 6/7/2018 10:00 6/7/2018 11:00 7.6 6.0 6/7/2018 12:00 7.0 6/8/2018 12:00 7.0 6/8/2018 09:00 6.6 6/8/2018 10:00 6.6 6/8/2018 11:00 6.7 6/8/2018 11:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/11/2018 10:00 6.7 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 10:00 6.9 6/13/2018 10:00 6.9 6/13/2018 10:00 6.9 6/13/2018 10:00 6.8 6/15/2018 09:00 6.8 6/15/2018 09:00 6.8	6/6/2018 08:00			7.1	6.1			
6/7/2018 09:00 6/7/2018 10:00 6/7/2018 11:00 7.6 6/7/2018 12:00 7.0 6/8/2018 08:00 6/8/2018 10:00 6/8/2018 11:00 6/8/2018 11:00 6/8/2018 11:00 6/8/2018 12:00 6/11/2018 10:00 6/11/2018 10:00 6/11/2018 10:00 6/11/2018 10:00 6/13/2018 09:00 6/13/2018 10:00 6/13/2018 10:00 6/14/2018 09:00 6/14/2018 09:00 6/15/2018 09:00 6.8 6/15/2018 09:00 6.8 6/15/2018 14:00 6.8	6/6/2018 09:00		6.6					
6/7/2018 10:00 7.6 6.0 6/7/2018 12:00 7.0 6.0 6/8/2018 08:00 7.3 6.1 6/8/2018 10:00 6.6 6.6 6/8/2018 11:00 6.7 6.4 6/11/2018 10:00 6.7 6.2 6/11/2018 08:00 7.2 6.2 6/13/2018 09:00 6.9 6.1 6/14/2018 13:00 6.8 6.1 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.3	6/6/2018 12:00	7.0						
6/7/2018 11:00 7.6 6.0 6/7/2018 12:00 7.0 6.0 6/8/2018 08:00 7.3 6.1 6/8/2018 10:00 6.6 6.6 6/8/2018 12:00 6.7 6.4 6/11/2018 10:00 6.4 6.4 6/11/2018 14:00 6.7 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 10:00 6.9 6.1 6/14/2018 09:00 6.2 6.1 6/14/2018 13:00 6.8 6.3 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.8	6/7/2018 09:00		6.7					
6/7/2018 12:00 7.0 6/8/2018 08:00 7.3 6.1 6/8/2018 10:00 6.6 6.6 6/8/2018 11:00 6.7 6.4 6/8/2018 10:00 6.4 6.4 6/11/2018 10:00 6.7 6.2 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 10:00 6.9 6.1 6/14/2018 09:00 6.2 6.1 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.3	6/7/2018 10:00							
6/8/2018 08:00 7.3 6.1 6/8/2018 10:00 6.6 6.6 6/8/2018 11:00 6.7 6.4 6/11/2018 10:00 6.7 6.4 6/11/2018 14:00 6.7 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 10:00 6.9 6.1 6/14/2018 09:00 6.2 6.1 6/14/2018 13:00 6.8 6.2 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.3	6/7/2018 11:00			7.6	6.0			
6/8/2018 08:00 7.3 6.1 6/8/2018 10:00 6.6 6.6 6/8/2018 11:00 6.7 6.4 6/11/2018 10:00 6.4 6.1 6/11/2018 14:00 6.7 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 10:00 6.9 6.1 6/14/2018 09:00 6.2 6.1 6/14/2018 13:00 6.8 6.2 6/15/2018 09:00 6.8 6.3 6/15/2018 14:00 6.8 6.3	6/7/2018 12:00	7.0						
6/8/2018 11:00 6.7 6/8/2018 12:00 6.7 6/11/2018 10:00 6.4 6/11/2018 14:00 6.7 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8				7.3	6.1			
6/8/2018 11:00 6.7 6/8/2018 12:00 6.7 6/11/2018 10:00 6.4 6/11/2018 14:00 6.7 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8			6.6					
6/11/2018 10:00 6.4 6/11/2018 14:00 6.7 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8								
6/11/2018 10:00 6.4 6/11/2018 14:00 6.7 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8	6/8/2018 12:00	6.7						
6/11/2018 14:00 6.7 6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8			6.4					
6/12/2018 08:00 7.2 6.2 6/13/2018 09:00 6.2 6.2 6/13/2018 10:00 6.9 7.6 6.1 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6.2 6/14/2018 13:00 6.8 6.3 6/15/2018 09:00 6.8 6/15/2018 14:00 6.8		6.7						
6/13/2018 09:00 6.2 6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8				7.2	6.2			
6/13/2018 10:00 6.9 6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8			6.2					
6/13/2018 13:00 7.6 6.1 6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8		6.9						
6/14/2018 09:00 6.2 6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8	· · · · · · · · · · · · · · · · · · ·			7.6	6.1			
6/14/2018 13:00 6.8 6/15/2018 09:00 6.3 6/15/2018 14:00 6.8			6.2					
6/15/2018 09:00 6.3 6/15/2018 14:00 6.8		6.8						
6/15/2018 14:00 6.8			6.3					
		6.8						
			6.4					

	2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH			
	S.U.	S.U.	S.U.	S.U.	S.U.			
6/19/2018 13:00	6.8		7.3	6.4				
6/22/2018 10:00	6.8	6.7						
6/22/2018 13:00			7.3	6.2				
6/25/2018 06:00					4.8			
6/25/2018 10:00		6.0						
6/25/2018 11:00								
6/25/2018 12:00			8.0	6.2				
6/25/2018 13:00	6.7							
6/26/2018 10:00		6.5						
6/26/2018 11:00								
6/26/2018 12:00								
6/26/2018 13:00	6.9		7.4	6.3				
6/27/2018 10:00		6.8						
6/27/2018 11:00								
6/27/2018 12:00	6.8							
6/27/2018 13:00			7.5	6.1				
6/28/2018 06:00					4.9			
6/28/2018 10:00		6.5						
6/28/2018 11:00								
6/28/2018 12:00	6.8							
6/28/2018 13:00			7.6	6.2				
6/29/2018 06:00					4.8			
6/29/2018 13:00	6.8	6.5	7.5	6.0				
7/2/2018 10:00		6.4						
7/3/2018 10:00		6.9						
7/3/2018 11:00								
7/3/2018 12:00								
7/3/2018 13:00	7.2							
7/9/2018 08:00	6.6							
7/9/2018 09:00			7.2					
7/9/2018 10:00		6.4						
7/10/2018 09:00			7.1	6.1				
7/10/2018 10:00	6.8	6.3						
7/11/2018 09:00				6.1				
7/11/2018 10:00		6.7						
7/12/2018 08:00								
7/12/2018 09:00		6.8						
7/12/2018 12:00		-		6.2				
7/12/2018 13:00	6.8		7.6					
7/13/2018 09:00		6.8						
7/13/2018 10:00	6.9							
7/13/2018 11:00			6.3	6.2				
7/15/2018 07:00			2.0	5.2	4.0			
7/16/2018 10:00		6.6						
7/17/2018 06:00		0.0			4.5			
7/17/2018 08:00								
7, 17,2010 00.00			<u> </u>	<u> </u>				

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
= // = /00 / 0 00 00	S.U.	S.U.	S.U.	S.U.	S.U.		
7/17/2018 09:00		6.5					
7/18/2018 06:00					4.5		
7/18/2018 09:00		6.6					
7/18/2018 10:00							
7/18/2018 11:00							
7/18/2018 12:00	6.7		7.0	6.1			
7/20/2018 10:00		6.5		6.2			
7/20/2018 11:00							
7/20/2018 12:00	6.9						
7/20/2018 13:00							
7/20/2018 14:00			8.0				
7/26/2018 10:00		6.5					
7/27/2018 10:00		6.6					
7/27/2018 11:00							
7/27/2018 12:00	6.7						
7/27/2018 13:00			7.1	6.1	4.6		
7/30/2018 10:00		6.3					
7/30/2018 11:00							
7/30/2018 12:00							
7/30/2018 13:00	6.7		7.1	6.1	4.0		
7/31/2018 11:00			7.2	6.2			
8/1/2018 10:00	6.7	6.6					
8/1/2018 11:00							
8/1/2018 12:00							
8/1/2018 13:00			7.1	6.2			
8/2/2018 12:00		6.4	6.8	6.1			
8/2/2018 13:00	6.7						
8/3/2018 10:00		6.6					
8/3/2018 11:00	6.8						
8/3/2018 12:00			7.0	5.8			
8/4/2018 07:00					4.6		
8/6/2018 09:00		6.2	6.8	6.0			
8/6/2018 13:00	7.2						
8/7/2018 09:00	7.=	6.8					
8/7/2018 14:00	6.8		7.1	5.9			
8/8/2018 06:00	0.0		,	0.0	4.6		
8/8/2018 10:00	6.5	6.8	7.1	6.2	110		
8/9/2018 09:00	5.0	6.6	7.1	J.L			
8/9/2018 10:00		0.0	7.2	6.1			
8/9/2018 13:00	6.6		1.6	0.1			
8/10/2018 09:00	0.0	6.5					
8/10/2018 10:00		0.0	7.2	6.0			
8/10/2018 11:00	6.5		1 .८	0.0			
8/12/2018 07:00	0.0				4.3		
8/13/2018 09:00		6.4			4.0		
		0.4	7.0	6 1			
8/13/2018 10:00			7.2	6.1			

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
	S.U.	S.U.	S.U.	S.U.	S.U.		
8/13/2018 11:00							
8/13/2018 12:00	6.2						
8/14/2018 09:00		7.0	6.9	6.0			
8/14/2018 13:00	6.6						
8/15/2018 09:00		6.5					
8/15/2018 12:00			6.9	6.0			
8/15/2018 13:00							
8/15/2018 14:00	6.6						
8/16/2018 09:00		6.6					
8/16/2018 14:00	6.7						
8/17/2018 09:00		6.4					
8/17/2018 10:00	6.6						
8/20/2018 10:00		6.6					
8/20/2018 11:00							
8/20/2018 12:00	6.7		6.8	5.9			
8/21/2018 10:00		6.4					
8/21/2018 13:00	6.7		6.9	6.0			
8/22/2018 10:00		6.6	7.1	6.1			
8/22/2018 11:00	6.5						
8/23/2018 09:00		6.7					
8/24/2018 10:00		6.7					
8/24/2018 13:00			7.1	5.6			
8/27/2018 12:00			7.2	5.9			
8/27/2018 13:00	6.9	6.7					
8/28/2018 13:00	6.5	6.4	7.1	6.0			
8/29/2018 10:00		6.3					
8/29/2018 11:00							
8/29/2018 12:00			7.4	6.0			
8/29/2018 13:00	6.8						
8/30/2018 09:00		6.7					
8/30/2018 10:00							
8/30/2018 11:00			7.6	5.8			
8/30/2018 12:00							
8/30/2018 13:00	6.7						
8/31/2018 09:00		6.7					
8/31/2018 10:00							
8/31/2018 11:00							
8/31/2018 12:00							
8/31/2018 13:00	7.1		7.8	5.4			
9/4/2018 10:00		6.4					
9/4/2018 11:00							
9/4/2018 12:00							
9/4/2018 13:00			7.2	6.0			
9/4/2018 14:00	6.7						
9/6/2018 10:00		6.5					
9/7/2018 10:00		6.5					

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
0/7/00/0	S.U.	S.U.	S.U.	S.U.	S.U.		
9/7/2018 11:00							
9/7/2018 12:00							
9/7/2018 13:00	6.7		7.4	6.1			
9/10/2018 10:00		6.6					
9/10/2018 11:00							
9/10/2018 12:00							
9/10/2018 13:00	6.9		7.4	6.0			
9/11/2018 06:00					5.3		
9/11/2018 10:00		6.8					
9/11/2018 11:00							
9/11/2018 12:00							
9/11/2018 13:00			7.5	6.0			
9/12/2018 10:00		6.7					
9/12/2018 11:00							
9/12/2018 12:00	6.6						
9/12/2018 13:00							
9/12/2018 14:00				5.9			
9/13/2018 11:00			7.1	5.7			
9/13/2018 12:00	6.8						
9/14/2018 10:00		6.8					
9/14/2018 11:00			7.4	5.8			
9/14/2018 12:00							
9/14/2018 13:00	7.0						
9/17/2018 10:00		6.1					
9/17/2018 11:00							
9/17/2018 12:00	4.9						
9/17/2018 13:00			7.4	6.0			
9/18/2018 10:00		6.2					
9/19/2018 10:00		6.8					
9/19/2018 11:00							
9/19/2018 12:00	6.6						
9/20/2018 10:00		6.4					
9/20/2018 11:00							
9/20/2018 12:00							
9/20/2018 13:00	6.9						
9/21/2018 09:00		6.3					
9/21/2018 13:00	7.1		7.3	5.9			
9/24/2018 09:00			7.1	7.0			
9/24/2018 10:00		6.2					
9/24/2018 14:00	7.1						
9/25/2018 10:00		6.5					
9/25/2018 11:00							
9/25/2018 12:00			7.4	6.0			
9/25/2018 13:00	6.9			2.0			
9/26/2018 06:00	0.0				5.0		
9/26/2018 07:00							

	2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH			
	S.U.	S.U.	S.U.	S.U.	S.U.			
9/26/2018 12:00	6.9	6.7	7.0	5.9				
9/27/2018 10:00		6.4						
9/27/2018 11:00			6.8	6.0				
9/27/2018 14:00	6.8							
9/28/2018 09:00		6.6						
9/28/2018 10:00								
9/28/2018 11:00			7.1	5.8				
9/28/2018 12:00								
9/28/2018 13:00	6.9							
10/3/2018 06:00					5.1			
10/3/2018 07:00								
10/3/2018 08:00								
10/3/2018 09:00		6.8						
10/3/2018 13:00	6.8		7.0	6.0				
10/4/2018 10:00		6.6						
10/4/2018 11:00								
10/4/2018 12:00			7.6					
10/4/2018 13:00	6.8			5.9				
10/10/2018 11:00			7.2	5.7				
10/11/2018 10:00		6.7						
10/11/2018 11:00								
10/11/2018 12:00			7.1	5.8				
10/11/2018 13:00	7.1							
10/16/2018 13:00		6.5	7.4	5.6				
10/16/2018 14:00	7.1							
10/17/2018 11:00		6.5						
10/17/2018 12:00								
10/17/2018 13:00	7.2		7.3	5.4				
10/18/2018 10:00		6.5						
10/18/2018 11:00	6.9							
10/19/2018 10:00		6.6						
10/19/2018 11:00								
10/19/2018 12:00			8.3	5.4				
10/19/2018 13:00	7.1							
10/22/2018 09:00			7.2	6.2				
10/23/2018 10:00		6.5	· -					
10/23/2018 11:00								
10/23/2018 12:00								
10/23/2018 13:00	7.2		7.5	6.4				
10/24/2018 10:00		6.4	7.2	6.6				
10/24/2018 11:00								
10/24/2018 12:00	6.8							
10/25/2018 10:00	5.5	6.4						
10/25/2018 11:00		<u> </u>						
10/25/2018 12:00								
10/25/2018 13:00	6.8		8.2	5.9				
10,20,2010 10.00	5.5		5.2	5.5				

	2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH			
10/00/00/00/00	S.U.	S.U.	S.U.	S.U.	S.U.			
10/26/2018 09:00		6.4	7.1	5.7				
10/26/2018 10:00	6.8							
10/28/2018 07:00					4.8			
10/29/2018 10:00		6.8						
10/29/2018 11:00								
10/29/2018 12:00								
10/29/2018 13:00	0.0		8.6	5.5				
10/29/2018 14:00	6.6							
10/30/2018 09:00		6.7						
10/30/2018 10:00								
10/30/2018 11:00								
10/30/2018 12:00			— —					
10/30/2018 13:00	7.1	0.0	7.7	5.6				
10/31/2018 10:00		6.6						
10/31/2018 11:00			0.0	F 0				
10/31/2018 12:00	7.0		8.2	5.6				
10/31/2018 13:00	7.0	0.4						
11/1/2018 11:00		6.4						
11/1/2018 12:00								
11/1/2018 13:00			7.8	5.5				
11/2/2018 09:00		6.5						
11/2/2018 10:00								
11/2/2018 11:00								
11/2/2018 12:00	6.6			7.0				
11/2/2018 13:00			7.3					
11/5/2018 09:00		6.9						
11/5/2018 13:00	7.2		7.0	5.4				
11/6/2018 06:00					5.0			
11/6/2018 13:00	7.0	6.9	7.0	5.4				
11/7/2018 10:00		6.8						
11/7/2018 14:00	6.9		6.9	5.5				
11/8/2018 12:00	6.5							
11/8/2018 13:00								
11/8/2018 14:00			6.6	5.3				
11/9/2018 10:00		6.6						
11/9/2018 13:00	7.0		6.9	5.3				
11/13/2018 10:00		6.6						
11/13/2018 11:00			6.7	5.1				
11/13/2018 12:00								
11/13/2018 13:00	6.6	0.5						
11/14/2018 10:00		6.8						
11/14/2018 11:00								
11/14/2018 12:00	6.9		6.5	5.4				
11/15/2018 10:00		6.9						
11/15/2018 11:00								
11/15/2018 12:00			6.8	5.3				

2018 pH Data Collected by Keene							
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH		
	S.U.	S.U.	S.U.	S.U.	S.U.		
11/15/2018 13:00	6.9						
11/16/2018 06:00					4.6		
11/16/2018 10:00		6.6					
11/16/2018 11:00							
11/16/2018 12:00			6.5	5.1			
11/16/2018 13:00	6.4						
11/19/2018 10:00		6.7					
11/19/2018 11:00	7.1						
11/19/2018 12:00							
11/19/2018 13:00			6.7	5.4			
11/20/2018 09:00		6.7					
11/20/2018 10:00	6.5						
11/20/2018 11:00							
11/20/2018 12:00							
11/20/2018 13:00			6.9	5.6			
11/21/2018 10:00		6.9	7.0	5.5			
11/21/2018 11:00	6.9						
11/26/2018 06:00					4.8		
11/26/2018 10:00		6.8					
11/26/2018 13:00	6.8		7.1	5.5			
11/27/2018 10:00		6.6					
11/27/2018 11:00							
11/27/2018 12:00			7.5	5.4			
11/27/2018 13:00	7.2						
11/28/2018 10:00		6.6					
11/28/2018 11:00							
11/28/2018 12:00							
11/28/2018 13:00	7.0		7.1	5.7			
11/29/2018 06:00					4.8		
11/29/2018 10:00		6.8					
11/29/2018 14:00	7.2		7.5	5.3			
11/30/2018 10:00		6.7					
11/30/2018 11:00							
11/30/2018 12:00							
11/30/2018 13:00	7.3		7.0	5.7			
12/3/2018 10:00	6.9	6.6	7.0	J.,			
12/3/2018 11:00	0.0	0.0					
12/3/2018 12:00			6.9	5.5			
12/4/2018 10:00	6.9	6.4	0.0	0.0			
12/4/2018 11:00	0.0	U. ¬					
12/4/2018 11:00			7.1	5.9			
12/5/2018 10:00		6.6	1.1	5.5			
12/5/2018 10:00		0.0					
12/5/2018 11:00							
12/5/2018 12:00	6.9		6.9	5.2			
12/6/2018 09:00	0.9	6.7	0.8	J.Z			
12/0/2018 09:00		6.7					

2018 pH Data Collected by Keene								
Sampling Date	WWTF Primary Effluent Grab pH	WWTF Clarifier #2 pH	Martell Court pH	Ashuelot River Martell Court Bridge pH, upstream	Precipitation pH			
	S.U.	S.U.	S.U.	S.U.	S.U.			
12/6/2018 12:00								
12/6/2018 13:00	7.0		7.1	5.2				
12/7/2018 10:00		6.5						
12/7/2018 11:00								
12/7/2018 12:00	7.1		7.5	5.3				
12/10/2018 10:00		6.7						
12/10/2018 11:00								
12/10/2018 12:00			7.5	5.2				
12/10/2018 13:00	7.0							
Minimum	4.9	6.0	6.3	4.6	3.9			
Maximum	7.3	7.0	8.9	7.0	5.3			
Median	6.9	6.5	7.2	6.0	4.8			
Median (Summer)	6.8	6.5	7.2	6.0	4.8			
Median (Winter)	7.0	6.5	7.3	5.8	4.8			

NPDES DRAFT PERMIT COMMENTS

APPENDIX C

Parallel WET Tests Unadjusted pH

.....

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

TOXICITY SUMMARY REPORT:

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Reference: EPA-821-R-02-013 Species: Pimephales promelas

SOP: WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

ACUTE

CHRONIC

		9	6	%	
Number	Sample Name	NOEC	LC50	NOEC	LOEC
50880	Keene WWTP 2° Clarifier #2	100	>100	100	>100

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

5/1/2018 2:00:00 PM

Test End:

5/8/2018 3:25:00 PM

ACUTE

CHRONIC

		9	6	%	
Number	Sample Name	NOEC	LC50	NOEC	LOEC
50880	Keene WWTP 2° Clarifier #2	100	>100	100	>100

SAMPLES RECEIVED:

Number	Sample Name	Date Time and Collected	Туре
50880	Keene WWTP 2° Clarifier #2	4/30/2018 6:58:00 AM	Effluent
50881	Ashuelot River (Bridge at MC)	4/30/2018 8:40:00 AM	Receiving
50882	042718-soft		Lab Water
50889	Keene WWTP 2° Clarifier #2	5/2/2018 6:10:00 AM	Effluent
50890	Ashuelot River	5/2/2018 8:20:00 AM	Receiving
50891	Keene WWTP 2° Clarifier #2	5/4/2018 6:10:00 AM	Effluent
50892	Ashuelot River	5/4/2018 8:30:00 AM	Receiving

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: EB Date: 5-18-18

Wednesday, May 16, 2018 SDG: 15326

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Lev

Permit No. NH0100790

TOXICITY DETAIL REPORT:

Sample ID: 50880 / Keene WWTP 2° Clarifier #2

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP:

WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

Response: Survival (%)

Additional		Concentration %			[
Day	Control	0	12	24	48	50	100
2	100	97.5	100	97.5	100	100	100
7	97.5	97.5	100	95	97.5	100	100

Response: Growth per Original Number of Larvae (mean dry weight,mg)

	Additional	1		Concent	ration 9	6	1	
	Control	0	12	24	48	50	100	
7	0.539	0.622	0.674	0.619	0.624	0.619	0.686	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

WET-A-002

Test Start:

5/1/2018 2:00:00 PM

Test End:

5/8/2018 3:25:00 PM

Response: Survival (%)

	Additional	1		Concent	ration 9	6	[
Day	Control	0	12	24	48	50	100	
2	100	100	100	100	100	100	100	
6	70	100	100	100	100	100	100	

Response: Reproduction (mean neonates per female)

	Additional	1		Concent	ration %			
	Control	0	12	24	48	50	100	
6	23.9	25.8	22.1	25.6	28.7	27.8	26.3	

Submitted By:

1 of 1

Aquatec Environmental, Inc.

Reviewed by: EB Date: 5-18-

Friday, May 18, 2018 SDG: 15326

Project

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

Response: Survival (%)

Day	Sample ID	Dilution Control	Additional Control
2	50880	97.5	100
7	50880	97.5	97.5

Response: Growth per Original Number of Larvae (mean dry weight, mg)

Day	Sample ID	Dilution Control	Additional Control
7	50880	0.622	0.539

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD:

13.8%

PMSD Criteria Range:

12%-30%

The calculated test PMSD was within the acceptable boundary range indicating test data with acceptable variability and statistical sensitivity. The chronic values (C-NOEC, C-LOEC) were reported as calculated by the statistical program.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Achuelot River) was included in the test array as the additional control.

The temperature blank associated with renewal samples received on May 3, 2018 was measured at 6.7C, slightly above the target temperature range of OC-6C.

1 of 3

Aquatec Environmental, Inc.
Reviewed by: 50 Date: 5/29/13

SDG:

15326 18017

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

5/1/2018 2:00:00 PM

Test End:

5/8/2018 3:25:00 PM

Response:

Survival (%)

Day	Sample ID	Dilution Control	Additional Control
2	50880	100	100
6	50880	100	70

Reproduction (mean neonates per female)

Day	Sample ID	Dilution Control	Additional Control
6	50880	25.8	23.9

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

24.7%

PMSD Criteria Range:

The calculated test PMSD was within the acceptable boundary range indicating test data with acceptable variability and statistical sensitivity. The chronic values (C-NOEC, C-LOEC) were reported as calculated by the statistical program.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Achuelot River) was included in the test array as the additional control.

The temperature blank associated with renewal samples received on May 3, 2018 was measured at 6.7C, slightly above the target temperature range of OC-6C.

The primary control (lab water used as dilution water) met test acceptance criteria. The additional control (receiving water) did not meet the acceptance criterion for survival.

2 of 3

Aquatec Environmental, Inc. Reviewed by: Date:

SDG:

15326 18017

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:

May 29, 2018

Authorized signature)

John Williams Director

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test Reference: EPA-821-R-02-013

WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

TOXICITY TEST SUMMARY SHEET:

Species: Pimephales promelas

Test Type

Test Species

Sample Type

Sampling Method

Modified Chronic

Pimephales promelas

Effluent

Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

April 30, May 2 & 4, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

April 3-10, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6

Aquatec Environmental, Inc. Reviewed by: _ Tw Date: 5/29/13.

SDG:

15326 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 97.5 %

Mean Control Growth: 0.622 (mg)

B. Additional Control:

Ashuelot River

Mean Control Survival: 97.5 %

Mean Control Growth: 0.539 (mg)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

48-Hour LC50:

Growth (%): 13.8

LIMITS (%)

PERMIT LIMITS AND TEST RESULTS:

48-Hour LC50: > 100 Upper Value: N/A

Lower Value: N/A

Data Analysis

Dunnett Multiple Comparison Test, Method(s): Linear Interpolation (ICPIN), Steel

100

Many-One Rank Sum Test

RESULTS (%)

A-NOEC: 100.0 A-NOEC: C-NOEC: 48.0 C-NOEC:

100 C-LOEC: > 100

IC25: IC25: > 100

2 of 6

Aquatec Environmental, Inc. Reviewed by: ____ Date: . . .

SDG: Project 15326 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

5/1/2018 2:20:00 PM

Test End:

5/8/2018 2:00:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was within the boundaries of 12%-30%, indicating test data with normal variability and statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

3 of 6

Aquatec Environmental, Inc.
Reviewed by: Date: 5/24/19

8

SDG:

15326

t 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

5/1/2018 2:00:00 PM

Test End:

5/8/2018 3:25:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type

Test Species

Sample Type

Sampling Method

Modified Chronic

Ceriodaphnia dubia

Effluent

Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

April 30, May 2 & 4, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

April 3-10, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

<24h collected within an 8h period

Source of Organisms:

Aquatec Environmental, Inc. - Williston, VT

4 of 6

Aquatec Environmental, Inc. Reviewed by: Date: 5

SDG:

15326

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

Client ID: Keene/Ley

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002

Test Start: 5/1/2018 2:00:00 PM

Test End: 5/8/2018 3:25:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control: Soft Water

Mean Control Survival: 100 % Mean Control Reproduction: 25.8 (neonates)

B. Additional Control: Ashuelot River

Mean Control Survival: 70 % Mean Control Reproduction: 23.9 (neonates)

C. Lab Control: See A. Above
D. Thiosulfate Control: N/A

Test Variability

Test PMSD: Reproduction (%): 24.7

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%) RESULTS (%)

48-Hour LC50: 48-Hour LC50: > 100

Upper Value: N/A
Lower Value: N/A

Data Analysis Fisher Exact/Bonferroni-Holm Test,
Method(s): Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC: 100.0 A-NOEC: 100 C-NOEC: 48.0 C-NOEC: 100 C-LOEC: > 100

IC25: | IC25: > 100

5 of 6

Aquatec Environmental, Inc.

SDG: Project 15326 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1002.0

Daphnid, C. dubia, Survival and Reproduction Test Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP:

WET-A-002

Test Start:

5/1/2018 2:00:00 PM

Test End:

5/8/2018 3:25:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) did not meet the acceptance criterion for survival.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was within the boundaries of 13%-47%, indicating test data with normal variability and statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or reproduction were not detected.

6 of 6

Tuesday, May 29, 2018 SDG: 15326

Aquatec Environmental, Inc. Reviewed by: _ / Date:

Project

18017

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1805-09567

DATE RECEIVED: May 01, 2018

DATE REPORTED: May 14, 2018

SAMPLER: BB/MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

DATE REPORTED: 05/14/2018

CLIENT: Aquatec Environmental, Inc	WORK ORDER:	1805-09567
PROJECT: Keene NH NPDES	DATE RECEIVED:	05/01/2018

001 Site: Keene W	WTP 2 Clarifier Composite			Date Sampled: 4/30/18	Time: 6	5:58]
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qu
Total Organic Carbon	4.2	mg/L	SM 5310C (00)	5/7/18	N JGM	A	
Hardness, Total as CaCO3	59	mg/L	EPA 200.7	5/7/18	W FAA	A	
Ammonia as N	0.39	mg/L	EPA 350.1, R.2	5/11/18	N JGM	A	
Solids, Total Dissolved	363	mg/L	SM 2540C-97	5/8/18	W JSS	A	В
Total Solids	494	mg/l	SM 2540 B97	5/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	5/3/18	W FAA	A	
Aluminum, Total	0.054	mg/L	EPA 200.8	5/9/18	W MGT	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	5/9/18	W MGT	A	
Calcium, Total	18	mg/L	EPA 200.7	5/7/18	W FAA	A	
Copper, Total	0.0020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	5/9/18	W MGT	A	
Magnesium, Total	3.4	mg/L	EPA 200.7	5/7/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	5/9/18	W MGT	A	
Zinc, Total	0.023	mg/L	EPA 200.8	5/9/18	W MGT	A	

002	Site: Ashuelot River	Grab		Γ	Date Sampled: 4/30/18	Time: 8	:40	
Parameter		<u>Result</u>	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organ	nic Carbon	3.5	mg/L	SM 5310C (00)	5/7/18	N JGM	A	
Hardness, T	Total as CaCO3	7	mg/L	EPA 200.7	5/7/18	W FAA	A	
Ammonia a	ıs N	0.50	mg/L	EPA 350.1, R.2	5/11/18	N JGM	A	
Metals Dig	estion	Digested		EPA 200.7/200.8	5/3/18	W FAA	A	
Aluminum,	Total	0.11	mg/L	EPA 200.8	5/9/18	W MGT	A	
Cadmium,	Total	< 0.0002	mg/L	EPA 200.8	5/9/18	W MGT	A	
Calcium, To	otal	2.1	mg/L	EPA 200.7	5/7/18	W FAA	A	
Copper, Tot	tal	< 0.0020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	5/9/18	W MGT	A	
Magnesium	ı, Total	0.53	mg/L	EPA 200.7	5/7/18	W FAA	A	
Nickel, Tota	al	< 0.0050	mg/L	EPA 200.8	5/9/18	W MGT	A	
Zinc, Total		< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	

Report Summary of Qualifiers and Notes

B: Blank contamination was observed at levels that could affect analytical results.

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY	NFO	RM/	OITA	N	F	PROJ	ECT	INFC	RMATIO	N
Name:	Aquatec Environmental, Inc.				Proje	ct Name	: :	Keene N	H NPDES		
Address:	273 Comm	erce Str	eet			Proje	ct Num	ber:	18017	•	
City/State/Zip:	Williston,	√T 0540	3	**		Samp	ler Nam	ne(s):	BB/MM		
Telephone:	(802) 860	- 2960	•				N				
Contact Name:	John Willia	ıms								**************************************	·····
SAMPLE IDEN	ITIFICATIO	N CO	LLECTIC E T	IME		ALYSIS n Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER
Keene WWTP	2 Clarifier	04/3	0/18 6	:58	Grab:	N/A	Compo	site:	Х		
		Tota	al Organio	Carbon	(0.5)			40mL	Glass	H2SO4	2
		Tota	l Solids/	Fotal Dis	solved Solid	ds		1/2gal	Plastic	Ice (4C)	1
		Amr	nonia (0.	1)	·	****		500mL	Plastic	H2SO4	1
					5); Cu (0.00 . Ca (0.05)	03); Zn, Ni	<u> </u>	250mL	Plastic	HNO3	1
Ashuelot River	(Bridge at	04/30	0/18 8	:40	Grab:	Х	Compo	site: I	N/A		
added 1: TOC per 1:	n email				5); Cu (0.00 . Ca (0.05))3); Zn, Ní		250mL	Plastic	HNO3	1
TOC Per J.	ųν.	Amr	nonia (0.	1)				500mL	Plastic	H2SO4	1
Relinquished by	(signature)	· · · · · · · · · · · · · · · · · · ·	TIME 14:30 TIME	flee	ved by: (signal by	neg	DATE 5/1/18 DATE	TIME ノゲンフ TIME	i	/Sample Temp.: o Lab:	6.1

1805-09567

1805-03567

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1805-10122

DATE RECEIVED: May 07, 2018

DATE REPORTED: May 17, 2018

SAMPLER: BB/MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

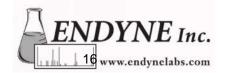
The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director


Page 2 of 2

Laboratory Report

DATE REPORTED: 05/17/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1805-10122
PROJECT: Keene NH NPDES DATE RECEIVED: 05/07/2018

001 Site: 50889 Keene WWTP 2' Clarifier Composite Date Sampled: 5/2/18 Time: 6:10 Parameter Result Method Analysis Date/Time Lab/Tech **NELAC** Units Qual. Ammonia as N 0.88 mg/L EPA 350.1, R.2 5/17/18 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMPANY INFORMATION				F	PROJECT INFORMATION					
Name:	Aquatec En	vironmental, In	ıc.	Project Name: Keene NH NPDES			I NPDES	# ***		
Address:	273 Comme	273 Commerce Street			ct Numb	er: 3	18017	· · · · ·		
City/State/Zip	p: Williston, V	T 05403	v	Samp	ler Nam	e(s):	BB/MM			
Telephone:	(802) 860 -	2960					******	. N.	·	
Contact Name	e: John Williar	ns								
SAMPLE ID	ENTIFICATION	COLLECTION TO THE TOTAL		ANALYSIS tion Limit, m	ng/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	R NUMBER	
	P 2° Clarifier	05/02/18	5:10 Grab	: N/A	Compo	site:	Х		···	
50889		Ammonia (0	.1)			500mL	Plastic	H2\$O4	1	
Relinquished I		DATE TIME 5/7/8 /2:5 DATE TIME	Received by Received by:	oney_	5/7/18	TIME /25) TIME	Notes T upon ar (6.7C)- Arrived	Sample Temp.: o Lab: temperatu rival was out of ra ice in cooler was in a small cooler room for adequat	re blank inge all meited. so not	

1805-10122

1805-10122

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1805-10123

DATE RECEIVED: May 07, 2018

DATE REPORTED: May 17, 2018

SAMPLER: BB, MM

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED:

05/17/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1805-10123
PROJECT: Keene NH NPDES DATE RECEIVED: 05/07/2018

001	Site: 50891 Keene W	WTP 2' Clarifier Comp	oosite	Da	ate Sampled: 5/4/18	Time: 6	5:10	
Parameter		Result	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	<u>NELAC</u>	Qual.
Ammonia a	s N	0.43	mg/L	EPA 350.1. R.2	5/17/18	N JGM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMPANY INFORMATION				PR	OJECT	INFO	RMATIO	N	
Name:	Aquatec En	Aquatec Environmental, Inc.			Project Name: Keene NH NPDES				
Address:	273 Comm	erce Street	<u> </u>	Project !	Number:	18017			
City/State/Zip	: Williston, V	/T 05403		Sampler	· Name(s):	вв; мм		*****	
Telephone:	(802) 860 -	2960			.,. .	•	·······		
Contact Name	: John Willia	ms							
SAMPLE IDE	NTIFICATION	COLLECTI		NALYSIS ion Limit, mg/L	-) SIZE	BOTTL TYPE	E/CONTAINER PRESERVATIVE	NUMBER	
Keene WWTF	2° Clarifier	05/04/18	6:10 Grab:	N/A Co	omposite:	х			
00071		Ammonia (0.1)		500mL	Plastic	H2SO4	1	
Relinguished b	· · · · · ·	DATE TIME 5/1/8 12:5	4.		DATE TIME		Sample Temp.: o Lab:	4.2	
Relinquished b	y (signature)	DATE TIME	Received by: (signature) [DATE TIME				

1805-10123

1805-10123

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1805-09573

DATE RECEIVED: May 01, 2018

DATE REPORTED: May 14, 2018

SAMPLER: John Williams

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 05/14/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1805-09573
PROJECT: Tox Lab QC DATE RECEIVED: 05/01/2018

001 Site: 042718SOFT (5)	0884)		Г	Date Sampled: 5/1/18	Time: 1	1:00	1
Parameter Site: 042/1830F1 (30	Result	<u>Units</u>	Method Method	Analysis Date/Time	Lab/Tech	NELAC	⊿ Qua
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	5/7/18	N JGM	Α	
Hardness, Total as CaCO3	49	mg/L	EPA 200.7	5/7/18	W FAA	A	
Ammonia as N	0.12	mg/L	EPA 350.1, R.2	5/11/18	N JGM	A	
Solids, Total Dissolved	143	mg/L	SM 2540C-97	5/8/18	W JSS	A	Е
Total Solids	104	mg/l	SM 2540 B97	5/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	5/3/18	W FAA	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	5/9/18	W MGT	A	
Calcium, Total	6.5	mg/L	EPA 200.7	5/7/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	5/9/18	W MGT	A	
Magnesium, Total	7.9	mg/L	EPA 200.7	5/7/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	5/9/18	W MGT	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	

Report Summary of Qualifiers and Notes

B: Blank contamination was observed at levels that could affect analytical results.

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMPANY INFORMATION				F	PROJECT INFORMATION						
Name: A	Aquatec Environmental, Inc.				Project Name: Tox Lab QC						
Address: 2	73 Comme	rce Street	····	Proje	ct Num	ber:	18000				
City/State/Zip: V	Villiston, VT	05403		Samp	ler Nan	ne(s):	W				
Telephone: (802) 860 - 2	2960						<u> </u>			
Contact Name: Jo	ohn William	15				··-··	-,		·		
SAMPLE IDENT	IFICATION	COLLECTION DATE		ANALYSIS tion Limit, m	ng/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	R NUMBER		
042718SOFT (50	884)	05/01/18 1 Metals: Al (0	11:00 Grab		•	osite: N		HNO3	1		
		Ni (0.005); C	Ca, Mg (0.05)			ļ :			-		
		Ammonia-N	itrogen(0.1)			250mL	Plastic	H2SO4	1		
		TS/TDS-Tota	l Solids/Total Dis	solved Solids		1/2gai	Plastic	tce(4C)	1		
		TOC - Total (Organic Carbon(0	.5)		40mL	Glass	H2SO4	2		
Relinguished by (si	ignature) [DATE TIME	Received by:	4	DATE 5///s	TIME 14,27	Cooler/ Notes T	/Sample Temp.: o Lab:	6.1		
Relinquished by (si	gnature) [DATE TIME	Received by:	(signature)	DATE	TIME					

1805-09573

1805-09573

Aquatec Environmental, Inc Tox Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Aquatec Environmental, Inc.

Chain-of-Custody

COMPANY INFORMATION	PR	OJECT	INFO	RMA	TION		VOL		/CON		IER TYPE/
NAME: Keene, NH	PROJEC	T: Keen	e NH/L	ey							
Address: 420 Airport Road	((1st Sample Ship Monday) PROJECT #: 18017				O ₃		ů	504		
Swanzey, NH 03446	PROJEC				14°C	H	O _t	ic 4	I H2S	2504	
TEL: (603) 357 – 9836 [x6502]	SAMPLE	RS NAME	(s): Bd	Bisha	e/Mike Markell	astic	astic	188 4	Plast	astic	TOC: 40mL Glass H ₂ SO ₄
CONTACT: Mary Ley					Mancu	n P	L Pig	1618	on	LP	
E-MAIL: mley@ci.keene.nh.us	PERMIT	NUMBER	: NH01	00790		Sallo	50m	40mL	¿ Gall	50m	
Carrie	101100-00000000000000000000000000000000	NAL ECTION	8	SITE	XIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC: 40mL Glass 4°C	TS/TDS: % Gallon Plastic 4°C Ammonia: 250mL Plastic H ₂ SO ₄ TOC: 40mL Glass H ₂ SO ₄	TOC: 4(
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX						
Keene WWTP 2° Clarifier#2 Ashuelot River (Bridge at MC)	450118	658		X	Effluent	2	1 1	UMBE 1	till cy li		AINERS
Ashuelot River (Bridge at MC)	4130118	840	Х	- 1	Receiving	1		1	1	1	2
(vilge exist)	libell 0	870			Neceiving	1	1			1	2
										-)	
						= 1				-	
ANALYSIS (Test/Detection)											

ANALYSIS (TEST/DETECTION LIMITS) — Tox: 1000.0 & 1002.0 (P. promelas & C. dubia chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:		RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 4 10 C
mayz	4/30/18	930	Priority Express	NOTES: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier)	DATE:	TIME:	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical
Priority Express	15/1/18	9:50	Hardys 1 12	lab; Ammonia and TRC are required on each new effluent sample; "Other
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Aquatec Environmental, Inc.

Chain-of-Custody

Page:	of
273 Comme	rce Street
Williston,	VT 05495
TEL: (802) 8	60 - 2960
ATTN. John	Williams

COMPANY INFORMATION	PRO	OJECT	INFO	RMA	TION		VOL		/CON		IER TYPE	1
NAME: Keene, NH	PROJECT	: Keene	NH/L	еу								T
Address: 420 Airport Road	(2 nd	Sample	Ship V	Vedne	sday)		O ₃		ပ္ ၁	2504		
Swanzey, NH 03446	PROJECT	PROJECT#: 18017			14°0	I	4°C	tic 4	H25	12504		
Tel: (603) 357 – 9836 [x6502]	SAMPLER	RS NAME(s): Bo	6 Bish	الايد	lastic	astic	ass	Plas	lasti	TOC: 40mL Glass H ₂ SO ₄	1
CONTACT: Mary Ley			M	n ke M	2711	n P	IL PI	L G	loul	n P		
E-MAIL: mley@ci.keene.nh.us	PERMIT I	PERMIT NUMBER: NH0100790				Gallo	250m	TRC: 40mL Glass 4°C	½ Gal	250m	DmL D	
		FINAL COLLECTION		SITE		Tox: 1 Gallon Plastic 4°C	Merals: 250mL Plastic HNO3	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 4	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX					CONTAI		
Keene WWTP 2º Clarifier #2	05/2/18	(010		X	Effluent	2	1*		27.00-700	1		-
Ashuelot River		the state of the state of		^	F 7 0.5		1	1	1"	1	2*	
ASIMEIOU RIVEI	5/2/18	820	X		Receiving	1						
						711						

ANALYSIS (TEST/DETECTION LIMITS) — Tox: Renewal (P. promelas and C. dubia chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	1000 1000	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): /0.7°C
May 2	5/2/18	1000	Priority Express	NOTES: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 5/3/18	TIME: 950	RECEIVED BY: (Signature) KN	samples to a NELAC-Accredited analytical lab; Ammonia and TRC are required on each new effluent sample; *Other
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Imp out

Aquatec Environmental, Inc.

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

Chain-of-Custody

COMPANY INFORMATION	PROJECT INFORMATION VOLUME/CONTAINER PRESERVATIVE										
NAME: Keene, NH	PROJECT	: Keen	e NH/L	.ey							
Address: 420 Airport Road		(3 rd Sample Ship Friday)				03		ů,	\$0 ₄		
Swanzey, NH 03446	PROJECT		3017			14°C	H	ۍ ئ ئ	c 4	I H ₂ S	TOC: 40mL Glass H ₂ SO ₄
TEL: (603) 357 – 9836 [x6502]	SAMPLE	RS NAME	(s): B	5 1818	hop	astic	astic	ISS	Plast	astic	
CONTACT: Mary Ley			M	riken	rantall	II DI	- B	Gla	on	LP	
E-MAIL: mley@ci.keene.nh.us	PERMIT	NUMBER:	NH01	00790		Sallo	50ml	10mL	Gall	250m	
	FIN		E)	SITE		Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO3	TRC: 40mL Glass 4°C	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX						
Keene WWTP 2°Clanker#2	74/18	610		X	Effluent	3	1*	UMBE 1	R OF (AINERS
Ashuelot River	94118	830	Х	- 11	Receiving	2	1	1	1	1	2*
	.,,, 0					2					

ANALYSIS (TEST/DETECTION LIMITS) — Tox: Renewal (P. promelas and C. dubia chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature) May	DATE:		RECEIVED BY: (Signature or carrier)	
101/	5/4/18	930	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier)	DATE:	TIME:	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical
Priority Express	5.5.18	1		lab; Ammonia and TRC are required on
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	each new effluent sample; *Other 'ChemSub' only if ≥50% mortality on renewal samples

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Comp 5/3-5/4/18

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

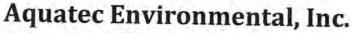
Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

Keene/Ley

	Initial :	Sample	Second	Sample	Third	Sample	
	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	50380	50881	50889	50890	50891	5089Z	50882
Filtration	60 Micron	60 Micron	N/A				
Chlorine (1)	ND		ND		ND	/	N/A
Chlorine (2)		_			/	/	N/A
NaThio Lot No.	_	_	_		/	1	N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Date / Initials:	5/1/18	5/1/18	5/3/18	S/3/18	5.5.18 KP -	-1	5/1/18


⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

Aquatec Environmental, Inc. _____Date: _5-15-16 Reviewed by: 58

SDG: 15326

Project 18017

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity:	Hardness:	TRC:
50880 - Keene WWTP 2° Clarifier #2	5/1/2018	32.0	60.0	0.02
50881 - Ashuelot River (Bridge at MC)	5/1/2018	8.0	6.0	
50882 - 042718-soft	4/30/2018	32.0	48.0	
50889 - Keene WWTP 2° Clarifier #2	5/3/2018	44.0	72.0	0.00
50890 - Ashuelot River	5/3/2018	16.0	14.0	
50891 - Keene WWTP 2° Clarifier #2	5/5/2018	44.0	56.0	0.00
50892 - Ashuelot River	5/5/2018	4.0	4.0	0.00

INF: Interference. The color endpoint was reached immediately

Toxicity Test Method(s)

Aquatec Environmental, Inc.

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Project: Keene NH NPDES

1 Test type: Static renewal

2 Temperature: 25+/- 1C, Test temperatures must not deviate (i.e., maximum minus

minimum temperature) by more than 3C during the test

3 Light quality: Ambient laboratory illumination

4 Light intensity: 10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)

5 Photoperiod: 16h light/8h dark

6 Test chamber size: 300mL

7 Test solution volume: Nominal 250mL

8 Test solution renewal: Daily

9 Age of test organisms: Newly hatched larvae less than 24h old. If shipped, not more than

48h old, 24h range in age

10 No. larvae per test chamber: 10

11 No. replicate chambers per 4

concentration:

12 No. larvae per concentration: 40

13 Source of food: Newly hatched Artemia nauplii (< 24h old)

14 Feeding regime: On days 0-6, feed 0.1g newly hatched (less than 24h old) brine

shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to

provide an excess.

15 Cleaning: Siphon daily, immediately before test solution renewal

16 Aeration: None: unless DO concentration falls below 4.0mg/L.

17 Dilution water: Soft Water

18 Test concentrations (%): 0, 0, 12, 24, 48*, 50, 100*

19 Additional control: Ashuelot River

20 Test duration: 7 days

21 Endpoints: Survival and growth (weight)

22 Test acceptability criteria: 80% or greater survival in controls; average dry weight per surviving

organism in control chambers equals or exceeds 0.25mg

23 Sampling requirements: For off-site tests, a minimum of three samples (e.g., collected on

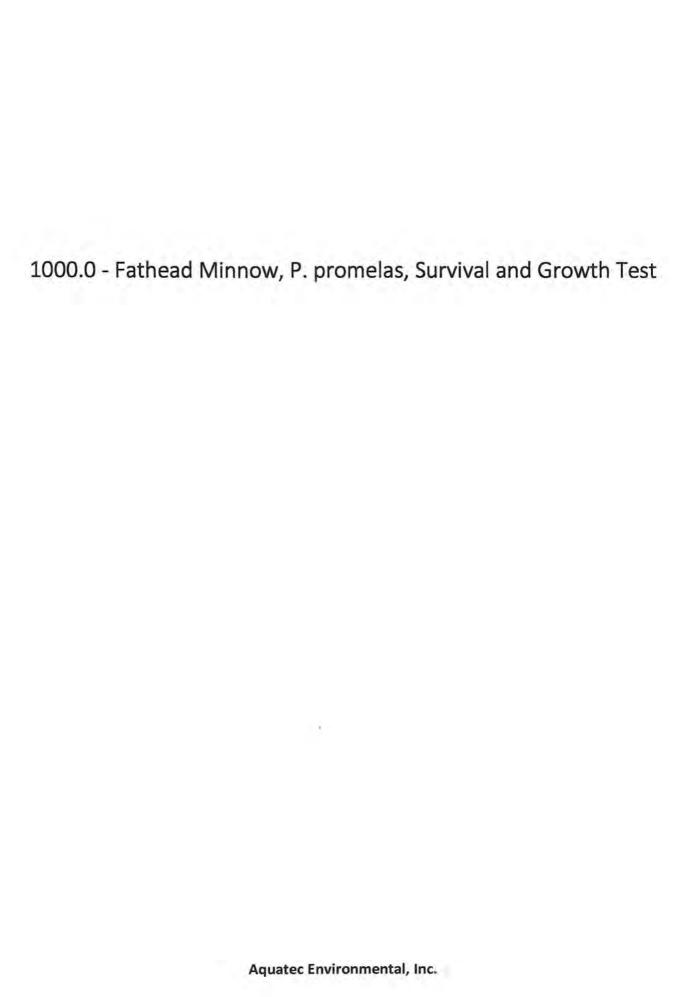
days one, three, and five) with a maximum holding time of 36h

before first use

24 Sample volume required: 2.5L/day

Aquatec Environmental, Inc. SDG:

Reviewed by: 25 Date: 5-15-18 Project 18017


15326

1002.0 Daphnid, C. dubia, Survival and Reproduction Test Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

SOP:

WET-A-002

Proje	ct: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels)
5	Photoperiod:	16h light, 8h dark
6	Test chamber size:	30mL
7	Test solution volume	Nominal 15mL
8	renewal of test solutions:	Daily
9	Age of test organisms:	Less than 24h; and all released within a 8h period
10	No. neonates per test chamber:	1
11	No. replicate test chambers per concentration:	10
12	No. neonates per test concentration:	10
13	Feeding regime:	Feed 0.1mL each of YCT and algal suspension per test chamber daily
14	Cleaning:	Use new plastic cups daily
15	Aeration:	None
16	Dilution water:	Soft Water
17	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
18	Additional control:	Ashuelot River
19	Test duration:	Until 60% or more of surviving control females have three broods (maximum test duration 8 days)
20	Endpoints:	Survival and reproduction
21	Test acceptability criteria:	80% or greater survival of all control organisms and an average of 15 or more young per surviving female in the control solutions. 60% of surviving control females must produce three broods
22	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
23	Sample volume required:	1L/day

CETIS Summary Report

Report Date:

11 May-18 10:13 (p 1 of 1) 81182 | 02-7346-8246

Test Code:

Age:

Aquatec Environmental, Inc.

Fathead Mi	thead Minnow 7-d Larval Survival and Growth Test				
Batch ID:	08-1270-5667	Test Type: Growth-Survival (7d)	Anah		

Source:

Analyst: Kaitlyn Priest

1d

 Start Date:
 01 May-18 14:20

 Ending Date:
 08 May-18 14:00

 Duration:
 7d

Protocol: EPA/821/R-02-013 (2002)
Species: Pimephales promelas

Aquatic Biosystems, CO

Diluent: Soft Synthetic Water Brine: Not Applicable

Multiple Comparison Summary

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	711	nuan (
13-2175-6198	2d Survival Rate	Sheel Many Con Dayl Con To		LULL	TOEL	TU	PMSD /
		Steel Many-One Rank Sum Test	100	> 100	n/a	1	5.25%
00-3153-9188	7d Survival Rate	Steel Many-One Rank Sum Test	100	- 400	200	-	
19-1713-0255	Mean Dry Biomass-mg		100	> 100	n/a	1	6.56%
10 11 10 0200	Weath Dry Blomass-mg	Dunnett Multiple Comparison Test	100	> 100	n/a	1	13.8%

Point Estimate Summary

- and and outlinary							
Analysis ID Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	***	
18-1114-0874 2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	77.11.4.4.4	TU	
	4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	EC10			n/a	<1	1
		1000	>100	n/a	n/a	<1	1
		EC15	>100	n/a	n/a	<1	1
		EC20	>100	n/a	n/a	<1	1
		EC25	>100	n/a	n/a	<1	1
		EC40	>100	n/a	n/a	<1	1
01 2470 F247 Man D. D.		EC50	>100	n/a	n/a	<1	1
01-2479-5247 Mean Dry Biomass	-mg Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	<1	1
		IC10	>100	n/a	n/a	<1	1
		IC15	>100	n/a	n/a	<1	1
		IC20	>100	n/a	n/a	<1	1
		IC25	>100	n/a	n/a	<1	1
		IC40	>100	n/a	n/a	<1	1
		IC50	>100	n/a	n/a	<1	1

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	C44 F		all in	412324
0	R	1	1.0000					Std Err	Std Dev	CV%	%Effect
Λ.	10	7		1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
	L	4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	V. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		The second second	
24		A	0.9750		100000	200	100	0.0000	0.0000	0.00%	0.00%
48		-	W. W. W. W.	0.8954	1.0000	0.9000	1,0000	0.0250	0.0500	5.13%	2.50%
2.3		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000			Control of the second	200	
100		1	477077	122 5 5 5		0.000	1.0000	0.0000	0.0000	0.00%	0.00%
		-	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	C1/0/	n/ = ee
0	R	4	0.9750	0.8954	1.0000	141.512				CV%	%Effect
n	Yes	G.			1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	0.00%
4.0	-	4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000			120.00	17,777.50
24			2012/2012			222218		0.0000	0.0000	0.00%	-2.56%
600		*	0.9500	0.8581	1.0000	0.9000	1.0000	0.0289	0.0577	6.08%	2.56%
48		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	
50		4	1.0000	1.0000	1.0000			12.000.00		20 000	0.00%
100		3.5	and the second		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-2.56%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-2.56%

Mean Dry Biomass-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CVO	0/ Fee .
0	R	4	0.5387	0.4839	0.5936	0.509				CV%	%Effect
0	1					0.509	0.587	0.01724	0.03447	6.40%	0.00%
	_	4	0.6218	0.5684	0.6751	0.594	0.67	0.01675	0.03351	5.39%	-15.41%
12		4	0.6735	0.5872	0.7598	0.62	0.743	0.02713	0.05426	3.00	470,000
24		4	0.619	0.5184	0.7196			4.4	5.45,54	8.06%	-25.01%
48		100			0.7180	0.533	0.685	0.0316	0.0632	10.21%	-14.90%
		4	0.6243	0.5452	0.7033	0.569	0.689	0.02484	0.04967	7.96%	-15.87%
50		4	0.6187	0.5603	0.6772	0.572	0.651	0.01838	7000000		
100		À	0.000				13.13010	0.01030	0.03675	5.94%	-14.85%
,		4	0.686	0.5936	0.7784	0.6	0.727	0.02903	0.05806	8.46%	-27.33%

Report Date: Test Code:

11 May-18 10:13 (p 1 of 2) 81182 | 02-7346-8246

 20, 522 82, 62, 62, 52, 64
Aquatec Environmental, Inc.

Analysis ID:	18-1114-0874	Endpoint:	2d Survival Rate	CETIS Version:	CET

Resamples

TISv1.9.2 Analyzed: 11 May-18 10:12 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Sample ID: 09-8352-6079 Code: 15326 Client: Keene WWTP

Sample Date: 30 Apr-18 06:58 Material: POTW Effluent Project: WET Annual Compliance Test Receipt Date: 01 May-18 09:50 Permit # NH0100790 (KEENE NH) Source:

Sample Age: 31h Station: Keene WWTP

Seed

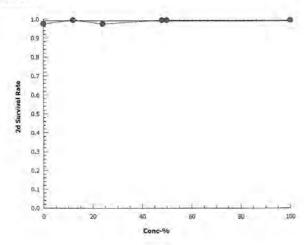
Fathead Minnow 7-d Larval Survival and Growth Test

Y Transform

Linear Interpolation Options

X Transform

46 70 400 40								
Linear		Linear	3099	903	200	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC5	>100	n/a	n/a	<1	n/a	n/a		
EC10	>100	n/a	n/a	<1	n/a	n/a		
EC15	>100	n/a	n/a	<1	n/a	n/a		
EC20	>100	n/a	n/a	<1	n/a	n/a		
EC25	>100	n/a	n/a	<1	n/a	n/a		
EC40	>100	n/a	n/a	<1	n/a	n/a		
EC50	>100	n/a	n/a	<1	n/a	n/a		


Exp 95% CL

Method

Calculated Variate(A/B) 2d Survival Rate Summary Code Std Err Std Dev CV% %Effect В Conc-% Count Mean Min Max A 39 40 0 4 0.0250 0.0500 5.13% 0.0% 0.9750 0.9000 1.0000 0.0000 12 4 1.0000 1.0000 1.0000 0.0000 0.00% -2.56% 40 40 24 4 0.0250 0.0500 5.13% 0.0% 39 40 0.9750 0.9000 1,0000 48 1.0000 0.0000 0.0000 0.00% -2.56% 40 40 4 1.0000 1.0000 50 40 0.0000 0.0000 0.00% -2.56% 40 1.0000 1.0000 4 1.0000 -2.56% 100 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 40 40

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	Ľ	1.0000	0.9000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		0.9000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Report Date: Test Code:

11 May-18 10:13 (p 2 of 2) 81182 | 02-7346-8246

71-1-1-1-1-1	01102 02-1340-0240
	Aquatec Environmental, Inc.

Fathead Mini	now 7-d Larval Sur	vival and Growth Test	rest Code
1 77 - O. E. E.	01-2479-5247	Endpoint: Mean Dry Biomassama	OPTIO VI

Analyzed: 11 May-18 10:12 Analysis: Linear Interpolation (ICPIN) **CETIS Version:** CETISv1.9.2 Official Results: Yes

Sample ID: 09-8352-6079 Sample Date: 30 Apr-18 06:58

Code: 15326 Client: Keene WWTP

Receipt Date: 01 May-18 09:50

Material: POTW Effluent Source:

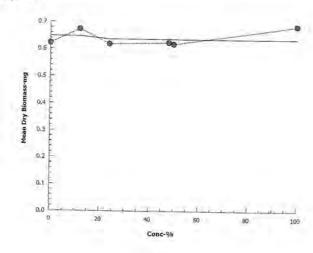
Project: WET Annual Compliance Test

Sample Age: 31h

Permit # NH0100790 (KEENE NH) Station: Keene WWTP

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	1364446	200	Yes	Two-Point Interpolation
D					E. C. Charles Laterian


Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC5	>100	n/a	n/a	<1	n/a	n/a
IC10	>100	n/a	n/a	<1	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	
IC25	>100	n/a	n/a	<1		n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a
				~1	n/a	n/a

Mean Dry Blomass-mg Summary				Calculated Variate						
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	0/555	
0	1	4	0.6218			10.101.000		110.5	%Effect	
12	_	-		0.594	0.67	0.01675	0.03351	5.39%	0.0%	
		4	0.6735	0.62	0.743	0.02713	0.05426	8.06%	-8.32%	
24		4	0.619	0.533	0.685	0.0316	0.0632	10.21%	0.44%	
48		4	0.6243	0.569	0.689	0.02484	0.04967	7.96%	-0.4%	
50		4	0.6187	0.572	0.651	0.01838	200 00000			
100			90.07		10000	0.01036	0.03675	5.94%	0.48%	
100		4	0.686	0.6	0.727	0.02903	0.05806	8.46%	-10.33%	

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	L	0.617	0.594	0.606	0.67
12		0.62	0.743	0.688	0.643
24		0.533	0.633	0.625	0.685
48		0.689	0.569	0.627	0.612
50		0.651	0.645	0.572	0.607
100		0.705	0.6	0.712	0.727
LOTE ASS.					

Report Date:

11 May-18 10:13 (p 1 of 6)

Test Code:

81182 | 02-7346-8246

										1691	Coue.		01102	12-1340-02
Fathead Min	nnow 7-	d Larval	Surviva	and Grow	th Te	st						Aquate	c Environ	mental, In
Analysis ID: Analyzed:		175-6198 lay-18 10		Endpoint: Analysis:		Survival Rat		Treatme	ents		IS Version: cial Results:	CETISv1	1,9.2	
Sample ID: Sample Dat Receipt Dat Sample Age	e: 30 Ap e: 01 Ma			Code: Material: Source: Station:	Per	26 TW Effluent mit # NH01 ene WWTP		ENE N	Н)		Client: Keene WWTP Project: WET Annual Compliance Test			Test
Data Transf	4 - 1 - 1 - 1		Alt I	4.1						NOEL	LOEL	TOEL	TU	PMSD
Angular (Co	rrected)		C > .							100	> 100	n/a	1	5.25%
Steel Many-	One Rai	nk Sum 1	Γest											
Control	vs	Conc-%		Test	Stat	Critical	Ties D	F P-Typ	е	P-Value	Decision(a:5%)		
Lab Water		12		20		10	1 6	Asym	p	0.9516	Non-Signif	ficant Effec	t	
		24		18		10	2 6	Asym	p	0.8333		ficant Effec		
		48		20		10	1 6	Asym	p	0.9516		ficant Effec		
		50		20		10	1 6	Asym	p	0.9516	and the second second	ficant Effec		
		100		20		10	1 6	Asym	p	0.9516	Non-Signif	ficant Effec	t	
ANOVA Tab	le													
Source	-1	Sum Squ	uares	Mean	Squ	are	DF	F Sta	t	P-Value	Decision(
Between		0.008853	31	0.001	7706		5	0.8		0.5640	Non-Signif	ficant Effec	t	
Error		0.039839	3	0.002	2133	3	18							
Total	0.0486921				23									
Distribution	al Tests													
Attribute	3	Test					Test Stat	Critic	al	P-Value	Decision(a:1%)		
Variances	17	Levene E	quality	of Variance	Test		7.2	4.248		7.3E-04	Unequal V	ariances		
Variances		Mod Leve	ene Equ	ality of Varia	nce '	Test	0.8	4.248		0.5640	.5640 Equal Variances			
Distribution		Shapiro-\	Wilk W	Normality Te	st		0.6154	0.884		9.2E-07	Non-Normal Distribution			
2d Survival	Rate Su	mmary												
Conc-%		Code	Cour	nt Mean		95% LCL	95% UCL			Min	Max	Std Err	CV%	%Effect
0		L	4	0.975	0	0.8954	1.0000	1,000		0.9000	1.0000	0.0250	5.13%	0.00%
12			4	1.000		1.0000	1.0000	1.000		1.0000	1.0000	0.0000	0.00%	-2.56%
24			4	0.975	2/	0.8954	1.0000	1.000		0.9000	1.0000	0.0250	5.13%	0.00%
48			4	1.000		1.0000	1.0000	1.000		1.0000	1.0000	0.0000	0.00%	-2.56%
50			4	1.000		1.0000	1.0000	1,000		1.0000	1.0000	0.0000	0.00%	-2.56%
100			4	1.000	U	1.0000	1.0000	1.000	U	1.0000	1.0000	0.0000	0,00%	-2.56%
Angular (Co	. 10											200	Jarren	
Conc-%		Code	Cour			95% LCL				Min	Max	Std Err	CV%	%Effec
0		_	4	1.371		1.242	1.501	1.412		1.249	1.412	0.04074	5.94%	0.00%
12			4	1.412		1.412	1.412	1.412		1.412	1.412	0	0.00%	-2.97%
24			4	1.371		1.242	1.501	1.412		1.249	1.412	0.04074	5.94%	0.00%
48			4	1.412		1.412	1.412	1.412		1.412	1.412	0	0.00%	-2.97%
50			4	1.412		1.412	1.412	1.412		1.412	1.412	0	0.00%	-2.97%
100			4	1.412		1.412	1.412	1.412		1.412	1.412	0	0.00%	-2.97%
2d Survival	Rate De	tail												
Conc-%		Code	Rep		2	Rep 3	Rep 4							
0		L.	1.000	0.900	0	1.0000	1.0000							
12			1.000	00 1.000	0	1.0000	1.0000							

1.0000

1.0000

1.0000

1.0000

24

48

50

100

0.9000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Report Date:

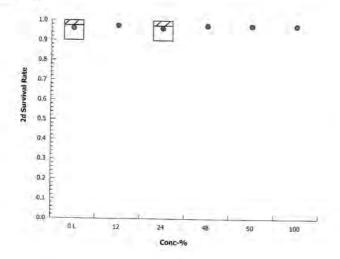
11 May-18 10:13 (p 2 of 6)

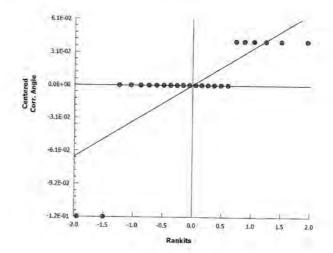
Test Code: 81182 | 02-7346-8246

Fathead Minnow	7-d	Larval	Survival	and	Growth	Test

Advanta Parishina and A
Aquatec Environmental, In

Analyzed:	11 May-18 10:12
Analysis ID:	13-2175-6198


Endpoint: 2d Survival Rate Analysis: Nonparametric-Control vs Treatments


CETIS Version: CETISv1.9.2

Official	Results:	Yes

Official	Results:	Yes	

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	1	1.412	1.249	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.249	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1.412	1.412	

Report Date:

11 May-18 10:13 (p 3 of 6)

Test Code: 81182 | 02-7346-8246 Aquatec Environmental, Inc.

Keene WWTP

Fathead Minnow 7-d Larval Survival and Growth Test

Analysis ID: 00-3153-9188 Analyzed: 11 May-18 10:12

Endpoint: 7d Survival Rate Analysis:

Nonparametric-Control vs Treatments

CETIS Version: Official Results:

CETISv1.9.2

Yes

Sample ID: 09-8352-6079 Sample Date: 30 Apr-18 06:58

Code: Material:

15326 **POTW Effluent** Client:

Receipt Date: 01 May-18 09:50 Sample Age: 31h

Source:

Permit # NH0100790 (KEENE NH)

Project:

WET Annual Compliance Test

Data Transform

Station: Keene WWTP

Alt Hyp NOEL LOEL TOEL TU **PMSD** Angular (Corrected) C>T 100 > 100 n/a 1 6.56%

Steel Many-One Rank Sum Test

Control	VS	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Lab Water		12	20	10	1	6	Asymp	0.9516	Non-Significant Effect
		24	16	10	2	6	Asymp	0.6105	Non-Significant Effect
		48	18	10	2	6	Asymp	0.8333	Non-Significant Effect
		50	20	10	1	6	Asymp	0.9516	Non-Significant Effect
		100	20	10	1	6	Asymp	0.9516	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0221328	0.0044266	5	1.2	0.3485	Non-Significant Effect
Error	0.0663983	0.0036888	18	4.5	0.0100	1401-Olgrinicant Effect
Total	0.0885311	0.03.00	23	_		

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Levene Equality of Variance Test	10.4	4.248	8.2E-05	Unequal Variances	_
Variances	Mod Levene Equality of Variance Test	2	4.248	0.1274	Equal Variances	
Distribution	Shapiro-Wilk W Normality Test	0.8314	0.884	0.0010	Non-Normal Distribution	

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	0.0000	0.00%	-2.56%
24		4	0.9500	0.8581	1.0000	0.9500	0.9000	1.0000	0.0289	6.08%	2.56%
48		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%

Angular (Corrected) Transformed Summary

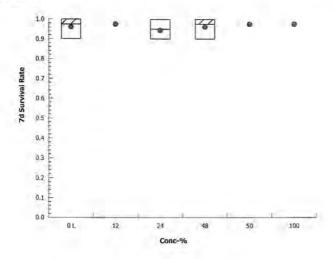
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.371	1.242	1.501	1,412	1.249	1.412	0.04074	5.94%	0.00%
12		4	1.412	1.412	1.412	1,412	1.412	1.412	0	0.00%	-2.97%
24		4	1.331	1.181	1.48	1.331	1.249	1.412	0.04705	7.07%	2.97%
48		4	1.371	1.242	1.501	1.412	1.249	1.412	0.04074	5.94%	0.00%
50		4	1.412	1.412	1.412	1.412	1.412	1,412	0	0.00%	-2.97%
100		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	-2.97%

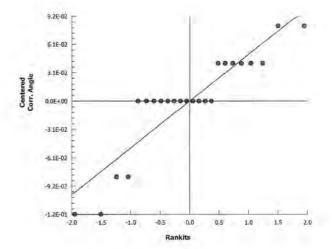
7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	L	1.0000	0.9000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000
24		0.9000	0.9000	1.0000	1.0000
48		1.0000	1.0000	1.0000	0.9000
50		1,0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

Report Date: Test Code: 11 May-18 10:13 (p 4 of 6)

81182 | 02-7346-8246


Fathead Minnow	7-d	Larval	Survival	and	Growth	Test
----------------	-----	--------	----------	-----	--------	------


Aquatec Environmental, Inc.

Analysis ID:	00-3153-9188	Endpoint:	7d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	11 May-18 10:12	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Angular	(Corrected)	Transformed	Detail
---------	-------------	-------------	--------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.249	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.249	1.249	1,412	1.412	
48		1.412	1.412	1.412	1.249	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1.412	1.412	

Report Date:

11 May-18 10:13 (p 5 of 6) 81182 | 02-7346-8246

Test Code:

Aquatec Environmental, Inc.

Analysis ID: 19-1713-0255 Endpoint: Mean Dry Biomass-mg **CETIS Version:** CETISv1.9.2 Analyzed: 11 May-18 10:12 Analysis: Parametric-Control vs Treatments Official Results: Yes

Sample ID: 09-8352-6079 Code: 15326 Client: Keene WWTP

Sample Date: 30 Apr-18 06:58 **POTW Effluent** Material: Project: WET Annual Compliance Test

Receipt Date: 01 May-18 09:50 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 31h Station: Keene WWTP

Fathead Minnow 7-d Larval Survival and Growth Test

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C>T	100	> 100	n/a	1	13.80%

Dunnett Multiple Comparison Test

Control vs	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)
Lab Water	12	-1.452	2.407	0.086	6	CDF	0.9952	Non-Significant Effect
	24	0.07714	2.407	0.086	6	CDF	0.8096	Non-Significant Effect
	48	-0.07013	2.407	0.086	6	CDF	0.8532	Non-Significant Effect
	50	0.08415	2.407	0.086	6	CDF	0.8073	Non-Significant Effect
	100	-1.802	2.407	0.086	6	CDF	0.9984	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0188407	0.0037681	5	1.482	0.2444	Non-Significant Effect
Error	0.0457552	0.002542	18			1000
Total	0.0645959		23			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance Test	1.587	15.09	0.9028	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.966	0.884	0.5690	Normal Distribution

Mean Dry Biomass-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.6218	0.5684	0.6751	0.6115	0.594	0.67	0.01675	5.39%	0.00%
12		4	0.6735	0.5872	0.7598	0.6655	0.62	0.743	0.02713	8.06%	-8.32%
24		4	0.619	0.5184	0.7196	0.629	0.533	0.685	0.0316	10.21%	0.44%
48		4	0.6243	0.5452	0.7033	0.6195	0.569	0.689	0.02484	7.96%	-0.40%
50		4	0.6187	0.5603	0.6772	0.626	0.572	0.651	0.01838	5.94%	0.48%
100		4	0.686	0.5936	0.7784	0.7085	0.6	0.727	0.02903	8.46%	-10.33%

Mean Dry Biomass-mg Detail

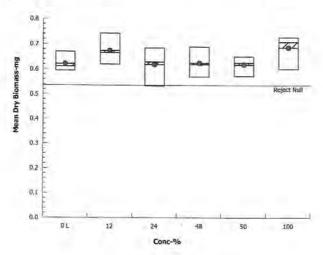
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L.	0.617	0.594	0.606	0.67	
12		0.62	0.743	0.688	0.643	
24		0.533	0.633	0.625	0.685	
48		0.689	0.569	0.627	0.612	
50		0.651	0.645	0.572	0.607	
100		0.705	0.6	0.712	0.727	

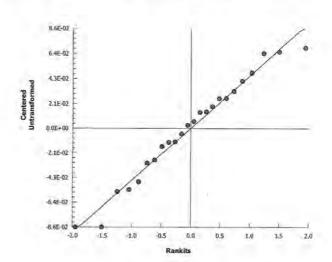
Report Date: **Test Code:**

11 May-18 10:13 (p 6 of 6) 81182 | 02-7346-8246

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.


Analysis ID: Analyzed:


19-1713-0255 11 May-18 10:12 Endpoint: Mean Dry Biomass-mg Analysis:

Parametric-Control vs Treatments

CETIS Version: Official Results:

CETISv1.9.2 Yes

CETIS Test Data Worksheet

Report Date: Test Code/ID: 11 May-18 10:11 (p 1 of 1) 02-7346-8246/81182

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: End Date: 01 May-18 14:20 08 May-18 14:00

Sample Date: 30 Apr-18 06:58

4:20 Species: Pimephales promelas

Protocol: EPA/821/R-02-013 (2002) Material: POTW Effluent Sample Code: 15326

Sample Source: Permit # NH0100790 Sample Station: Keene WWTP

Total Weight-mg Tare Weight-mg 2d 4d 7d Pan Survival Exposed Survival Survival Survival Surviva Survival Survival Count Conc-% Code Rep Pos Notes 28.71 22.54 L 27.59 21.65 L 29.19 23.13 L 28.34 21.64 R 29.28 24.19 R 25.5 20.11 R 30.62 24.75 29.22 24.02 28.76 22.56 29.46 22.03 27.74 20.86 28.43 28.56 23.23 29.99 23.66 28.71 22.46 28.14 21.29 22.13 29.02 28.21 22.52 28.78 22.51 31.36 25.24 31.63 25.12 27.89 21.44 23.77 29.49 28.29 22.22 28.63 21.58 29.13 23.13 30.66 23.54 29.77 22.5

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: P.

Pimephales promelas

Reference:

EPA-821-R-02-013

SOP-

WET-A-001

ient ID: K	eene/L	ey				P	Permit N	o. NH0	100790	Pipe No. 1
OXICITY	TEST !	DATA:								Test ID 81182
% Effluent	Rep.	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	No. Initial Pan Final Pan weighed Weight Weight
V0%.	Α	10	10	10	10	10	10	10	10	10 22.54 28.71
	В	10	10	9	9	9	9	9	9	9 21.65 27.59
SOFT	С	10	10	10	10	10	10	10	10	10 23.13 29.19
CINL	D	10	10	10	10	10	10	10	10	10 21.64 28.34
0%	A	10	10	10	10	10	10	10	10	10 24.19 29.28
0 %	В	10	10	10	10	10	10	10	9	9 20.11 25.50
RW	С	10	10	10	10	10	10	10	10	10 24.75 30.63
11,00	D	· 10	10	10	10	10	10	10	10	10 24.02 29.20
12 %	Α	10	10	10	10	10	10	10	10	10 22.56 28.76
12 /0	В	10	10	10	10	10	10	10	10	10 22.03 29.46
EFF	C	10	10	10	10	10	10	10	10	10 20.86 277
16/3	D	10	10	10	10	10	10	10	10	10 22.00 28.43
24 %	Α	10	9	9100	9	9	9	9	9	9 23.23 28.56
24 /0	В	10	10	10	10	10	10	10	9	9 23.66 29.99
EFF	С	10	10	10	10	10	10	10	10	10 22.46 28.71
	D	10	10	10	10	10	10	10	10	10 21-29 28.14
48 %	Α	10	10	10	10	10	10	10	10	10 22.13 29.08
40 70	В	10	10	10	10	10	10	10		10 2252 2821
EFF	С	10	10	10	10	10	10	10	10	10 22.51 28.71
	D	10	10	10	10	10	10	9	9	9 25.24 31.34
50 %	Α	10	10	1,0	10	10	10	10	10	10 25.12 31.63
30 70	В	10	10	10	10	10	10	10	10	10 21.44 27.89
EFF	С	10	10	10	10	10	61	10	10	10 23.7729.49
	D	10	10	10	10	10	10	10	10	10 22.22 28.20
100 %	Α	10	10	10	10	10	10	10	10	10 21.58 28.6
	В	10	10	10	(0)	10	10	10	10	10 23.13 29.13
EFF	С	10	10	10	10	10	10	10	10	10 23,54 30,66
	D	10	10	10	10	10	10	10	10	16 22.50 297
Sampl	-	50880	50880	50889	50889	50891	50891	50891	Test End	Date/Init (Initial Pan Weights): 5-7-18- EB
Fed AM		1/ 20 00	835	830	855	0850 140	900	840		IN (Date/Time/Temp/Init):
Fed PM		1620 EB	5/2/15	5/2/10	5/4/19	1525gg 5.5.18	5/1.19	1640	5/8/18	5/8/18 1405 100°CF
Renew (D/T	05.5	5/118	1425	5/3/18	1610	ISS KP	1315	1430	1400	OUT (Date/Time/Temp/Init):
		ign	PIN	modian e	PAC KA	sistem ip of con	Brine Sh	rimn Lot	#	211132-Brine

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Client ID: Keene/Ley Permit No. NH0100790 Pipe No. 1

ITIAL CHEMIS	STRY DA	ΓA:						Test ID	81182
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
PW 0 %	pH DO	7.4	7.6	34	7.6	7.3	7.2	7.1	
CTRL	Temp. Cond.	188	25.4 187	190	75-9	24.6	24.1	24.3	
0 %	pH DO	7.3	7.3	7.5	7.2	7.3	7.0	7.8	
RW	Temp. Cond.	25.4	75.6	25 le 53	25.2	24.9	24.7	250	
12 %	pH DO	1.5 7.5	7.5 7.4	7.3	7.4	7.3	7.3	7.3	
EFF	Temp. Cond.	25.3	25.1	24.4	283	24.7	24.3	269	
24 %	pH DO	7.5	7.5 7.4	7.5	7.4	7.3 7.8	7.2	75	
EFF	Temp. Cond.	25.3 370	372	373	25.7	24.7 377	369	24.4 364	
48 %	pH DO	7.4	7.4 7.5	7.4	7.3	7.3 7.9	7.2	7.6	
EFF	Temp. Cond.	25.2 551	25.1 553	24.8	25.5 570	24.9 555	244	24 le	
50 %	pH DO	7.4	7.4	73	7.3	7.3	3.0	7.9	
EFF	Temp. Cond.	25.1 569	25.1	24.9 591	25.5	24.9 581	24.5 571	24.5 564	
100 %	pH DO	7.9	7.3	7.2	7.1	7.2	7.1	7.60	
EFF	Temp. Cond.	25.7	35.5	25.5	25.6	25.1 962	24.6	25.2	
	Sample #	50880 5-1-18	50880 5-2-18	50889	50889 5-4-18	50891	50891 5/4/18	50891	
	Initials	EB	EB	KN	EB	KP	KN	KN	

SDG: Project 15326 18017

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Keene/Ley

Client ID:

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

Permit No. NH0100790 Pipe No. 1 FINAL CHEMISTRY DATA: Test ID 81182

% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
W 0%	рН	7.3	7.1	7.1	7.2	7.0	6.9	7.1
SOFT	DO	6.7	5.9	6.1	6.4	7.0	6,4	6.7
CTRL	Temp.	24.0	24.5	24.4	24.4	24.0	24.3	24.4
	Cond.	197	200	198	195	179	191	190
0 %	рН	6-8	6.8	7.1	7.0	6.8	1.9	6.9
0 70	DO	6.7		6.0	5.6	6.5	6.0	6.7
RW	Temp.	24.0	24.4	24.6	24.6	24.0	24.2	24.0
	Cond.	87	77	58	57	le5	80	73
12 %	рН	7.2	7.0	7.1	7.2	7.0	7.0	7.1
12 /0	DO	6.5	(a.O	5.8	6.4	le.le	5.9	6.4
EFF	Temp.	24-0	24.6	24.5	24.2	24.0	24.2	24.3
	Cond.	289	292	300	289	280	293	288
24 %	рН	7.2	7.1	7.1	7.2	71	7.1	70
24 /0	DO	7.2	5.8	5.9	5,9	6.6	5,4	le-le
EFF	Temp.	24.0	24.6	24.7	24.3	24 1	24.1	24 4
	Cond.	374	383	386	383	376	383	379
48 %	рН	7,2	7.2	7.7	7.2	7.2	7.2	73
40 /0	DO	6.15	5.8	5.8	5.8	7.0	5.7	6.8
EFF	Temp.	24.0	24.2	24.5	24.60	24.2	240	24.0
5/1	Cond.	544	567	580	570	574	571	575
50 %	рН	7.2	7.2	7.2	7.3	7.2	73	73
30 %	DO	6.3	5.9	6.1	6.3	le.7	6.3	6.6
EFF	Temp.	23.7	24,6	24.4	24.2	24.0	24.0	24.2
	Cond.	563	590	596	590	561	608	583
100 %	pH	7.2	7.2	7.3	7.3	7.3	inter-	7.3
100 /0	DO	6.5	5.8	6.1	6.1	6.6	7.2	6.5
EFF	Temp.	24.1	24.3	24.5	24.4	24.0	740	24.2
LATT	Cond.	907	939	973	959	950	971	964
	Sample #	50880	50880	50889	50889	50891	50891	50,001
	Date	5-2-18	5/3/18	5.4.18	5.5.18	5/6/18	5/7/18	5/8/18
	Initials	EB	KN	K7	KP	KA	110	VA

Aquatec Environmental, Inc. Reviewed by: <u>ES</u> Date: <u>5-15-18</u>.

SDG:

15326 18017 1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	4/30)/2018		
SPECIES:	Pime	ephales prometas		i Viel VM
AGE:	N/A			5/1/18 M
LIFE STAGE:	Emb	ryo		(0 2)
HATCH DATE:	4/30/	/2018		/ 0.92 2°C
BEGAN FEEDING:	N/A			1-CMP . XX.X -
FOOD:	N/A			Temp: 22.2°C cond: 374ms Do: 12.3 mg/L
Water Chemistry Record:		Current	Range	PH: 7.8PH condition, Normal
TEMPERA	ATURE; _	22°C		Coro-con, Norman
SALINITY/CONDUCT	IVITY:	4.4	-	- Added to Soft
TOTAL HARDNESS (as (CaCO ₃):	138 mg/l	+-	Moder
TOTAL ALKALINITY (as C	CaCO3):	95 mg/l		
	рН:	8.20	-14	
Comments:		-		
	M.	MM		
		Facility Supervisor		

Aquatic BioSystems, Inc . Quality Research Organisms

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

CETIS Summary Report

Ceriodaphnia 7-d Survival and Reproduction Test

Report Date: Test Code: 11 May-18 10:35 (p 1 of 1) 81183 | 01-6534-8880

Aquatec Environmental, Inc.

Batch ID: 01-5909-0250
Start Date: 01 May-18 14:00
Ending Date: 08 May-18 15:25

Duration:

Test Type: Reproduction-Survival (2-8d)
Protocol: EPA/821/R-02-013 (2002)
Species: Ceriodaphnia dubia

In-House Culture

Source:

Analyst: Diluent: Kaitlyn Priest Soft Synthetic Water

Brine: Age: Not Applicable

<24h

Multiple Comparison	Summary
---------------------	---------

7d 1h

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	TU	DMCD /
15-4892-9563	2d Survival Rate	BOLL BOLL W. S. C. C. C.	MOLL	LULL	TUEL	10	PMSD ✓
		Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a
16-2794-7872	7d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	. 400			
			100	> 100	n/a	1	n/a
00-5991-2442	Reproduction	Steel Many-One Rank Sum Test	100	> 100	n/a	1	24.7%

Point Estimate Summary

Analysis ID	Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	,
07-8308-5278	2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	
		the second topon to the second	EC10	>100	n/a	n/a	<1	1
			EC15	>100	n/a	n/a	<1	1
			EC20	>100	n/a	n/a	<1	1
			EC25	>100	n/a	n/a	<1	1
			EC40	>100	n/a	n/a	<1	1
10.0015.115.			EC50	>100	n/a	n/a	<1	J
18-0347-1104	Reproduction	Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	<1	1
			IC10	>100	n/a	n/a	<1	1
			IC15	>100	n/a	n/a	<1	1
			IC20	>100	n/a	n/a	<1	1
			IC25	>100	n/a	n/a	<1	1
			IC40	>100	n/a	n/a	<1	1
			IC50	>100	n/a	n/a	<1	1

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		
0	T.	10	1.0000	1.0000	100			137.552		0.00%	0.00%
12	5				1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

7d Survival Rate Summary

Сопс-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	0.7000	0.3544	1.0000	0.0000	1.0000	0.1528	0.4830	69.01%	0.00%
0	L	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-42.86%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-42.86%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-42.86%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-42.86%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-42.86%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0,0000	0.00%	-42,86%

Reproduction Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	23.9	18.92	28.88	13	32	2.203	6.967	29.15%	0.00%
0	L.	10	25.8	20.35	31.25	15	36	2.407	7.613	29.51%	-7.95%
12		10	22.1	18.52	25.68	14	29	1.581	4.999	22.62%	7.53%
24		10	25.6	18.45	32.75	2	35	3.159	9.991	39.03%	-7.11%
48		10	28.7	25.48	31.92	19	37	1.422	4.498	15.67%	-20.08%
50		10	27.8	24.86	30.74	21	32	1.298	4.104	14.76%	-16.32%
100		10	26.3	23.75	28.85	21	32	1.126	3.561	13.54%	-10.04%

Report Date:

11 May-18 10:35 (p 1 of 2) 81183 | 01-6534-8880

Test Code:

Aquatec Environmental, Inc.

Ceriodaphnia 7-d	Survival and Reproduction Test

Analysis ID: 15-4892-9563 Analyzed: 11 May-18 10:34

Endpoint: Analysis:

2d Survival Rate STP 2xK Contingency Tables

CETIS Version:

CETISv1.9.2

Official Results: Yes

09-8352-6079 Sample ID: Sample Date: 30 Apr-18 06:58

Code:

15326

Client:

Keene WWTP

TOEL

n/a

Receipt Date: 01 May-18 09:50

Material: Source:

POTW Effluent Permit # NH0100790 (KEENE NH)

LOEL

> 100

TU

1

Sample Age: 31h **Data Transform**

Untransformed

Station:

Alt Hyp

Keene WWTP

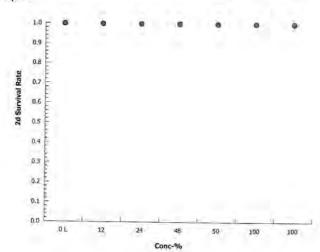
Project:

NOEL

100

WET Annual Compliance Test

Untransformed	C > T
Fisher Exact/Bonferroni-Holm	Test


Control	VS	Group	Test Stat	P-Type	P-Value	Decision(q:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	1.0000	Exact	1.0000	Non-Significant Effect
		50	1.0000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	_
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	D 40
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				Rep 10
12					A 15503		1.0000	1.0000	1.0000	1.0000	1.0000
		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date:

11 May-18 10:35 (p 2 of 2) 81183 | 01-6534-8880

Test Code:

Aquatec Environmental, Inc.

Analysis ID: 16-2794-7872

11 May-18 10:34 Analysis:

Endpoint: 7d Survival Rate STP 2xK Contingency Tables

CETIS Version: Official Results:

CETISv1.9.2

Analyzed: Sample ID:

09-8352-6079

Ceriodaphnia 7-d Survival and Reproduction Test

15326

Yes

Sample Date: 30 Apr-18 06:58

Code: Material:

POTW Effluent

Client:

Keene WWTP

Receipt Date: 01 May-18 09:50

Source:

Permit # NH0100790 (KEENE NH)

Project:

WET Annual Compliance Test

Sample Age: 31h **Data Transform**

Untransformed

Station:

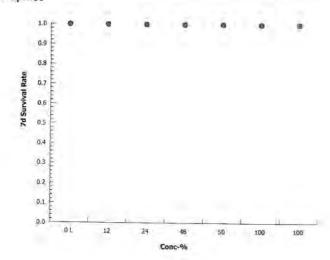
Alt Hyp

C>T

Keene WWTP

NOEL	LOEL	TOEL	TU	
100	> 100	n/a	1	

Fisher Exact/Bonferroni-Holm Test


Control vs	s	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
	48	1.0000	Exact	1.0000	Non-Significant Effect	
	50	1.0000	Exact	1.0000	Non-Significant Effect	
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect
0	L	10	0	10	1	0	0.0%
12		10	0	10	1	0	0.0%
24		10	0	10	1	0	0.0%
48		10	0	10	1	0	0.0%
50		10	0	10	1	0	0.0%
100		10	0	10	1	0	0.0%

7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	The second second
12		1.0000	1.0000	1.0000	1,0000	1.0000	1.0000		F 60 00 5		1,0000
24		1.0000	1.0000	1.0000			1100000	1.0000	1.0000	1.0000	1.0000
48					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date:

11 May-18 10:35 (p 1 of 2) 81183 | 01-6534-8880

Test Code:

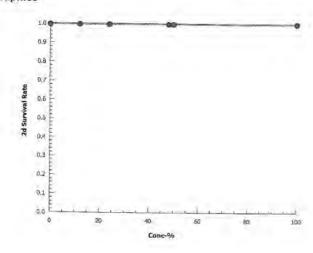
Ceriodaphnia	a 7-d Survival and Re	eproduction T	est		Aquatec Environmental, Inc.
Analysis ID: Analyzed:	07-8308-5278 11 May-18 10:35	Endpoint: Analysis:	2d Survival Rate Linear Interpolation (ICPIN)	CETIS Version: Official Results	CETISv1.9.2
	09-8352-6079 30 Apr-18 06:58	Code: Material:	15326 POTW Effluent	100000000000000000000000000000000000000	ne WWTP T Annual Compliance Test

Receipt Date: 01 May-18 09:50 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 31h Station: Keene WWTP

Linear Interpolation Options

X Transform Y 1	Transform	Seed	Resamples	Exp 95% CL	Method	
Linear Lin	near	346701	200	Yes	Two-Point Interpolation	


Point Estimates

%	95% LCL	95% UCL	TU	95% LCL	95% UCL
>100	n/a	n/a	<1	n/a	n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a			n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a	<1	40.00	n/a
>100	n/a	n/a	<1	n/a	n/a
	>100 >100 >100 >100 >100 >100 >100	>100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a	>100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a	>100 n/a n/a <1 >100 n/a n/a <1	>100 n/a n/a <1 n/a >100 n/a n/a <1 n/a

2d Survival R	Survival Rate Summary			Calculated Variate(A/B)									
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В		
O	L	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		
12		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		
24		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		
48		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		
50		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		
100		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10		

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date:

11 May-18 10:35 (p 2 of 2) 81183 | 01-6534-8880

Test Code:

 THE PROPERTY AND ADDRESS OF THE PARTY OF THE
Aquatec Environmental, Inc.

Analysis ID: 18-0347-1104 Analyzed: 11 May-18 10:34

Endpoint: Analysis:

Reproduction Linear Interpolation (ICPIN)

CETIS Version: Official Results:

CETISv1.9.2

Sample ID: 09-8352-6079 Sample Date: 30 Apr-18 06:58

Code: Material: 15326 **POTW Effluent** Client:

Yes Keene WWTP

Receipt Date: 01 May-18 09:50 Sample Age: 31h

Source: Station:

Permit # NH0100790 (KEENE NH)

Project:

WET Annual Compliance Test

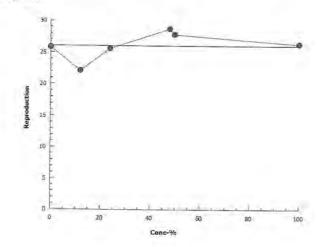
Linear Interpolation Options

X Transform Y Transform Seed Linear

Ceriodaphnia 7-d Survival and Reproduction Test

Keene WWTP

Resamples Exp 95% CL Method Linear 1204051 200 Yes Two-Point Interpolation


Point Estimates

%	95% LCL	95% UCL	TU	95% LCL	95% UCL
>100	n/a	n/a	<1	n/a	n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a	<1		n/a
>100	n/a	n/a	<1	200	n/a
>100	n/a	n/a	<1	-0.5	n/a
>100	n/a	n/a	<1	n/a	n/a
	>100 >100 >100 >100 >100 >100 >100	>100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a	>100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a	>100 n/a n/a <1 >100 n/a n/a <1	>100 n/a n/a <1 n/a >100 n/a n/a <1 n/a

Reproduction	Summary				(Calculated Va	riate			
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	L	10	25.8	15	36	2.407	7.613	29.51%	0.0%	
12		10	22.1	14	29	1.581	4.999	22.62%	14.34%	
24		10	25.6	2	35	3.159	9.991	39.03%	0.78%	
48		10	28.7	19	37	1.422	4.498	15.67%	-11.24%	
50		10	27.8	21	32	1.298	4.104	14.76%	-7.75%	
100		10	26.3	21	32	1.126	3.561	13.54%	-1.94%	

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	15	24	30	30	16	36	32	34	22	19
12		18	14	24	20	29	21	28	27	17	23
24		30	32	28	30	27	14	2	27	31	35
48		28	28	31	31	27	30	29	27	19	37
50		30	22	29	32	27	32	21	24	31	30
100		21	25	27	27	21	30	26	29	32	25

Report Date: Test Code:

11 May-18 10:35 (p 1 of 2) 81183 | 01-6534-8880

Aquatec Environmental, Inc.

Ceriodaphnia 7-d Survival and Reproduction Test Analysis ID:

00-5991-2442 Endpoint: Reproduction 11 May-18 10:34 Analysis: Nonparametric-Control vs Treatments

CETIS Version: Official Results:

CETISV1.9.2

Sample ID: 09-8352-6079

Code: 15326 Client:

Yes Keene WWTP

Sample Date: 30 Apr-18 06:58

Material: POTW Effluent

WET Annual Compliance Test

Receipt Date: 01 May-18 09:50

Source: Station:

Permit # NH0100790 (KEENE NH)

Keene WWTP

Project:

Sample Age: 31h

Analyzed:

Data Transform Alt Hyp Untransformed C>T

NOEL LOEL TOEL TU **PMSD** 100 > 100 n/a 24.70%

Steel Many-One Rank Sum Test

Control vs	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Lab Water	12	88.5	75	1	_	Asymp	0.3061	Non-Significant Effect
	24	105.5	75	2		Asymp	0.8444	Non-Significant Effect
	48	112.5	75	2	18	Asymp	0.9503	Non-Significant Effect
	50	110	75	4	18	Asymp	0.9223	Non-Significant Effect
	100	104.5	75	2	18	Asymp	0.8218	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	260.15	52.03	5	1.343	0.2606	
Error	2092.7	38.7537	54	1.545	0.2000	Non-Significant Effect
Total	2352.85		59			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance Test	14.59	15.09	0.0123	Equal Variances
Distribution			10.00	0.0123	Equal variances
Distribution	Shapiro-Wilk W Normality Test	0.9311	0.9459	0.0022	Non-Normal Distribution

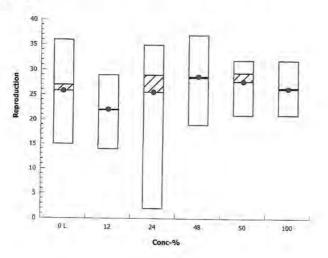
Reproduction Summary

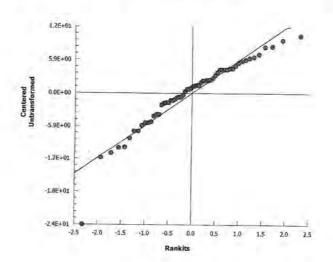
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	0/ 5554
0	L	10	25.8	20.35	31.25	27			15 317 (4-300)		%Effect
12			1-7-55 A			21	15	36	2.407	29.51%	0.00%
K.E.		10	22.1	18.52	25.68	22	14	29	1.581	22.62%	14.34%
24		10	25.6	18.45	32.75	29	2	35	3.159	39.03%	0.78%
48		10	28.7	25.48	24.02	00.5	52	23320	100000000000000000000000000000000000000		
EO				23.40	31.92	28.5	19	37	1.422	15.67%	-11.24%
50		10	27.8	24.86	30.74	29.5	21	32	1.298	14.76%	-7.75%
100		10	26.3	23.75	28.85	26.5	21	32	1.126	13.54%	-1.94%

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	15	24	30	30	16	36	32	34		
12		18	14	24	20	29				22	19
24							21	28	27	17	23
7.5		30	32	28	30	27	14	2	27	31	35
48		28	28	31	31	27	30	29	27	19	37
50		30	22	29	32	27	32	21	24	31	30
100		21	25					75.0			30
77.7		21	23	27	27	21	30	26	29	32	25

Report Date: Test Code: 11 May-18 10:35 (p 2 of 2) 81183 | 01-6534-8880


Ceriodaphnia 7-d Survival and Reproduction Test


Aquatec Environmental, Inc.

Analysis ID: Analyzed: 00-5991-2442 11 May-18 10:34 Endpoint: Re Analysis: No

Reproduction Nonparametric-Control vs Treatments CETIS Version: Official Results:

CETISv1,9.2 Yes

Report Date: Test Code/ID: 11 May-18 10:34 (p 1 of 2) 01-6534-8880/81183

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Start Date: 01 May-18 14:00

Sample Date: 30 Apr-18 06:58

End Date:

08 May-18 15:25

Species: Ceriodaphnia dubia

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

3 (2002) Sample S

Sample Code: 15326 Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	
0	L	1	56	1		1			,	,	1		0	0	7	8	0	0	0	0	Note
0	L	2	33	1		1					1				8	11	0	5			-
0	L	3	37	1		1					1			-	7	11	0	12		0	-
0	L	4	6	1		1					1				6	0		_	-	0	-
0	L	5	49	1		1					1	-		_	7	9	10	14		0	-
0	L	6	34	1		1					1		-		8	10	0	0		0	-
0	L	7	39	1		1					1				6	0	10	18	_	0	-
0	L	8	26	1		1					1				5	11	0	18		0	
0	L	9	8	1		1					1				7	12	0	3		0	-
0	L	10	36	1		1					1				6	13	0	0			-
0	R	1	9	1		1					1	-			4	10	0	14		0	-
0	R	2	18	1		1					1				4	12	0	-		0	-
0	R	3	5	1	-	1					1			_	5			13		0	
0	R	4	25	1		1			-		0			-	4	10	6	15		0	
0	R	5	50	1		1			-		1		-	-	4	7			-	0	
0	R	6	54	1		1		-			1	-	-				0	10		0	
0	R	7	69	1		1		-			1				6	8	0	18		0	
0	R	8	17	1		1		-		-	1	-		_	0	5	6	11		0	
0	R	9	2	1		1		-			0	-	-	-	6	6	3	16		0	
0	R	10	65	1		1		-	-		0	-	-			12	0	0		0	
12		1	7	1		1		-			1	-	-		5	12	0	0		0	
12		2	20	1		1	-	-	-	-	1	-	-		5	5	0	8		0	
12		3	67	1		1	-	-	-		1	-	-		5	9	0	0		0	
12		4	51	1	-	1	-	-		-	1	-			7	8	0	9		0	
12		5	59	1	-	1		-		-+	1		-	-	6	9	0	5		0	
12		6	29	1	-	1	-	-		-	1	-			6	10	0	15		0	
12		7	12	1		1	-	-	-	-	1	-	-		7	8	5	7	-	0	
12		8	44	1		1		-	-	-	1	-	-	-	5	0		16	-	0	
12		9	68	1	-	1	-	-	-	-	1	-		-	6		6	16	-	0	
12		10	38	1		1	-	-	-	-	1	-	-	-	7	10	0	1	-	0	
24		1	1	1		1	-	-	-	-	1	-	-+		6	9	0	7		0	
24		2	70	1		1	-	-	-	-	1		-	-		11	0	13	-	0	
24		3	48	1	-	1	-	-	+	-	1	-	-+		7	7	0	17		0	
24		4	3	1	-	1	-			-	1	-	-	-			0	14		0	-
24		5	23	1	-	1	-	-	-		1	-			7	1	9	13	-4	0	
24		6	24	1	-	1	+			-	1			-	-	8	0	13		0	
24			21	1	-	1	-	-	-	-	1	-			5	8	1	0		0	
24		-	41	1		1				+	1	-				1	1	0		0	
24			28	1	-	1	-	-		-	1	-	-	-	5	0	7	15		0	
24			15	1		1	-	-	-	-	1			-	6	9	0	16		0	
48		-	40	1		1	-	-	-		1	-		-	8	12	0	15		0	
48	-	_	30	1		1	- 1						-	-	6	9	0	13		0	
48		-	46	1	-	1					1				5	9	0	14		0	
48	-	200	62	1			-	-	-	-	1				6	10	0	15		0	
48	-	-				1			_		1				6	10	0	15		0	
40		2	61	1		1					1				4	0	9	14		0	

CETIS Test Data Worksheet

Report Date:

11 May-18 10:34 (p 2 of 2)

Conc-%		Rep	p Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv					Test Code/ID:				01-6534-8880/81183				
	Code								5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	
48		6	42	1		1					1		-	0	7	7	0	16	0	0	Notes
48		7	55	1		1					1			-	5	5	2	17		-	-
48		8	64	1		1					1				6	4	0	17		0	-
48		9	14	1		1					1				0	0	7	12		0	-
48		10	16	1		1					1				8	12	0	17		0	
50	2.5	1	66	1		1					1				7	9	0	1000		0	
50		2	63	1		1					1	-	-		1			14	-	0	
50		3	22	1		1					1		-		6	9	8	13		0	
50		4	19	1		1					1			-	7	8	0	14	the set	0	-
50		5	11	1		1				_	1	-			6			17		0	
50		6	35	1		1					1		-		7	8	0	13		0	
50		7	27	1		1		-			1			_		8	0	17		0	
50		8	52	1		1			-		1			_	5	0	5	11	1	0	
50		9	10	1		1				-	1				6	0	5	13		0	1
50		10	58	1		1		-	-		1				6	11	0	14		0	
100		1	53	1	-	1	-	-		-	1				7	10	0	13		0	
100		2	32	1		1		-	-	-	1	-			6	5	0	10		0	
100		3	45	1	-	1	-	-		-	1				7	7	0	11		0	
100	-	4	13	1		1		-		-	1			_	6	7	0	14		0	
100		5	43	1	-	1	-	-	-	-	_				6	0	8	13		0	
100		6	57	1	-	1		-	-	-	1				4	0	6	11		0	
100	-	7	60	1	-						1				6	7	0	17		0	1 7
100		8	31	1		1					1				6	0	8	12		0	
100	-	9	47	1		1					1				7	9	0	13		0	1 = 1
100		10	-	-		1					1				7	10	0	15		0	
100		10	4	1		1	-				1				7	11	0	7		0	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Cerio

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

lient ID: Ke	ene/Ley				Permit No.	NH010	Pipe No. 1			
COXICITY T % Effluent	EST DA Rep.	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	81183
	1	0	0	0	0	7	8	0	0	
/	2	0	0	0	0	8	11	0	5	
200	3	0		0	8	7	11	0	12	
50 % 50 FT	4	0	0	0	Ŏ	6	0	10	14	
SOFT	5	0	G	Q	8	7 67 8 65 7	9	0	0	
CTRL	6	0	0	0		8	10	10	18	
0.1112	7	0	0	8	8	6	0,	10	10	
	8	0	0	-		5	36	0	3	
	9	0	0	8	0		12	0	3	
	10	0			0	6	13		0	
	1	0	0	0	0	4	10	0	124	
	2	0	0	O	0	5	12	0	13	
22.3	3	0	0	0	8	5	MAN	0	15	
0 %	4	0	8	0	0	4	3	D-6		
	5	0		2	0	4	7	0	10	
RW	6	0	0	0	0	6	8	Q	18	
	7	0	0	0		0	5	3		
	8	0	8	8	0	6	12	3	2)(2	
	10	0	0	8	0	5	12	D-0		
								0-0		
	1	0	0	0	Q	5	5	0	8	
	2	0	0	0	0	5		0	6	
12.0/	3	0	0	2	0	7	8	0	9	
12 %	5	0	0	1	0	6	10	0	5	
425	6	0	0	8	0	4	3	0	15	
EFF	7	0	0	8	X	7	8	5	17	
	8	0	0	0	2	6 7 5	0		16	
	9	0	0	A	8	6	10	6	1 Ce	
	10	0	0	0	Ó	6	10	8	4	
24 %	1	0	0	A	0		11	0	12	
	2	0	0	R	0	(0	6	X	(2)	
	3	0	0	8	0	6	7	X	174	
	1 2 3 4	0	0	0	8	7	7	0	13	
24 /0		0		ŏ	0	10	0	5	13	
FFF	5 6 7	0	0	Ŏ	0	776505	8	Y	6	
EFF	7	0	0	0	0	Ö	9 0	001	8	
	8	0	0	Õ	õ	5	0	7	15	
	8 9 10	0	0	0	O	6	9	0	160	
	10	0	0	0	0	2	12	8	16	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

ient ID:	Keene/Ley					Permit N	o. NH01	00790	Pipe No	. 1
% Effluen	TEST DA	ATA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8118
	1	0	0	10	0	10	9	6		
	2	0	0	Õ	0	5	9	8	13	
	3	0	0	0	0	6	10	3	15	
48 %	4	0	0	0	0		18	0	13	
	5	0	0	0	6	4	0	9	मि	
EFF	6	0	0	0	0	7	7	0		
-1.1	7	0	0	Ø	0	7 5	5	3	19	
	8	0	0	0	0	6	4	0	17	
	9	0	0	Q	0		0	7	17	
	10	0	0	0	0	8	12	Ó	17	
	1	0	0	0	0	7	9	0	Du I	
	2	0	0	0	Ö	1	0	9	13	
272 335	3	0	0	0	0	6	8	8	14	
50 %	4	0	0	0	0	7	8	0	17	
	5	0	0	0	Q	6	8	0	13	
EFF	6	0	0	0	0	7	9	O	17	
	7	0	0	0	0	5	0	5	11	
	8	0	0	0	O	6	ñ	5	13	
	9	0	0	0	0	6	M	10000	14	
	10	0	0	0	0	7	10	0	13	
	1	0	0	1	0	6	5	0	10	
	2	0	0	K	0	7	5	8	10	
	3	0	0	0	8	6		8	14	
100 %	4	0	0	0	8	6	7	10	13	
	5	0	0	0	Ö	4	0	6.	P	
EFF	6	0	0	0	0	6	7	8	12	
LII	7	0	0	0	Õ	6	0	Q	12	
	8	0	0	0	0	7	9	8	13	
	9	0	0	0	8	7	10	0	18	
	10	0	0	LO	6	7	11	0	15	
	Sample #	50880	50880	50889	50889	50891	50891	50891	50891	
	Fed	/	/	1	1/	1	2001)	3/11	90011	
	Renewal	5/1/18	5-2-12	5/3/18	5/4/18	5.5.18	SILVE	SINIC	Signer	
	(D/T/I)	5/1/18	5-2-18 1425 EB	1430	15 35	2000	5/6/18	13 48	5/8/18	
	(07171)	W	EB	KN	WN.	1055 XP	Ta Var	LA	1300	
YCT L	ot Number:	038	1918 A	20	5/4/18 sel	enastrum L	ot Numbe	r: 04	2618 501	
					_	late on 5	6.1.		- 5 10 501	

cd

Daphnid, C. dubia, Survival and Reproduction Test Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 1002.0

SOP:

WET-A-002

nt ID: Keene,					Permit No.	NH0100	790	Pipe No.	
TIAL CHEMI								Test ID	8118
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
DW 0%	pH								
SOLL	DO								
CTRL	Temp.								
CINE	Cond.								
0.0/	рН								_
0 %	DO						-		
RW	Temp.						/"		
IXVV	Cond.					Xo	10		
12.0/	рН					19/5	1		-
12 %	DO				-	5/8			
EFF	Temp.				×	10			
LIT	Cond.				Tol /	5			
24.0/	рН				Not in the second				-
24 %	DO				Jak /				
EFF	Temp.				D/2				
LIT	Cond.			75	Salar Jan				
40.0/	рН			101	X .				-
48 %	DO			(/01					
EFF	Temp.			On and				-	
LIT	Cond.		2	1 17					
50 %	рН		0	J. T.					-
30 %	DO								
EFF	Temp.		S XV						
	Cond.	CIV.	1						
100 %	рН)/							
100 %	DO								
EFF	Temp.	/							
	Cond.								
	Sample #	50880	50880						-
	Date								
	Initials								

SDG:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Client ID:

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Keene/Ley Permit No. NH0100790 Pipe No. 1 FINAL CHEMISTRY DATA: Test ID 81183

% Effluent	INIDAI		1	11	1			Test ID
70 Elliuent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
~0%	рН	7.5	7.3	7.3	7.4	7.3	172	70
SOFT	DO	7.1	7.1	7.6	7.60	7.8	7.9	45
CTRL	Temp.	25,4	24.7	25.0	24.5	24.5	24-0	24.0
	Cond.	216	204	202	197	185	184	185
0%	рН	6.9	6.9	(0.8	7.5	6.8	6.9	70
0 70	DO	7-1	7.0	7.6	7.60	29	78	7.6
RW	Temp.	25.5	24.8	25.1	24.60	24.4	240	23 9
	Cond.	89	81	61	59	68	76	69
12 %	рН	75	7.4	7.3	7.4	74	73	711
12 /0	DO	7-1	7.0	7.5	7.8	Id	70	专工
EFF	Temp.	25.4	25.0	25.2	24.8	24.3	24.0	741
	Cond.	292	301	301	290	277	278	280
24 %	рН	7.5	74	74	7.6	7.4	74	75
27 /0	DO	7-1	70	75	7.6	78	50	3.5
EFF	Temp.	25,5	24.9	25.1	24.8	7.8	23.9	12)
-1.	Cond.	381	387	388	382	376	369	373
48 %	рН	7-6	7.4	7.5	7.6	7.5	75	7/)
TO 70	DO	7.2	7.0	75	7,6	7.8	70	7 6
EFF	Temp.	25.5	249	25.D	248	244	24.0	241
217	Cond.	573	566	578	564	563	554	564
50 %	рН	7.6	7.5	7.5	7.7	7 10	75	7
30 70	DO	7.1	7.0	75	7.5	7.8	70	7.6
EFF	Temp.	25.5	348	25.1	24.8	24 4	240	24.2
27	Cond.	580	583	597	578	580	574	577
100 %	рН	7.6	7.5	7.6	7.8	72	7.7	77
100 /0	DO	7.1	20	75	7.6	70	50	57
EFF	Temp.	25.5	249	25.1	24.6	347	23.9	24.2
611	Cond.	942	946	970	950	945	939	950
	Sample #	50880	5,0880	50889	50889	5,0891		50001
	Date		5/3/18	- 1 - 1	5.5.18	5/16/18	50891	5089)
	Initials	EB	Val	1/10	K7	140	1410	01101

Aquatec Environmental, Inc. Reviewed by: EB Date: 5-15-18. 62

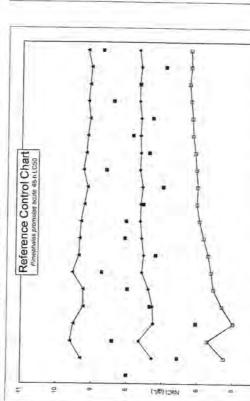
SDG:

Documentation of Collection

Species: Source:	Ceriodaphnia dubia In-House Cultures	Client/Project: Klene
Acclimation	/Holding Bross to	Testing Date: 5/1/18

Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold at appropriate testing

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 042618 Sel) and YTC (Lot #: 12 032918 AR) to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.


Culture ID 042418BB	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fe (v
042518 88	4/30/18 12:23 KM	4/30/18 1626 KN 4/30/18 1630 FA	5	V
242518BB	4/30/18 16 26 KN 4/30/18 16:30 KN 4/30/18 23:0100	4/30/18 23.07 N	2	~
04251883	4/30/18 23:01 00	5/1/18 06.5500	(13)	1
* Neonates coll-	cted must number at least e			

^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female

Standard Reference Toxicant Control Chart(s)

Pimephales promelas acute survival LG50 Control Chart Reference toxicant: sodium chloride (g/L)

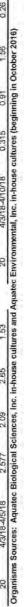
Test	Test	LC50	Mean	Calculat	Calculated limits	
Number	Date	(a/r)	LC50	Upper	Lower	Source
	2/23/16-2/25/16	æ				Anitatir Bineuetome
2	3/8/16-3/10/16	6.57	7 20	0.34	20.3	Sillare Dissipation
0	ALICHE AMONE	0 40	200	0.0	0.20	Aduatic Biosystems
,	91711910	24.0	90/	9.60	5,72	Aquatic Biosystems
4	7/12/16-7/14/16	6,06	7.26	9.52	5.01	Aduatic Biosystems
0	8/12/16-8/14/16	7.36	7.28	9.24	533	Admatic Bineveteric
60	10/19-21/2016	7,994	7.40	9 24	5.56	Adulatic Bioevetome
1	11/29/16-12/1/18	8.722	7.59	25	5.63	Agricatio Diocustoms
80	1/10/17-1/12/17	7.204	7.54	0.37	F.74	Aquatic Biosystems
6	2/7/17-2/9/17	8 071	7.80	200	100	Aqualic Diosystems
0	3/21/17-3/23/17	8 042	7.64	200	200	Addance prosystems
11	5/2/17-5/4/17	7.581	7.64	0.00	200	Aquatic biosystems
12	TH2HT-TH4MT	7 006	7.50	7	200	Aduatic Biosystems
43	THOUSE CHOIS	200	2007	4 14	0.03	Aquatic Biosystems
2 ;	11/01/0-11/0/0	0.01	99'	92.50	6.07	Aquatic Biosystems
14	9/12/17-9/14/14	7.403	7.64	9.18	6.11	Aquatic Biosystems
15	10/24/17-10/26/17	7.867	7.66	9.15	6.17	Anuatic Riosystems
16	11/7/17-11/9/17	7.31	7.64	60.6	6 10	Anistic Biocyctoms
17	1/25/18-1/27/18	8.42	7.68	9.14	6.23	Anualic Bioeystoms
18	2/6/18-2/8/18	7.678	7.68	00 6	6 27	Aguatic Biocyclome
19	3/6/18-3/8/18	6.952	7.64	906	B 24	Anitalic Bioeystoms
20	4/3/18-4/5/18	8.722	7.70	0.15	200	Agustic Discustement

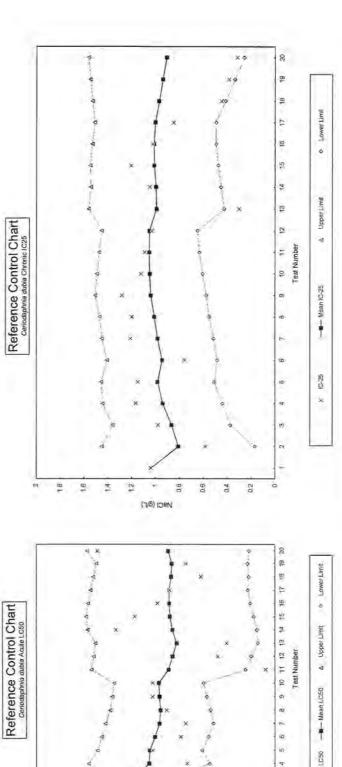
Note: Tests through September of 2016 were as Aquatec Biological Sciences, Inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, Inc.

9

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

Number	Test	(G/L)	Mean IC-25	Calculated limits	d limits	CV of Avg.	Avg.	Growth	Avg.	
-	2/23/16-3/1/18	2.49	2 40	india.	Tomas .	10.50	3	PINSU (%)	PMSD (%)	Source
0	3/8/16 3/15/16	740	100		7		2000	12.70	12.70	Aquatic Biosystems
10	010000000000000000000000000000000000000	201	7.50	2.53	2.48	0:01	0.01	20.30	16.50	Anuatic Ricevetor
9	4/5/16-4/12/16	2.77	2.59	2.90	2.28	90.0	0 03	11.00	15.65	Aguatia Diagraph
4	7/12/16-7/19/16	2.41	2.55	2 86	2 23	900	200	200	200	Adualic Biosystem
in o	8/12/16-8/19/16	2.10	2 46	200	7 00	0 0	500	09 01	14.90	Aquatic Biosystems
9	10/19-28/2016	3.04	2 55	0 0	000	0.0	9	11.70	14.26	Aquatic Biosystems
7	11/20/18.12/8/16	000	300	0 0	n i	0.13	0.07	18.00	14.88	Aquatic Biosystems
	A STATE OF THE PARTY OF THE PAR	86.7	70.7	3.23	76.	0.13	80.0	20.40	15.67	Aguatic Biosystem
0	JEJ/LIL-JEJOUT	3.09	2.68	3.38	1.97	0.13	000	14.20	45.44	Agriculta Discovering
o	2/7/17-2/14/17	3.73	2.79	3.76	1 83	0.47	040	7.45	200	Aduatic Biosystem
10	3/21/17-3/28/17	271	2.78	3.70	100	200	2 .	0	14,20	Aquatic Biosystems
11	5/2/14-5/0/17	286	1	100	/0.	0.10	0.11	14.80	14.32	Aquatic Biosystems
42	THE PROPERTY	200	4.11	200	.67	91.0	0.11	15.10	14,39	Aquatic Biosystem
2	11/8/1/-/1/2/1/	3.55	2.84	3.78	1.90	0.17	012	12 00	30 VF	Agriculta Disease
13	8/8/17-8/15/17	2.33	2.80	3.74	1 86	710	0,0	Oct. C. Jose	200	Aduatic Biosystems
4	9/12/17-9/19/17	3.91	2 88	90	202 +	0.00	2 .	ouny a reps	13.1/	Aquatic Biosystems
15	10/24/17-10/31/17	2 20	200	2000	2	200	0.13	19.00	13.58	Aquatic Biosystems
a	44(4)44	0,50	2.3	/R.'S	48.	0.18	0,13	22.10	14.15	Aquatic Rinsystems
0 !	11/6/17/-11/14/17	3.05	2.91	3.94	1.88	0,18	0.13	27.00	14 95	Actuatio Biographom
11	1/25/18-2/1/18	3,06	2.92	3.92	1.92	0.17	0.13	75.50	44.00	Addic Diosystems
18	2/6/18-2/13/18	3 93	2 98	SOL		0,0		200	86.4	Aquatic Biosystems
67	3/6/18,3/13/18	3 30	000	200	06.1	0	0.14	14.70	15.10	Aquatic Biosystems
200	010000000000000000000000000000000000000	0000	00.0	10.4	1.93	0.18	0.14	19.20	15.19	Aqualic Rinsystems
KN.	20 4/3/16-4/10/18 3.5/ 3.03	3.57	3.03	4.10	1.96	0.18	0.14	13.5	15.00	Agustic Discustome


88 18 18 4 16 10 -B-Lower Limit 7 6 12 - Upper Limit Reference Control Chart Test Number 9 ■ IC-25 4.50 4.00 3.50 3,00 2.50 2.00 1,50 1.00 (1/6) IDEN


Assessment of test precision and sensitivity: The average CVs of IC25 values are within the 25th Percentile (0.21) for fathead minnow growth (Table 3-2, EPA 833-R-00-003) indicating high precision (only 25% of labs reported CVs of not more than 0.21). The per-test PMSD values were less than the EPA upper limit of 30% indicating low-to moderate variability (moderate to high sensitivity) for this method. The cumulative average PMSD value of 20 tests (15.1) was near the EPA lower boundary (12%), indicating high statistical sensitivity for this test method. Updated 4/20/18

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Cariodaphnia dubia Reference Control Chart for NaCl Chronic Toxicity based on reproduction

Test	Test	LC50	Mean	Calculated limits	d limits	Test	Test	10-25	Mean IC.25	Calculated limits	d limits	CV of Avg.	Avg.	Repro.	Avg.
4	3/8/16-3/10/16	2.257	2.26			*	3/8/16-3/14/16	1.036	1.04	and do				96.6	100
2	4/5/16-4/7/16	2.464	2.36	2.65	2.07	2	4/5/16-4/11/16	0.582	0.81	1.45	0.17	0.40	0.40	15.3	10.0
(7)	7/12/16-7/14/16	2.200	2.31	2.58	2.03	က	7/12/16-7/18/16	876.0	0.87	1.36	0.37	0.29	0.34	16.7	12.6
4	9/20/16-9/22/16	1.956	2.22	2.64	1.80	4	9/20/16-9/26/16	1,167	0.94	1.44	0.44	0.27	0.32	32.6	14.0
10	10/18/16-10/20/16	2.195	2.21	2.58	1.85	49	10/18/19-10/25/16	1.149	0.98	1.46	0.51	0.24	0.30	10,7	18.6
9	11/29/16-12/1/16	2.000	2.18	2.55	1.81	9	11/29/16-12/5/16	0.7583	0.95	1.41	0.48	0.24	0.29	15.8	17.1
1	1/10/17-1/12/17	1.966	2.15	2.52	1.78	1	1/10/17-1/16/17	1.211	0.98	1.45	0.52	0.24	0.28	13.7	16.8
00	2/14/17-2/16/17	2.098	2.14	2.49	1.79	60	2/14/17-2/22/17	1.2	1.01	1.47	0.55	0.23	0.27	33.2	16.4
o	3/21/17-3/23/17	2,195	2.15	2.47	1.82	6	3/21/17-3/28/17	1.282	1.04	1.51	0.57	0.22	0.27	34.9	18.5
10	5/16/17-5/18/17	2.195	2.15	2.46	1.84	10	5/16/17-5/22/17	1.123	1.05	1.49	0.61	0.21	0.26	10.5	20.3
11	7/11/17-7/113/17	1.414	2.09	2.62	1.55	11	711117-7113117	1.093	1.05	1,47	0.63	0.20	0.25	6.72	19.3
12	8/1/17-8/3/17	1,743	2.06	2.60	1.51	12	8/1/17-8/7/17	1.03	1.05	1.45	0.65	0.19	0.25	16	18.2
13	9/12/17-9/14/17	1,684	2.03	2.59	1.47	13	9/12/17-9/18/17	0.2996	66'0	1,56	0.43	0.29	0.25	32.1	18.0
14	9/28/17-9/30/17	2,449	2.06	2.64	1.47	14	9/28/17-10/4/17	1.048	1,00	1.54	0.45	0.27	0.25	15.8	19.1
15	10/31/17-11/2/17	2,319	2.08	2.66	1.50	15	10/31/17-11/6/17	1.208	1,01	1.55	0.47	0.27	0.25	9.47	18.9
16	11/28/17-11/30/17	2.161	2.08	2.64	1.52	16	11/28/17-12/4/17	1.023	1.01	1.53	0.49	0,26	0.25	9.72	18.2
17	1/9/18-1/11/18	2.077	2.08	2.62	1.54	17	1/9/18-1/16/18	0.85	1.00	1.51	0.49	0,25	0.25	30.3	17.7
18	2/6/18-2/8/18	1,861	2.07	2.61	1,53	18	2/6/18-2/12/18	0.4474	26.0	1.53	0.41	0,29	0.26	20.6	18.4
6	3/6/18-3/8/18	1,966	2.06	2.59	1,54	19	3/6/18-3/12/18	0.3857	0.94	1.55	0.34	0.32	0.26	13.8	18.6
20	4/3/18 4/5/18	2577	500	265	4 53	20	8110118-4110118	0.315	0.01	1.56	90.0	0.35	90.0	26.3	400

Assessment of test precision and sensitivity: The cumulative average CV of 0.26 for reproduction was near the 50th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data. The cumulative average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 4/20/18.

'qaqe\srts\Cd SRT including CV and PMSD

×

n

1.350

1,600

1,850

(J/g) (J/g/L)

2 350

2,600

2.850

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

TOXICITY SUMMARY REPORT:

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

6/5/2018 3:05:00 PM

Test End:

ACUTE

>100

100

6/12/2018 2:00:00 PM

CHRONIC

>100

100

ACUTE CHRONIC % % Number Sample Name NOEC LC50 NOEC LOEC 50952 100 Keene WWTP SEC 2°Clar#2 >100 100 >100

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Keene WWTP SEC 2°Clar#2

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 WET-A-002 SOP:

Test Start: 6/5/2018 2:40:00 PM Test End: 6/11/2018 1:50:00 PM

% - % Number Sample Name NOEC LC50 NOEC LOEC

SAMPLES RECEIVED:

50952

Number	Sample Name	Date Time and Collected	Туре	
50952	Keene WWTP SEC 2°Clar#2	6/4/2018 7:00:00 AM	Effluent	
50953	Ashuelot River	6/4/2018 8:35:00 AM	Receiving	
50954	053018-SOFT-2		Lab Water	
50955	Keene WWTP 2°Clar#2	6/6/2018 7:10:00 AM	Effluent	
50956	Ashuelot River	6/6/2018 8:03:00 AM	Receiving	
50957	Keene WWTP 2°Clar#2	6/8/2018 7:05:00 AM	Effluent	
50958	Ashuelot River	6/8/2018 8:20:00 AM	Receiving	

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: 8619-18 Date:

SDG: Project

Tuesday, June 19, 2018 15349

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

TOXICITY DETAIL REPORT:

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

Sample ID: 50952 / Keene WWTP SEC 2°Clar#2 1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013

6/5/2018 3:05:00 PM Test Start:

Test End:

6/12/2018 2:00:00 PM

WET-A-001

Response: Survival (%)

Concentration % Additional 12 24 48 50 100 Day Control 2 100 100 100 100 97.5 100 100 7 100 100 100 100 97.5 100 100

Response: Growth per Original Number of Larvae (mean dry weight,mg)

|----- Concentration % -----Additional 12 24 48 50 0 100 Control 7 0.610 0.647 0.670 0.707 0.707 0.695 0.708

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

6/5/2018 2:40:00 PM

Test End:

6/11/2018 1:50:00 PM

Response: Survival (%)

	Additional	J		Concenti	ration %		
Day	Control	0	12	24	48	50	100
2	100	100	100	100	100	100	100
6	100	100	100	100	100	100	100

Response: Reproduction (mean neonates per female)

	Additional	1		Concent	ration %		[
	Control	0	12	24	48	50	100	
6	37.7	32.1	32.4	35.2	34.7	32.9	35.3	

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: 68 6 19-18 Date:

Tuesday, June 19, 2018

SDG: 15349

Project 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Lev

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 WET-A-001

Test Start: 6/5/2018 3:05:00 PM Test End: 6/12/2018 2:00:00 PM

Response: Survival (%)

Day Sample ID Dilution Control Additional Control 2 50952 100 100 7 50952 100 100

Growth per Original Number of Larvae (mean dry weight, mg) Response:

> Sample ID Dilution Control Additional Control Day 7 50952 0.647 0.61

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 12.9%

PMSD Criteria Range:

12%-30%

The calculated test PMSD was within the acceptable boundary range indicating test data with acceptable variability and statistical sensitivity. The chronic values (C-NOEC, C-LOEC) were reported as calculated by the statistical program.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as the additional control.

Replicate A of the soft water control was inadvertently started with 9 individuals.

1 of 3

Aquatec Environmental, Inc. Reviewed by: \$6-19-16 Date:

SDG: Project 15349

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002

Test Start: 6/5/2018 2:40:00 PM Test End: 6/11/2018 1:50:00 PM

Response: Survival (%)

 Day
 Sample ID
 Dilution Control
 Additional Control

 2
 50952
 100
 100

 6
 50952
 100
 100

Response: Reproduction (mean neonates per female)

Day Sample ID Dilution Control Additional Control
6 50952 32.1 37.7

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD:

9.3%

PMSD Criteria Range:

13%-47%

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as the additional control.

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Lev

Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: June 26,2018 (Date)

(Authorized signature)

John Williams Director

Aquatec Environmental, Inc.

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446 Client ID: Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Test Start:

6/5/2018 3:05:00 PM

Test End: 6/12/2018 2:00:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method Modified Chronic Pimephales promelas Effluent Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

June 4, 6, & 8, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

June 5-12, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6

Aquatec Environmental, Inc. Reviewed by: 86 6-194 Date:

SDG: Project 15349

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Keene/Ley Permit No. NH0100790

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Test Start: 6/5/2018 3:05:00 PM Test End: 6/12/2018 2:00:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control: Soft Water

Mean Control Survival: 100 % Mean Control Growth: 0.647 (mg)

B. Additional Control: Ashuelot River

Mean Control Survival: 100 % Mean Control Growth: 0.610 (mg)

C. Lab Control: See A. Above
D. Thiosulfate Control: N/A

Test Variability

Test PMSD: Growth (%): 12.9

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%) RESULTS (%) 48-Hour LC50: 48-Hour LC50: > 100 **Upper Value:** N/A Lower Value: N/A Data Analysis Dunnett Multiple Comparison Test, Method(s): Linear Interpolation (ICPIN), Steel Many-One Rank Sum Test A-NOEC: 100.0 100 A-NOEC: C-NOEC: 48.0 C-NOEC: 100 C-LOEC: > 100 IC25: IC25: > 100

2 of 6

Aquatec Environmental, Inc.
Reviewed by: 28644 Date: 1 6/21/18

SDG: Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

6/5/2018 3:05:00 PM

Test End:

6/12/2018 2:00:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was within the boundaries of 12%-30%, indicating test data with normal variability and statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

6/5/2018 2:40:00 PM

Test End:

6/11/2018 1:50:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method Modified Chronic Ceriodaphnia dubia Effluent Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

June 4, 6, & 8, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

May 15-21, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

<24h collected within an 8h period

Source of Organisms:

Aquatec Environmental, Inc. - Williston, VT

4 of 6

Aguatec Environmental, Inc. Reviewed by: 18 649 18 Date: 1

SDG: Project 15349

Client ID:

1002.0

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley

Permit No. NH0100790

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

6/5/2018 2:40:00 PM

Test End:

6/11/2018 1:50:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Reproduction: 32.1 (neonates)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Reproduction: 37.7 (neonates)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Reproduction (%): 9.33

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%)

RESULTS (%)

48-Hour LC50:

48-Hour LC50:

> 100

N/A

Upper Value: Lower Value:

N/A

Data Analysis

Fisher Exact/Bonferroni-Holm Test,

Method(s):

Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC:

100.0

A-NOEC:

100

C-NOEC:

48.0

C-NOEC:

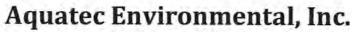
100

C-LOEC:

> 100

IC25:

IC25:


> 100

5 of 6

Aquatec Environmental, Inc. Reviewed by: Eb 6-11/1 Date: ____ 6

SDG: Project 15349

18017

Client ID:

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road

Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Keene/Ley Permit No. NH0100790

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002

Test Start: 6/5/2018 2:40:00 PM Test End: 6/11/2018 1:50:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 13%-47%, indicating test data with low variability and high statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or reproduction were not detected.

6 of 6

Wednesday, June 13, 2018 SDG: 15349

18017

Aquatec Environmental, Inc.

Reviewed by: 26/4/1/ Date: Au 6/21/19

11

Project

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1806-12859

DATE RECEIVED: June 05, 2018

DATE REPORTED: June 25, 2018

SAMPLER: BB/MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 06/25/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1806-12859
PROJECT: Keene NH NPDES DATE RECEIVED: 06/05/2018

001	Site: Keene WWTP	Sec 2 Clar #2 Composi	te	I	Date Sampled: 6/4/18	Time: 7	7:00	
<u>Parameter</u>		Result	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qu
Total Organ	ic Carbon	5.4	mg/L	SM 5310C (00)	6/11/18	N JGM	A	
Hardness, T	otal as CaCO3	53	mg/L	EPA 200.7	6/19/18	W FAA	A	
Ammonia a	s N	0.07	mg/L	EPA 350.1, R.2	6/12/18	N JGM	A	
Solids, Tota	l Dissolved	403	mg/L	SM 2540C-97	6/7/18	W JSS	A	
Total Solids		428	mg/L	SM 2540 B97	6/20/18	W JSS	A	
Metals Dige	estion	Digested		EPA 200.7/200.8	6/12/18	W MGT	A	
Aluminum,	Total	0.042	mg/L	EPA 200.8	6/13/18	W SJM	A	
Cadmium, 7	Total	< 0.0002	mg/L	EPA 200.8	6/13/18	W SJM	A	
Calcium, To	otal	16	mg/L	EPA 200.7	6/19/18	W FAA	A	
Copper, Tot	al	0.0058	mg/L	EPA 200.8	6/13/18	W SJM	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	6/13/18	W SJM	A	
Magnesium	, Total	3.1	mg/L	EPA 200.7	6/19/18	W FAA	A	
Nickel, Tota	ıl	< 0.0050	mg/L	EPA 200.8	6/13/18	W SJM	A	
Zinc, Total		0.022	mg/L	EPA 200.8	6/13/18	W SJM	A	

							7
002 Site: Ashuelot River	Grab		Ι	Date Sampled: 6/4/18	Time: 8	3:35	
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qua
Hardness, Total as CaCO3	18	mg/L	EPA 200.7	6/19/18	W FAA	A	
Ammonia as N	0.09	mg/L	EPA 350.1, R.2	6/12/18	N JGM	A	
Metals Digestion	Digested		EPA 200.7/200.8	6/12/18	W MGT	A	
Aluminum, Total	0.088	mg/L	EPA 200.8	6/13/18	W SJM	A	
Cadmium, Total	0.0003	mg/L	EPA 200.8	6/13/18	W SJM	A	
Calcium, Total	5.3	mg/L	EPA 200.7	6/19/18	W FAA	A	
Copper, Total	0.0038	mg/L	EPA 200.8	6/13/18	W SJM	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	6/13/18	W SJM	A	
Magnesium, Total	1.2	mg/L	EPA 200.7	6/19/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	6/13/18	W SJM	A	
Zinc, Total	0.032	mg/L	EPA 200.8	6/13/18	W SJM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	PANY IN	FORM	ATIC	N	F	ROJ	ECT	INFC	RMATIO	N
Name:	Aquatec Envi	ronmental,	Inc.	-	Proje	ct Name	: I	Keene N	H NPDES	
Address:	273 Commer	ce Street			Proje	ct Numi	er: :	18017		
City/State/Zip:	Williston, VT	05403			Samp	ler Nam	e(s):	вв/мм		
Telephone:	(802) 860 - 29	960							•	
Contact Name:	John Williams	5		1						
SAMPLE IDEN	TIFICATION	COLLECT DATE	ION TIME		IALYSIS on Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	
Keene WWTP	SEC 2Clar#2	06/04/18	7:00	Grab:	N/A	Compo	site:	х		
		Ammonia	(0.1)				500mL	Plastic	H2SO4	1
				05); Cu (0.0 g, Ca (0.05)	03); Zn, N i		250mL	Plastic	HNO3	1
		Total Orga	nic Carboi	n (0.5)			40mL	Glass	H2SO4	2
		Total Solid	s/Total Dis	ssolved Soli	ds		1/2gal	Plastic	Ice (4C)	1
Ashuelot River	(50953)	06/04/18	8:35	Grab:	Х	Compo	site: N	I/A		
		Ammonia ((0.1)	·			500mL	Plastic	H2SO4	1
		Metals: Cd (0.005); Al		05); Cu (0.00 g, Ca (0.05)	03); Zn, Ni		250mL	Plastic	НNОЗ	1
Relinquished by		SIF 1573		ler 0	ignature) muj	DATE 6/5/8		Cooler Notes T	/Sample Temp.: _ o Lab:	-2. <u>/</u>
Relinquished by	(signature) D	ATE TIME	Rece	eived by: (si	ignature)	DATE	TIME	- - - -		

1806-12859

1806-12859

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1806-13385

DATE RECEIVED: June 11, 2018

DATE REPORTED: June 25, 2018

SAMPLER: BB, MM

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 06/25/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1806-13385
PROJECT: Keene NH NPDES DATE RECEIVED: 06/11/2018

001	Site: Keene WWTP 2 Clarifier #2 Comp	osite	Γ	Date Sampled: 6/6/18	Time: 7	:10	
<u>Parameter</u>	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Ammonia a	s N 0.06	mg/L	EPA 350.1. R.2	6/22/18	N JGM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	PANYI	NFORMAT	TION	PROJ	ECT	INFO	RMATIO	N
Name:	Aquatec Env	vironmental, Inc.	·	Project Name	!:	Keene NF	INPDES	
Address:	273 Comme	erce Street		Project Numb	er:	18017		
City/State/Zip:	Williston, V	T 05403		Sampler Nam	ie(s):	BB/MM	••	
Telephone:	(802) 860 - 2	2960			••		***	
Contact Name:	John Willian	ns			· · · · · · · · · · · · · · · · · · ·			
SAMPLE IDEN	ITIFICATION	COLLECTION DATE TIM	/D-44:	NALYSIS on Limit, mg/L)	SIZE	BOTT TYPE	LE/CONTAINEI PRESERVATIVE	1
į	-	06/06/18 7:1	. 0 Grab:	N/A Compo	site:	х		
30	957	Ammonia (0.1)			500mL	Plastic	H2SO4	1
Relinguished by	(signature)	DATE TIME 1/18 09:20	Received by:			Cooler/ Notes T	/Sample Temp.: o Lab:	<u>3.7</u>
Relinquished by	(signature)	DATE TIME	Received by: (signature) DATE	TIME			

1806-13385

1806-13385

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1806-13384

DATE RECEIVED: June 11, 2018

DATE REPORTED: June 25, 2018

SAMPLER: BB, MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 06/25/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1806-13384
PROJECT: Keene NH NPDES DATE RECEIVED: 06/11/2018

001 Site: Keene WWTP 2 Clarifier #2 Composite Date Sampled: 6/8/18 Time: 7:05 Parameter Result Units Method Analysis Date/Time Lab/Tech **NELAC** Qual. Ammonia as N 0.06 mg/L EPA 350.1, R.2 6/22/18 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY IN	FORMATIC	N	Pi	ROJE	CT INF	ORMATIO	N
Name:	Aquatec Envir	onmental, Inc.		Project	: Name:	Keene	NH NPDES	
Address:	273 Commerc	e Street		Project	Number	: 18017		<u></u>
City/State/Zip:	Williston, VT	05403		Sample	r Name(s	s): BB; M	M	
Telephone:	(802) 860 - 29	60						
Contact Name:	John Williams	1910 - 191 <u>- 191- 191</u>				**************************************		V
SAMPLE IDE	NTIFICATION	COLLECTION DATE TIME		NALYSIS on Limit, mg/	/L) s	BC	TTLE/CONTAINE	R NUMBER
Keene WWTP るつか	2°Clar#2 (5((うらう	06/08/18 7:05 Ammonia (0.1)	Grab:	N/A C	Composit	e: X IOmL Plast	ic H2SO4	1
Relinguished by	16/	1/18 09:20 /	lee :	Troney	11/18 9		ler/Sample Temp.: es To Lab:	3.7

1806-13384

1906-13384

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1805-09573

DATE RECEIVED: May 01, 2018

DATE REPORTED: May 14, 2018

SAMPLER: John Williams

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 05/14/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1805-09573
PROJECT: Tox Lab QC DATE RECEIVED: 05/01/2018

001 Site: 042718SOFT (5)	0884)		Т	Date Sampled: 5/1/18	Time: 1	1:00	1
Parameter Site: 042/1830F1 (5)	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	⊿ Qua
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	5/7/18	N JGM	A	
Hardness, Total as CaCO3	49	mg/L	EPA 200.7	5/7/18	W FAA	A	
Ammonia as N	0.12	mg/L	EPA 350.1, R.2	5/11/18	N JGM	A	
Solids, Total Dissolved	143	mg/L	SM 2540C-97	5/8/18	W JSS	A	Е
Total Solids	104	mg/l	SM 2540 B97	5/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	5/3/18	W FAA	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	5/9/18	W MGT	A	
Calcium, Total	6.5	mg/L	EPA 200.7	5/7/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	5/9/18	W MGT	A	
Magnesium, Total	7.9	mg/L	EPA 200.7	5/7/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	5/9/18	W MGT	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	

Report Summary of Qualifiers and Notes

B: Blank contamination was observed at levels that could affect analytical results.

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	PANYIN	IFOR	MA	TIC	N	F	PROJ	ECT	INFC	RMATIC	N
Name:	Aguatec Env	ironmen	tal, Ind	C.			ct Name		Tox Lab		
Address:	273 Comme	rce Stree	t			Proje	ct Num	ber:	18000		
City/State/Zip:	Williston, VT	05403	·		···	Samp	ler Nan	ne(s): .	JW		
Telephone:	(802) 860 - 2	960			,-					<u> </u>	·
Contact Name:	John William	S								<u> </u>	<u></u>
SAMPLE IDEN	TIFICATION	COLLI DATE	ECTIO TI	N ME		VALYSIS on Limit, m	ng/L)	SIZE	BOTT TYPE	LE/CONTAINE	R NUMBER
042718SOFT (5	0884)	05/01/: Metals			Grab: . Pb (0.000	X 5); Cu (0.00	<u> </u>	osite: 1		HNO3	1
				i, Mg (0		5), cu (6.6)	,,,,,,,,,	ZJOILL	riastic	ПІЧОЗ	1
		Ammo	nia-Nit	rogen(0	0.1)			250mL	Plastic	H2SO4	1
		TS/TDS	5-Total	Solids/	Total Disso	lved Solids		1/2gai	Plastic	Ice(4C)	1
		TOC - T	otal O	rganic (Carbon(0.5)		40mL	Glass	H2SO4	2
Relinguished by	si gnat ure) [DATE T	IME	Rece	1	ignature)	i	TIME 14,27		/Sample Temp.: o Lab:	6.1
Relinquished by (signature) [ATE T	IME	Rece	ived by; (s	ignature)	DATE	TIME			

1805-09573

1805-09573

Aquatec Environmental, Inc Tox Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Aquatec Environmental, Inc.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 Tel: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	OJECT I	NFOF	RMAT	ION		VOL		/CON		IER TY	/PE/
NAME: Keene, NH	PROJECT	: Keene	NH/L	ey								
Address: 420 Airport Road	(1	st Sampl	e Ship	Mond	ay)	7.3	O		0	504		
Swanzey, NH 03446	PROJECT	#: 18	017			4,0	포	4°C	tic 4	C H	2504	
Tel: (603) 357 – 9836 [x6502]	SAMPLE	RS NAME(s): Bolo	Bishop	Mike	lastic	astic	ass	Plas	lasti	SS H	
CONTACT: Mary Ley		Mary	y		morteli	n P	IL P	L G	llon	nL F	Gla	
E-MAIL: mley@ci.keene.nh.us	PERMIT I	NUMBER:	NH01	00790		Gallo	250m	TRC: 40mL Glass 4°C	½ Ga	250r	OmL	
	COLLEG	5.45	81	SITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC:	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX							
							N		ER OF	CONT	AINER	S
Keene WWTP SEC 2°Clar 非 2	6/4/18	700		Х	Effluent	2	1	1	1	1	2	
Ashuelot River	6/4/19	835	Х		Receiving	1	1			1	2	
ANALYSIS (Teer (Description)). T	1000											

ANALYSIS (TEST/DETECTION LIMITS) – Tox: 1000.0 & 1002.0 (P. promelas & C. dubia chronic toxicity; %) – METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) – TRC: Total Residual Chlorine (0.02mg/L) – TS/TDS: Total Solids / Total Dissolved Solids – AMMONIA: (0.1mg/L) – TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 1.8°C
May 2	6/4/18	900	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 6/5/18	TIME: 955	RECEIVED BY Signature)	samples to a NELAC-Accredited analytical lab; Ammonia and TRC are required on each new effluent sample; *Other
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

6/3-6/4/16 WET

Chain-of-Custody

Page: ____ of ____ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	DJECT I	NFOR	MAT	ION		VOL		CON'			/PE/	
NAME: Keene, NH	PROJECT:	Keene	NH/Le	eγ									
Address: 420 Airport Road	(2 nd	Sample .	Ship W	/ednes	sday)	U	103		4°C	2504	4		
Swanzey, NH 03446	PROJECT	#: 18	017			2 to	=	4°C	stic	ic H	H ₂ SO	1	
TEL: (603) 357 – 9836 [x6502]	SAMPLER	S NAME(s): Bo	b Bisl	nop	lasti	lasti	lass	Plas	Plast	ass		
CONTACT: Mary Ley		1	nik	mort	411	on F	IL P	שורו	llon	mL	19		
E-MAIL: mley@ci.keene.nh.us	PERMIT I	NUMBER:	NH010	00790		Gall	250r	TRC: 40mL Glass 4°C	% G	: 250	40ml		
	FIN	727	АВ	OSITE	XIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄		
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX		N	LINADI	ER OF		AINED		
Keene WWTP 29Clar#2	96/18	7/0		х	Effluent	2	1"	1	1*	1	2*		
Ashuelot River	6/6/18	803	Х		Receiving	1							
ANALYSIS (T/D													

ANALYSIS (Test/Detection LIMITS) — Tox: Renewal (P. promelas and C. dubia chronic toxicity; %) — Metals: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 1.7°C
Mandy	6/6/18	830	Priority Express	NOTES: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE:	12,10,4,4,4,1	RECEIVED BY: (Signature) KIV	samples to a NELAC-Accredited analytical lab; Ammonia and TRC are required on each new effluent sample; *Other
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples

Sample Acceptance Policy: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

6-5 Mru

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	OJECT I	NFOF	RMAT	ION		VOL		/CON		ER TY	PE/
NAME: Keene, NH	PROJECT	: Keene	NH/L	ey								
Address: 420 Airport Road	(3 rd Samp	ole Ship	Frida	y)	63	O ₃		၁	504	-5	
Swanzey, NH 03446	PROJECT	#: 18	017			14°(H	4°C	tic 4	H	2504	
TEL: (603) 357 – 9836 [x6502]	SAMPLE	RS NAME(s): Bo	6Bis	hap	lastic	astic	ass	Plas	lasti	SS H	
CONTACT: Mary Ley			m	hilien	urkel	n P	IL PI	L GI	llon	nL P	Gla	
E-MAIL: mley@ci.keene.nh.us	PERMIT	NUMBER:	NH01	00790		Gallo	250m	TRC: 40mL Glass 4°C	% Ga	250r	10mL	
	FIN		81	DSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC:	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX					4		
								имв	ER OF	CONT	AINERS	
Keene WWTP 2° Clar#2	48/18	705		X	Effluent	3	1*	1	1*	1	2*	
Ashuelot River	6/8/18	820	Х		Receiving	2						

ANALYSIS (TEST/DETECTION LIMITS) — Tox: Renewal (P. promelas and C. dubia chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 4,3°		
may	6/8/18	830	Priority Express	NOTES: Aquatec delivers chemistry sub-		
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 6.9:18	TIME: 0840	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical lab; Ammonia and TRC are required on each new effluent sample; *Other		
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples		

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). **Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.**

WET 6/7-48/19

Client ID:

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity: (mg/L)	Hardness:	TRC: (mg/L)
50952 - Keene WWTP SEC 2°Clar#2	6/5/2018	52.0	60.0	0.01
50953 - Ashuelot River	6/5/2018	16.0	20.0	
50954 - 053018-SOFT-2	5/31/2018	36.0	46.0	-
50955 - Keene WWTP 2°Clar#2	6/7/2018	52.0	60.0	0.07
50956 - Ashuelot River	6/7/2018	16.0	18.0	-
50957 - Keene WWTP 2°Clar#2	6/9/2018	56.0	60.0	0.00
50958 - Ashuelot River	6/9/2018	12.0	14.0	

INF: Interference. The color endpoint was reached immediately

1 of 1

Aquatec Environmental, Inc.
Reviewed by: EB Date: 6 1818

SDG: Project

Aquatec Environmental, Inc.

Client ID:

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley

Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

	Initial	Sample	Second	Sample	Third S	ample	
	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	50952	50953	50955	50956	50957	50958	50954
Filtration	60 Micron	√ 60 Micron√	60 Micron 🇸	60 Micron	60 Micron	60 Micron	N/A
Chlorine (1)	ND		ND		ND	1	N/A
Chlorine (2)		_		~	/	/	N/A
NaThio Lot No.		_	_	_	/	/	N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Date / Initials:	6/5/18/FM	6/5/18	6/7/18 KN	6/7/18	6.9.18 KP		6/5/18

⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

SDG: Project

15349 18017

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

Toxicity Test Method(s)

Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: 1000.0

WET-A-001

rojec	t: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25+/- 1C, Test temperatures must not deviate (i.e., maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)
5	Photoperiod:	16h light/8h dark
6	Test chamber size:	300mL
7	Test solution volume:	Nominal 250mL
8	Test solution renewal:	Daily
9	Age of test organisms:	Newly hatched larvae less than 24h old. If shipped, not more than 48h old, 24h range in age
10	No. larvae per test chamber:	10
11	No. replicate chambers per concentration:	4
12	No. larvae per concentration:	40
13	Source of food:	Newly hatched Artemia nauplii (< 24h old)
14	Feeding regime:	On days 0-6, feed 0.1g newly hatched (less than 24h old) brine shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to provide an excess.
15	Cleaning:	Siphon daily, immediately before test solution renewal
16	Aeration:	None: unless DO concentration falls below 4.0mg/L.
17	Dilution water:	Soft Water
18	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
19	Additional control:	Ashuelot River
20	Test duration:	7 days
21	Endpoints:	Survival and growth (weight)
22	Test acceptability criteria:	80% or greater survival in controls; average dry weight per surviving organism in control chambers equals or exceeds 0.25mg
23	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
24	Sample volume required:	2.5L/day

Aquatec Environmental, Inc.

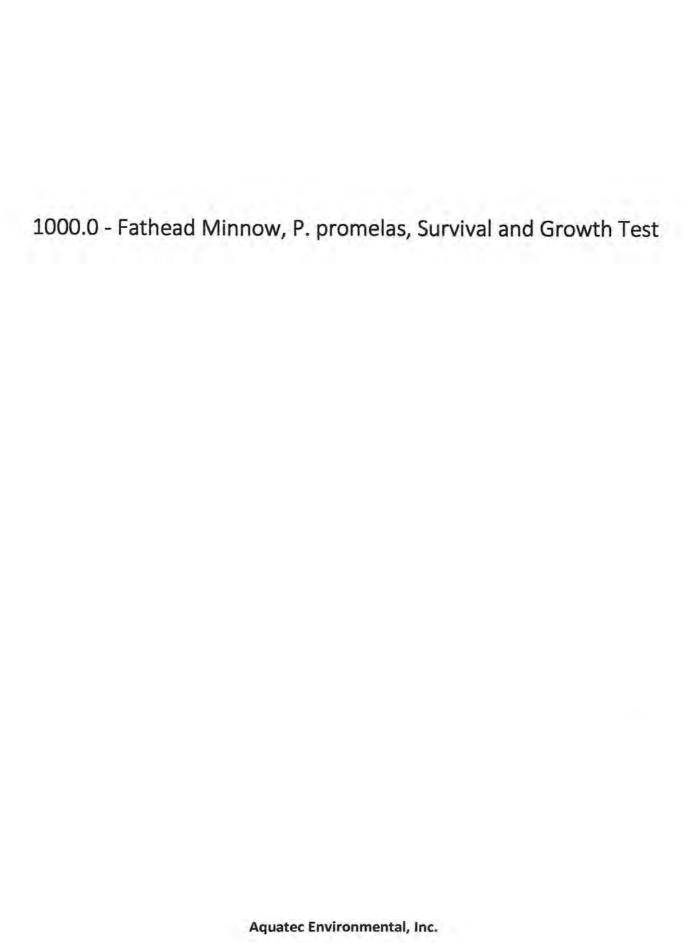
Reviewed by:

Solution Date: 6-(8-1)

SDG: 15349

Project

18017


1002.0 Daphnid, C. dubia, Survival and Reproduction Test Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

Ceriodaphnia dubia SOP: WET-A-002

rojec	t: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels)
5	Photoperiod:	16h light, 8h dark
6	Test chamber size:	30mL
7	Test solution volume	Nominal 15mL
8	renewal of test solutions:	Daily
9	Age of test organisms:	Less than 24h; and all released within a 8h period
10	No. neonates per test chamber:	1
11	No. replicate test chambers per concentration:	10
12	No. neonates per test concentration:	10
13	Feeding regime:	Feed 0.1mL each of YCT and algal suspension per test chamber daily
14	Cleaning:	Use new plastic cups daily
15	Aeration:	None
16	Dilution water:	Soft Water
17	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
18	Additional control:	Ashuelot River
19	Test duration:	Until 60% or more of surviving control females have three broods (maximum test duration 8 days)
20	Endpoints:	Survival and reproduction
21	Test acceptability criteria:	80% or greater survival of all control organisms and an average of 1 or more young per surviving female in the control solutions. 60% of surviving control females must produce three broods
22	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
23	Sample volume required:	1L/day

Aquatec Environmental, Inc.
Reviewed by: Date: 41818

SDG: 15349

CETIS Summary Report

Report Date:

Analyst:

Diluent:

19 Jun-18 10:27 (p 1 of 1)

Test Code: 81282 | 10-2220-4360

Kaitlyn Priest

Soft Synthetic Water

Fathead Minnow 7-d Larval Survival and Growth Test Aquatec Environmental, Inc.

Batch ID: 02-3505-4525 Test Type: Growth-Survival (7d) Start Date: 05 Jun-18 15:05 Protocol: EPA/821/R-02-013 (2002)

Ending Date: 12 Jun-18 14:00 Pimephales promelas Brine: Not Applicable Species:

Duration: 6d 23h Source: Aquatic Biosystems, CO Age:

Multiple Comparison Summary

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	TU	PMSD /
11-9455-9992	2d Survival Rate	Steel Many-One Rank Sum Test	100	> 100	n/a	1	4.66%
13-2821-1407	7d Survival Rate	Steel Many-One Rank Sum Test	100	> 100	n/a	1	4.66%
09-1229-8098	Mean Dry Biomass-mg	Dunnett Multiple Comparison Test	100	> 100	n/a	1	12.9%

Point Estimate Summary

Analysis ID	Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	1
05-3306-9979	2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	1
		de les desta de la servicio	EC10	>100	n/a	n/a	<1	1
			EC15	>100	n/a	n/a	<1	1
			EC20	>100	n/a	n/a	<1	1
			EC25	>100	n/a	n/a	<1	V
			EC40	>100	n/a	n/a	<1	1
			EC50	>100	n/a	n/a	<1	1
20-3178-6747	Mean Dry Biomass-mg	Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	<1	1
			IC10	>100	n/a	n/a	<1	1
			IC15	>100	n/a	n/a	<1	1
			IC20	>100	n/a	n/a	<1	1
			IC25	>100	n/a	n/a	<1	1
			IC40	>100	n/a	n/a	<1	V
			IC50	>100	n/a	n/a	<1	1

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

Mean Dry Biomass-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	0.61	0.5292	0.6908	0.542	0.657	0.02539	0.05079	8.33%	0.00%
0	L	4	0.6467	0.6147	0.6787	0.627	0.674	0.01004	0.02009	3.11%	-6.02%
12		4	0.6695	0.5804	0.7586	0.604	0.74	0.02799	0.05598	8.36%	-9.75%
24		4	0.707	0.6059	0.8081	0.653	0.799	0.03178	0.06356	8.99%	-15.90%
48		4	0.707	0.6181	0.7959	0.65	0.774	0.02792	0.05584	7.90%	-15.90%
50		4	0.6947	0.6185	0.771	0.651	0.755	0.02395	0.04789	6.89%	-13.89%
100		4	0.7078	0.6457	0.7698	0.651	0.737	0.01951	0.03902	5.51%	-16.02%

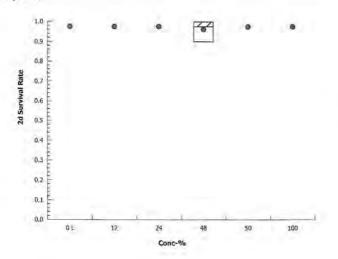
Report Date: Test Code: 13 Jun-18 11:10 (p 1 of 6) 81282 | 10-2220-4360

Fathead Minn	ow 7-d Larval	Survival a	nd Growth	Test						Aquate	c Environ	mental, In
Analysis ID:	11-9455-9992	2 E	ndpoint: 2	d Survival Rat	e			CE	TIS Version	: CETISv1	.9.2	
Analyzed:	13 Jun-18 11	:10 A	nalysis: N	lonparametric-	-Control	vs T	reatments	Offi	icial Result	s: Yes		
Sample ID:	06-5511-0449	C	ode: 1	5349				Clie	Client: Keene WWTP			
Sample Date:				OTW Effluent						ecial Studies		
Receipt Date:				ermit # NH010		EE	NE NH)		163.	a ofto, a felorina		
Sample Age:				eene WWTP	53 . 53 W		0.50					
Data Transfor		Alt Hyp		educar (mention)		_		NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre		C>T				_		100	> 100	n/a	1	4.66%
Steel Many-Or	ne Rank Sum	Test										- 100
Control V	vs Conc-9	6	Test Sta	at Critical	Ties	DF	P-Type	P-Value	Decision	n(a:5%)		
Lab Water	12		18	10	1	6	Asymp	0.8333	Non-Sign	nificant Effect		
	24		18	10	1	6	Asymp	0.8333		nificant Effect		
	48		16	10	1	6	Asymp	0.6105		nificant Effect		
	50		18	10	1	6	Asymp	0.8333	77.7	nificant Effect		
	100		18	10	1	6	Asymp	0.8333		nificant Effect		
ANOVA Table											-	
Source	Sum Sq	uares	Mean S	quare	DF		F Stat	P-Value	Decision	n(a:5%)		
Between	0.00543	11	0.00108	62	5		0.9788	0.4572	Non-Sign	nificant Effect	6	
Error	0.01997	58	0.00110	98	18	- 1						
Total	0.02540	7			23							
Distributional	Tests											
Attribute	Test				Test S	tat	Critical	P-Value	Decision	n(a:1%)		
Variances	Levene	Equality of	Variance Te	st	8.809		4.248	2.3E-04	Unequal	Variances		
Variances	Mod Lev	ene Equali	ty of Variance	e Test	0.9788		4.248	0.4572	Equal Va	ariances		
Distribution	Shapiro-	-Wilk W No	rmality Test	YEL	0.4936	9	0.884	4.9E-08	Non-Nor	mal Distributi	on	
2d Survival Ra	ate Summary					Т						
Conc-%	Code	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effec
0	L	4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	0	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	9	1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
50		4	1.0000	1.0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
Angular (Corre	ected) Transfe	ormed Sum	mary									
Conc-%	Code	Count	Mean	95% LCL		CL		Min	Max	Std Err	CV%	%Effec
0	L	4	1.41	1.403	1.417		1.412	1.403	1.412	0.002171	0.31%	0.00%
12		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-0.15%
24		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-0.15%
48		4	1,371	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	2.74%
50		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-0.15%
100		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	-0.15%
2d Survival Ra	ate Detail											
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0	L	1.0000	1.0000	1.0000	1.0000)						
12		1.0000	1.0000	1.0000	1.0000)						
24		1.0000	1.0000	1.0000	1.0000)						
48		1.0000	0.9000	1.0000	1.0000							
50		1.0000	1.0000	1.0000	1.0000							
100		1.0000	1.0000	1.0000	1.0000							
100		1.0000	1.0000	1.0000	1.0000							

Report Date: Test Code: 13 Jun-18 11:10 (p 2 of 6) 81282 | 10-2220-4360

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.


Analysis ID: 11-9455-9992 Analyzed: 13 Jun-18 11:10 Endpoint: 2d Survival Rate
Analysis: Nonparametric-Control vs Treatments

CETIS Version: CET Official Results: Yes

CETISv1.9.2

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.403	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.249	1.412	1.412	
50		1.412	1.412	1,412	1.412	
100		1.412	1.412	1.412	1.412	

Report Date:

13 Jun-18 11:10 (p 3 of 6) 81282 | 10-2220-4360

Test Code:

Aquatec Environmental, Inc.

TU

PMSD

4.66%

Fathead Minnow 7-d	Larval Survival	and Growth Test

Analysis ID: 13-2821-1407 Analyzed: 13 Jun-18 11:10 **Endpoint:** 7d Survival Rate Analysis:

15349

Nonparametric-Control vs Treatments

CETIS Version: CETISv1.9.2 Official Results:

Yes

Sample ID: 06-5511-0449 Sample Date: 04 Jun-18 07:00

Code: Material:

Alt Hyp

POTW Effluent

Client:

NOEL

100

Keene WWTP

Receipt Date: 05 Jun-18 09:55

Source:

Permit # NH0100790 (KEENE NH)

Project:

LOEL

>100

Special Studies

TOEL

n/a

Sample Age: 32h **Data Transform**

Station:

Keene WWTP

Angular (Corrected) C>T

Steel Many	One R	ank Sum Test							
Control	Vs	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Lab Water		12	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		24	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		48	16	10	1	6	Asymp	0.6105	Non-Significant Effect
		50	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		100	18	10	1	6	Asymp	0.8333	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0054311	0.0010862	5	0.9788	0.4572	Non-Significant Effect
Error	0.0199758	0.0011098	18			
Total	0.025407		23			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Levene Equality of Variance Test	8.809	4.248	2.3E-04	Unequal Variances
Variances	Mod Levene Equality of Variance Test	0.9788	4.248	0.4572	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.4936	0.884	4.9E-08	Non-Normal Distribution

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.41	1.403	1.417	1.412	1.403	1.412	0.002171	0.31%	0.00%
12		4	1.412	1.412	1,412	1.412	1.412	1.412	0	0.00%	-0.15%
24		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	-0.15%
48		4	1.371	1.242	1.501	1.412	1.249	1.412	0.04074	5.94%	2.74%
50		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	-0.15%
100		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	-0.15%

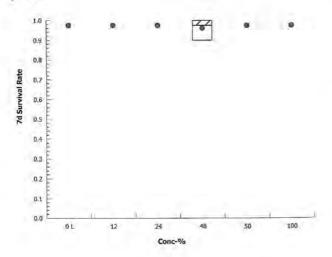
7d Survival Rate Detail

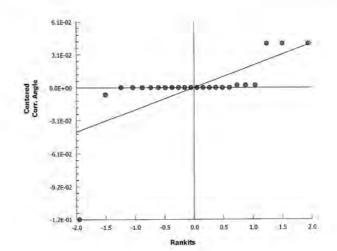
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1,0000	1.0000	
48		1.0000	0,9000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Report Date: Test Code:

13 Jun-18 11:10 (p 4 of 6)

81282 | 10-2220-4360


Fathead Minnow 7-d Larval Survival and Growth Test


Aquatec Environment	al,	inc.
---------------------	-----	------

Analysis ID:	13-2821-1407	Endpoint:	7d Survival Rate	CETIS Version:	CETISv1.9,2
Analyzed:	13 Jun-18 11:10	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.403	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.249	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1.412	1.412	

Report Date: Test Code: 13 Jun-18 11:11 (p 1 of 2)

est Code:	81282 10-2220-436

Fathead Minn	now 7-d Larval Survi	val and Growt	th Test		Aquatec Environmental, Inc.
Analysis ID:	05-3306-9979	Endpoint:	2d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	13 Jun-18 11:10	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Resamples

n/a

Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP
Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies

Receipt Date: 05 Jun-18 09:55 Source: Permit # NH0100790 (KEENE NH)
Sample Age: 32h Station: Keene WWTP

n/a

Seed

<1

Y Transform

n/a

Linear Interpolation Options

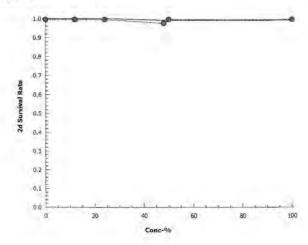
X Transform

EC50

Linear		Linear	1094	1552	200	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC5	>100	n/a	n/a	<1	n/a	n/a		
EC10	>100	n/a	n/a	<1	n/a	n/a		
EC15	>100	n/a	n/a	<1	n/a	n/a		
EC20	>100	n/a	n/a	<1	n/a	n/a		
EC25	>100	n/a	n/a	<1	n/a	n/a		
EC40	>100	n/a	n/a	<1	n/a	n/a		

Exp 95% CL

Method


2d Survival Rate Summary			Calculated Variate(A/B)								
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
)	L	4	1.0000	1.0000	1,0000	0.0000	0.0000	0.00%	0.0%	39	39
2		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
4		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
8		4	0.9750	0.9000	1.0000	0.0250	0.0500	5.13%	2.5%	39	40
50		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
100		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40

n/a

2d Survival Rate Detail

>100

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	0.9000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Receipt Date: 05 Jun-18 09:55

Report Date: Test Code: 18 Jun-18 14:59 (p 1 of 2) 81282 | 10-2220-4360

		Children Committee of the Committee of t	100
	Aguatac	Environmental	Inc

Fathead Minnow 7-d Larval Survival and Growth Test						
Analysis ID:	09-1229-8098	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.2	

Analyzed: 18 Jun-18 14:56 Analysis: Parametric-Control vs Treatments Official Results: Yes

Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP
Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies

Sample Age: 32h Station: Keene WWTP

Source:

 Data Transform
 Alt Hyp
 NOEL
 LOEL
 TOEL
 TU
 PMSD

 Untransformed
 C > T
 100
 > 100
 n/a
 1
 12.94%

Permit # NH0100790 (KEENE NH)

Dunnett Multiple Comparison Test

Control	vs	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)
Lab Water		12	-0.6558	2.407	0.084	6	CDF	0.9582	Non-Significant Effect
		24	-1.734	2.407	0.084	6	CDF	0.9980	Non-Significant Effect
		48	-1.734	2.407	0.084	6	CDF	0.9980	Non-Significant Effect
		50	-1.382	2.407	0.084	6	CDF	0.9941	Non-Significant Effect
		100	-1.756	2,407	0.084	6	CDF	0.9981	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0128094	0.0025619	5	1.059	0.4147	Non-Significant Effect
Error	0.0435347	0.0024186	18			
Total	0.0563441		23			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance Test	3.401	15.09	0.6384	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9611	0.884	0.4610	Normal Distribution

Mean Dry Biomass-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.6467	0.6147	0.6787	0.6429	0.627	0.674	0.01004	3.11%	0.00%
12		4	0.6695	0.5804	0.7586	0.667	0.604	0.74	0.02799	8.36%	-3.53%
24		4	0.707	0.6059	0.8081	0.688	0.653	0.799	0.03178	8.99%	-9.33%
48		4	0.707	0.6181	0.7959	0.702	0.65	0.774	0.02792	7.90%	-9.33%
50		4	0.6947	0.6185	0.771	0.6865	0.651	0.755	0.02395	6.89%	-7.43%
100		4	0.7078	0.6457	0.7698	0.7215	0.651	0.737	0.01951	5.51%	-9.44%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L.	0.6478	0.674	0.638	0.627	
12		0.74	0.675	0.659	0.604	
24		0.691	0.685	0.799	0.653	
48		0.674	0.65	0.774	0.73	
50		0.755	0.651	0.662	0.711	
100		0.729	0.714	0.737	0.651	

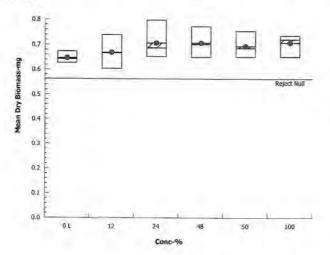
Report Date:

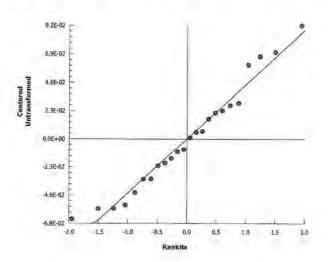
18 Jun-18 14:59 (p 2 of 2)

Test Code:

81282 | 10-2220-4360

Fathead Minnow 7-d Larval Survival and Growth Test


Aquatec Environmental, Inc.


Analysis ID: Analyzed:

09-1229-8098 18 Jun-18 14:56

Endpoint: Mean Dry Biomass-mg Analysis: Parametric-Control vs Treatments **CETIS Version:** Official Results:

CETISv1.9.2 Yes

Report Date:

18 Jun-18 14:59 (p 1 of 1)

Test Code:

81282 | 10-2220-4360

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Analysis ID: 20-3178-6747 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISv1.9.2

Analyzed: 18 Jun-18 14:56 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

15349

Keene WWTP

Sample ID: 06-5511-0449 Sample Date: 04 Jun-18 07:00

Code: Material: Client:

Keene WWTP

Receipt Date: 05 Jun-18 09:55 Sample Age: 32h Source: Station:

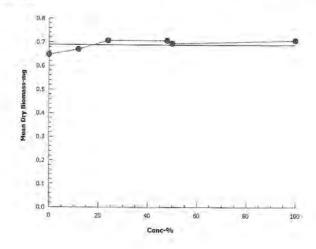
POTW Effluent
Permit # NH0100790 (KEENE NH)

Project:

Special Studies

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Log(X+1)	Linear	1834049	200	Yes	Two-Point Interpolation	
E-107 - 24-07 - 17						


Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
1C5	>100	n/a	n/a	<1	n/a	n/a
IC10	>100	n/a	n/a	<1	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	n/a
IC25	>100	n/a	n/a	<1	n/a	n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a

Mean Dry Bio	mass-mg Sum	mary			С	alculated Va	riate			
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	L	4	0.6467	0.627	0.674	0.01004	0.02009	3.11%	0.0%	
12		4	0.6695	0.604	0.74	0.02799	0.05598	8.36%	-3.53%	
24		4	0.707	0.653	0.799	0.03178	0.06356	8.99%	-9.33%	
48		4	0.707	0.65	0.774	0.02792	0.05584	7.90%	-9.33%	
50		4	0.6947	0.651	0.755	0.02395	0.04789	6.89%	-7.43%	
100		4	0.7078	0.651	0.737	0.01951	0.03902	5.51%	-9.44%	

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L.	0.6478	0.674	0.638	0.627	
12		0.74	0.675	0.659	0.604	
24		0.691	0.685	0.799	0.653	
48		0.674	0.65	0.774	0.73	
50		0.755	0.651	0.662	0.711	
100		0.729	0.714	0.737	0.651	

CETIS Test Data Worksheet

Report Date:

19 Jun-18 11:09 (p 1 of 1) 10-2220-4360/81282

Test Code/ID:

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: 05 Jun-18 15:05 End Date:

Sample Date: 04 Jun-18 07:00

12 Jun-18 14:00

Species: Pimephales promelas Protocol: EPA/821/R-02-013 (2002)

Material: POTW Effluent

Sample Code: 15349

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Total Weight-mg	Tare Weight-mg	Pan Count	Notes
0	L	1	27	9		9					9	29.43	23.6	9	
0	L	2	18	10		10					10	29.08	22.34	10	
0	L	3	26	10		10					10	28.08	21.7	10	
0	L	4	15	10		10					10	31.43	25.16	10	
0	R	1	2	10	1200	10					10	29.79	23.22	10	
0	R	2	12	10		10					10	29.31	22.92	10	
0	R	3	11	10		10					10	27.42	22	10	
0	R	4	3	10		10					10	27.94	21.92	10	
12		1	28	10		10					10	31.62	24.22	10	
12		2	21	10	-	10					10	28.3	21.55	10	
12		3	24	10		10	1				10	28.89	22.3	10	
12		4	9	10		10					10	31.12	25.08	10	
24		1	10	10	1	10	-				10	29.15	22.24	10	
24		2	25	10		10					10	29.7	22.85	10	
24		3	6	10		10					10	30.76	22.77	10	
24		4	5	10		10					10	29.69	23.16	10	
48		1	7	10		10					10	29.95	23.21	10	
48		2	20	10		9					9	28.53	22.03	9	
48		3	4	10	-	10					10	30.58	22.84	10	
48		4	13	10		10					10	29.33	22.03	10	
50		1	22	10		10					10	28.52	20.97	10	
50		2	8	10		10					10	28.95	22.44	10	
50		3	17	10		10					10	30.3	23.68	10	
50		4	1	10		10					10	29.8	22.69	10	
100		1	16	10		10		-			10	29	21.71	10	
100		2	14	10		10					10	29.53	22.39	10	
100		3	23	10		10					10	28.3	20.93	10	
100		4	19	10		10					10	27.31	20.8	10	

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species:

Pimephales promelas

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

ient ID: K	eene/L	ey				P	ermit No	o. NH01	.00/90	ŀ	ipe No.	1
OXICITY	TEST	DATA:									Test ID	8128
% Effluent	Rep.	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	No. weighed ¹	Initial Pan Weight	Final Pan Weight
~00	A (920	9	9	9	9	,9	9	9	9		29.43
0 %	В	10	10	10	10	10	10	10	10	10	22.34	29.08
SOFT	С	10	10	10	10	10	10	10	10	10	21.70	
CINL	D	10	10	10	10	10	10	10	10	10	25.16	31.43
0%	Α	10	10	10	10	10	10	10	0	10	23.23	
0 %	В	10	10	10	10	10	10	10	10	10	22.92	
RW	С	10	10	10	10	10	10	10	10	10	22.60	27.4
1	D	10	10	10	10	10	10	10	0	10	21.92	27.9
12 %	Α	10	10	10	10	10	10	10	10	10	24,22	
12 /0	В	10	10	10	10	10	10	10	10	10	21.55	28.3
EFF	С	10	10	10	10	10	10	10	10	10	22.30	23.8
	D	10	10	10	10	10	10	10	[0]	10	25.08	
24 %	Α	10	10	10	10	10	10	10	10	10	2224	29.1
24 /0	В	10	10	10	10	10	10	10	10	10	22.85	297
EFF	С	10	10	10	10	10	10	10	10	10	22.77	1 2 2
_7//	D	10	10	10	10	10	10	10	10	10		
48 %	Α	10	10	(0)	10	10	10	10	10	10	23.21	29.9
40 70	В	10	10	-4	7	9	9	9	7	13	22.03	
EFF	С	10	10	10	10	10	10	10	10		22.84	
	D	10	10	10	10	10	10	10	10	10	22.03	29.3
50 %	Α	10	10	10	10	10	10	10	10	10	20,97	
30 70	В	10	10	10	10	10	10	10	10	10	20,44	
EFF	С	10	10	10	10	10	0	10	(0		23.68	
	D	10	10	10		10	10	10	10	10	22.69	
100 %	Α	10	10	10	10	10	10	2.0	10	10	21.71	29.0
100 /0	В	10	10	10	10	10	10	10	10	10	20,93	29:
EFF	С	10	10	10	10	10	10	10	10	10	20,75	00.0
	D	10	10	iO	10	10	10	10	10	10	20.80	
Samp		50952	50952	50955		50957	50957	50957	Test End	Date/Init (In	itial Pan We	eights):
Fed AM		17.73	840	835	830	0845 K	840	\$40		IN (Date/Tir		it):
Fed PM		16:10	840 1620 1918 1535	11 15 8 611 113	1095	6.9.18	H45 lelioll8	7605	4112118	6/12/18	KN 14	00 90
Rene		45/15	1535	1555	1335		2001	4/11/18	1400	OUT (Date/	Time/Temp/	Init):
(D/T		FN	KIV	1010	KN	1220 KB	KN	PN	IN	A	. 0.	-
		rganism		1.	1.0.7		Brine Sh	rimp Lot	#:	91113	1-130	ne

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

Aquatec Environmental, Inc. Reviewed by: FB Date: 6 8 8

SDG: 15349

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

Client ID: Keene/Lev Permit No. NH0100790 Pipe No. **INITIAL CHEMISTRY DATA:** Test ID 81282 % Effluent **Analysis** Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 7.6 pH DW 0% DO 7.9 SOFT Temp. 249 CTRL Cond. 177 рН 7.2 0% DO 8,1 Temp. 24.9 RW Cond. 141 рН 7.60 12 % DO 7.9 Temp. 24.5 **EFF** Cond. 268 7.60 pH 24 % 7.9 DO Temp. 24.5 **EFF** Cond. 349 7.6 pH 48 % DO 8.0 Temp. 24.7 **EFF** Cond. 504 505 6 7.6 pH 50 % DO 8.0 Temp. 24.8 **EFF** Cond. 519 7.6 pH 100 % DO 8.1 Temp. 25,0 **EFF** Cond. 36 843 50955 50955 50952 50952 50957 Sample # 50957 6/7/18 6/11/18 6/5/18 4/6/15 6.9.18 Date (10/18 KAV Initials 140 KP

SDG:

15349 18017

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP:

Keene/Ley

Client ID:

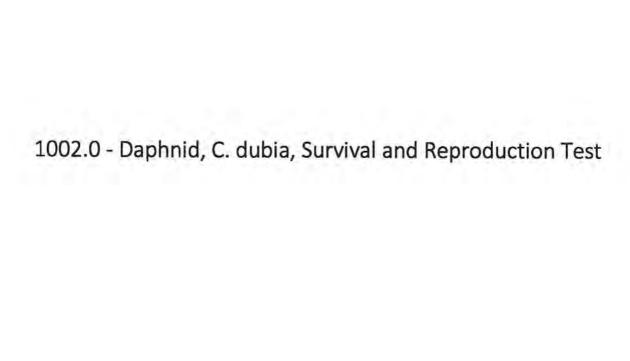
WET-A-001

Client ID: Keene/	Ley				Permit No.	NH010	0790	Pipe No.	1
FINAL CHEMIST	RY DATA	\ :	7		,-,-,-			Test ID	81282
% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
D' 0 %	рН	72	7.2	7.4	7.3	7.3	7.1	7.1	

% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
0 % So (+ CTRL	pH DO Temp. Cond.	727	7.2	7.4	7.3 6.2 24.6 192	7.3	7.1 6.1 23.9	7, 1 7.0 24.0
0 % RW	pH DO Temp. Cond.	24.3	6.7	24.5	6.9 6.0 24.7	6.9 7.0 24.5 144	6.8	6.5 6.6 24.0
12 % EFF	pH DO Temp. Cond.	7.1	7.2 5.9 24.5 27.3	7.2 6.3 29.6	7.3 5,9 24.6 278	7.3	7.1	7.0
24 % EFF	pH DO Temp. Cond.	7.2	7.2 6.0 24.4 350	7.3	7.3 5.9 24.6 353	7.3 6.8 24.4 359	7.1 5.8 24.1 365	7.1 6.5 23.9 345
48 % EFF	pH DO Temp. Cond.	73	7.4	7.4 6.4 24.5 499	7.3 6.0 24.1 509	7.4	7.2 5.7 5.7 529	7.2
50 % EFF	pH DO Temp. Cond.	7.4	7.3	73 24.6	7.3 5.6 24.5 519	7.4 6.8 24.6 532	73 59 24.1 532	73
100 % EFF	pH DO Temp. Cond.	7.4	74 6.2 34.4 82	7.4 (0.3 24.6 82)	7.4 5,8 24.5 824	7.5 6.7 24.6 846	7.4 5.7 24.1 865	7.4 6.6 04.0 831
	Sample # Date Initials	50952 6/6/18 KN	50952 (1718 VN	50955 6/8/18 KN	50955 6.9.18 KP	50957 6/10/18 KN	50957 6/11/18 FN	50957 6/12/18 KN

SDG:

15349 18017 1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524



Toll Free: 800/331-5916 Tel: 970/484-5091 Fax: 970/484-2514

ORGANISM HISTORY

DATE:	6/4/20	018		
SPECIES:	Pintep	phales promelas	No Land	
AGE:	N/A	infinitional and the		6/5/18
LIFE STAGE:	Embr	Ϋ́O		pec wis
HATCH DATE:	6/4/20	018	To the second second	Rec 6/5/18
BEGAN FEEDING:	N/A		THE PARTY OF THE P	11:05
FOOD:	N/A			Temp: 20.5°C
Water Chemistry Record:		Current	Range	Temp: 20.5°C Cond: 384us Do: 11:3 Mg/L
TEMPE	RATURE:	25°C		
SALINITY/CONDUC	CTIVITY;	, more	ed inc	FH: 79 PH
TOTAL HARDNESS (a	s CaCO ₃):	125 mg/l		Condition!
TOTAL ALKALINITY (a	s CaCO3):	90 mg/l		Normal/Actin
	рН:	7.60		
Comments:		— [II]		Added to MHM
-		Facility Supervisor		

Aquatic BioSystems, Inc . Quality Research Organisms

CETIS Summary Report

Report Date: Test Code:

18 Jun-18 15:08 (p 1 of 1) 81283 | 08-1633-6902

Ceriodaphnia 7-d Survival and Reproduc	ction Test
--	------------

Aquatec Environmental, Inc.

Batch ID:	14-0088-2029
Start Date:	05 Jun-18 14:40
Ending Date:	11 Jun-18 13:50

Test Type: Reproduction-Survival (2-8d) Protocol: EPA/821/R-02-013 (2002)

Analyst: Diluent: Kaitlyn Priest Soft Synthetic Water

Duration: 5d 23h Species: Ceriodaphnia dubia Source: In-House Culture

Brine: Not Applicable Age: <24h

Multiple	Comparison	Summary
----------	------------	---------

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	TU	PMSD V
09-7836-5359	2d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a
14-1310-4981	6d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a
02-4610-2940	Reproduction	Steel Many-One Rank Sum Test	100	> 100	n/a	1	9.33%

Point Estimate Summary

	anninary							
Analysis ID	Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	1
09-6975-0313	2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	1
			EC10	>100	n/a	n/a	<1	1
			EC15	>100	n/a	n/a	<1	1
			EC20	>100	п/а	n/a	<1	1
			EC25	>100	n/a	n/a	<1	1
			EC40	>100	n/a	n/a	<1	1
			EC50	>100	n/a	n/a	<1	1
02-8820-2607	Reproduction	Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	<1	1
			IC10	>100	n/a	n/a	<1	1
			IC15	>100	n/a	n/a	<1	1
			IC20	>100	n/a	n/a	<1	1
			IC25	>100	n/a	n/a	<1	1
			IC40	>100	n/a	n/a	<1	1
			IC50	>100	n/a	n/a	<1	1

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

6d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	1	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1,0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1,0000	0.0000	0.0000	0.00%	0.00%

Reproduction Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	37.7	36.35	39.05	35	40	0.5972	1.889	5.01%	0.00%
0	L	10	32.1	28.72	35.48	20	37	1.494	4.725	14.72%	14.85%
12		10	32.4	29.94	34.86	26	36	1.087	3.438	10.61%	14.06%
24		10	35.2	33.45	36.95	31	39	0.7717	2.44	6.93%	6.63%
48		10	34.7	32.95	36.45	31	38	0.7753	2.452	7.07%	7.96%
50		10	32.9	31.53	34.27	30	36	0.6046	1.912	5.81%	12.73%
100		10	35.3	34.4	36.2	33	37	0.3958	1.252	3.55%	6.37%

Report Date:

13 Jun-18 11:05 (p 1 of 2) 81283 | 08-1633-6902

Test Code: 81283 |

Ceriodaphnia 7-d Surviva	al and	Reproduction Test
--------------------------	--------	-------------------

Aquatec Environmental, Inc.

Analysis ID: 09-7836-5359 Endpoint: 2d Survival Rate CETIS Version: CETISv1.9.2

Analyzed: 13 Jun-18 11:04 Analysis: STP 2xK Contingency Tables Official Results: Yes

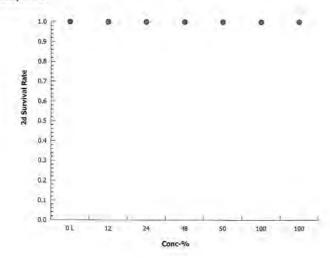
Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP
Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies

Receipt Date: 05 Jun-18 09:55 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 32h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C > T	100	> 100	n/a	1

Fisher Exact/Bonferroni-Holm Test


Control vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water	12	1.0000	Exact	1.0000	Non-Significant Effect
	24	1.0000	Exact	1.0000	Non-Significant Effect
	48	1.0000	Exact	1.0000	Non-Significant Effect
	50	1.0000	Exact	1.0000	Non-Significant Effect
	100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	1	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	-1	0	0.0%	

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000

Report Date: Test Code:

13 Jun-18 11:05 (p 2 of 2) 81283 | 08-1633-6902

Aquatec Environmental, Inc.

Ceriodaphnia 7-	d Survival an	d Reproduction	Test

14-1310-4981	Endpoint:	6d Survival Rate	CETIS Version:	CETISv1.9.2	
13 Jun-18 11:04	Analysis:	STP 2xK Contingency Tables	Official Results:	Yes	

Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies Receipt Date: 05 Jun-18 09:55

Permit # NH0100790 (KEENE NH) Sample Age: 32h Station: Keene WWTP

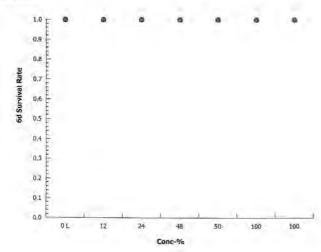
Source:

Data Transform	Alt Hyp	NOEL LOEL TOEL TU	
Untransformed	C > T	100 > 100 n/a 1	

Fisher Exact/Bonferroni-Holm Test

Control	VS	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	1.0000	Exact	1.0000	Non-Significant Effect
		50	1,0000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary


Analysis ID:

Analyzed:

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

6d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	- UL	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date:

13 Jun-18 11:05 (p 1 of 2)

Test Code:

81283 | 08-1633-6902

Ceriodaphnia 7-d Surviva	and Reproduction Test
--------------------------	-----------------------

Aquatec Environmental, Inc.

Analysis ID: 09-6975-0313 Analyzed: 13 Jun-18 11:04

Endpoint: 2d Survival Rate Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.9.2

Sample ID: 06-5511-0449

Code:

Client:

Keene WWTP

Sample Date: 04 Jun-18 07:00 Receipt Date: 05 Jun-18 09:55

POTW Effluent Material: Source:

Project:

Special Studies

Sample Age: 32h

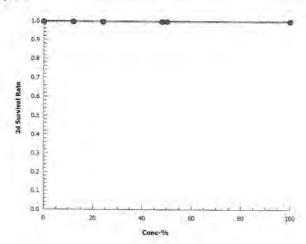
Permit # NH0100790 (KEENE NH)

Station: Keene WWTP

15349

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	996799	200	Yes	Two-Point Interpolation	
					HOLE THE THE PERSON STATES	


Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	n/a	n/a	<1	n/a	n/a
EC10	>100	n/a	n/a	<1	n/a	n/a
EC15	>100	n/a	n/a	<1	n/a	n/a
EC20	>100	n/a	n/a	<1	n/a	n/a
EC25	>100	n/a	n/a	<1	n/a	n/a
EC40	>100	n/a	n/a	<1	n/a	n/a
EC50	>100	n/a	n/a	<1	n/a	n/a

2d Survival Rate Summary		Calculated Variate(A/B)									
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	L	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
12		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
24		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
48		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
50		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
100		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1_0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Ceriodaphnia 7-d Survival and Reproduction Test

Report Date: Test Code: 18 Jun-18 15:09 (p 1 of 1) 81283 | 08-1633-6902

1001 0000.	01200 00-1000-0002
	Aquatec Environmental, Inc.

Analysis ID:	02-8820-2607	Endpoint:	Reproduction	CETIS Version:	CETISv1.9.2
Analyzed:	18 Jun-18 15:06	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP

Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies

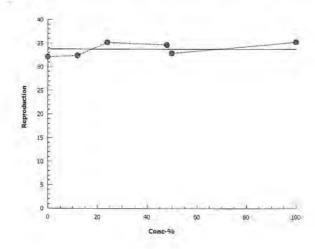
Receipt Date: 05 Jun-18 09:55 Source: Permit # NH0100790 (KEENE NH)

Keene WWTP

Station:

Linear Interpolation Options

Sample Age: 32h


X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Log(X+1)	Linear	329072	200	Yes	Two-Point Interpolation	
Point Estimate	s					
Level %	95% C1 95	10/ LICE TH	05% 1.01	059/ 1101		

%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
>100	n/a	n/a	<1	n/a	n/a	_
>100	n/a	n/a	<1	n/a	n/a	
>100	n/a	n/a	<1	n/a	n/a	
>100	n/a	n/a	<1	n/a	n/a	
>100	n/a	n/a	<1	n/a	n/a	
>100	n/a	n/a	<1	n/a	n/a	
>100	n/a	n/a	<1	n/a	n/a	
	>100 >100 >100 >100 >100 >100 >100	>100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a >100 n/a	>100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a >100 n/a n/a	>100 n/a n/a <1 >100 n/a n/a <1	>100 n/a n/a <1 n/a >100 n/a n/a <1 n/a	>100 n/a n/a <1 n/a n/a >100 n/a n/a <1 n/a n/a

Reproduction Summary				- (Calculated Va	riate			
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	L	10	32.1	20	37	1.494	4.725	14.72%	0.0%
12		10	32.4	26	36	1.087	3.438	10.61%	-0.93%
24		10	35.2	31	39	0.7717	2.44	6.93%	-9.66%
48		10	34.7	31	38	0.7753	2.452	7.07%	-8.1%
50		10	32.9	30	36	0.6046	1.912	5.81%	-2.49%
100		10	35.3	33	37	0.3958	1.252	3.55%	-9.97%

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	37	20	35	36	33	32	30	33	33	32
12		36	29	34	33	36	36	32	33	26	29
24		37	33	39	37	37	36	33	31	34	35
48		34	35	37	33	37	32	33	37	31	38
50		32	33	35	35	33	36	30	31	32	32
100		35	36	34	35	36	37	33	35	35	37

Distributional Tests

Report Date: Test Code: 18 Jun-18 15:09 (p 1 of 2)

81283 | 08-1633-6902

Ceriodaphnia	a 7-d Survival and F	Reproduction Test	Aquatec Environmental,		
Analysis ID:	02-4610-2940	Endpoint: Reproduction	CETIS Version:	CETISv1.9.2	

Analyzed: 18 Jun-18 15:05 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Sample ID: 06-5511-0449 Code: 15349 Client: Keene WWTP

Sample Date: 04 Jun-18 07:00 Material: POTW Effluent Project: Special Studies

Receipt Date: 05 Jun-18 09:55 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 32h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C > T	100	> 100	n/a	1	9.33%

Steel Many-One Rank Sum Test Control VS Conc-% Test Stat Critical DF P-Type P-Value Decision(a:5%) Lab Water 12 104.5 75 3 18 Asymp 0.8218 Non-Significant Effect 24 129.5 75 4 0.9993 18 Asymp Non-Significant Effect 48 75 124 4 0.9966 18 Asymp Non-Significant Effect 50 102 75 5 18 Asymp 0.7570 Non-Significant Effect 100 133.5 75 4 18 Asymp 0.9998 Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	106.733	21.3467	5	2.495	0.0419	Significant Effect
Error	462	8.55556	54		4.1.00	5.00
Total	568.733		59			

	. 0010					
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Bartlett Equality of Variance Test	17.09	15.09	0.0043	Unequal Variances	
Distribution	Shapiro-Wilk W Normality Test	0.9123	0.9459	3.8E-04	Non-Normal Distribution	

Reproduction	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	10	32.1	28.72	35.48	33	20	37	1.494	14.72%	0.00%
12		10	32.4	29.94	34.86	33	26	36	1.087	10.61%	-0.93%
24		10	35.2	33.45	36.95	35.5	31	39	0.7717	6.93%	-9.66%
48		10	34.7	32.95	36.45	34.5	31	38	0.7753	7.07%	-8.10%
50		10	32.9	31.53	34.27	32.5	30	36	0.6046	5.81%	-2.49%
100		10	35.3	34.4	36.2	35	33	37	0.3958	3.55%	-9.97%

Reproduction	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	37	20	35	36	33	32	30	33	33	32
12		36	29	34	33	36	36	32	33	26	29
24		37	33	39	37	37	36	33	31	34	35
48		34	35	37	33	37	32	33	37	31	38
50		32	33	35	35	33	36	30	31	32	32
100		35	36	34	35	36	37	33	35	35	37

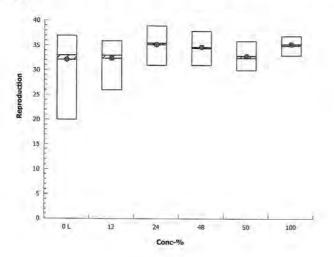
Report Date: Test Code:

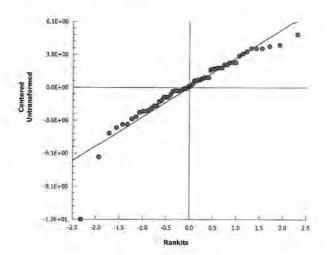
18 Jun-18 15:09 (p 2 of 2) 81283 | 08-1633-6902

Aquatec Environmental, Inc.

Ceriodaphnia 7-d Survival and Reproduction Tes	Seriodaphnia	7-d Survival	and Reproduct	ion Test
--	--------------	--------------	---------------	----------

CETISv1,9,2


Analysis ID: 02-4610-2940 Analyzed: 18 Jun-18 15:05


Endpoint: Reproduction Analysis:

Nonparametric-Control vs Treatments

CETIS Version: Official Results:

Yes

Report Date: Test Code/ID: 19 Jun-18 09:50 (p 1 of 2) 08-1633-6902/81283

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Start Date: End Date:

: 05 Jun-18 14:40 11 Jun-18 13:50

Sample Date: 04 Jun-18 07:00

Species: Ceriodaphnia dubia

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15349

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Note
0	- L	1	39	1	0.01	1	14	-		1	-			0	9	12	16	-	-	0	NOL
0	L	2	51	1		1				1				0	7	13	0			0	+
0	L	3	11	1		1				1				0	7	12	16			0	1
0	-L	4	43	1	нсн	1				1				0	8	11	17			0	
0	L	5	8	1		1				1				6	0	11	16			0	
0	L	6	60	1		1				1		-		0	7	10	15			0	
0	L	7	64	1	1	1				1				0	6	11	13			0	
0	L	8	46	1		1				1			-	0	6	11	16			0	-
0	L	9	36	1		1			-	1	-			7	0	11	15			0	
0	L	10	38	1		1				1				7	0	10	15			0	
0	R	1	23	1		1				1				0	8	15	15			0	
0	R	2	59	1		1				1				0	8	14	14			0	
0	R	3	63	1		1				1				0	8	15	17			0	
0	R	4	2	1		1				1				0	7	16	16			0	
0	R	5	16	1		1				1				7	0	13	15	-		0	1
0	R	6	57	1		1				1				7	0	12	16			0	-
0	R	7	1	1		1				1				0	9	16	15			0	
0	R	8	69	1		1				1				0	8	15	16			0	
0	R	9	27	1		1				1				6	0	13	19			0	-
0	R	10	20	1		1				1				7	0	13	17			0	
12		1	4	1		1				1				0	7	14	15			0	
12		2	61	1		1				1				0	6	12	11			0	
12		3	32	1		1				1				0	8	14	12			0	
12	-	4	30	1		1				1				0	8	11	14			0	
12		5	24	1		1				1				5	0	13	18			0	
12		6	65	1		1				1				0	8	14	14			0	
12		7	67	1		1				1				0	7	14	11			0	
12		8	21	1		1				1				0	7	13	13			0	
12		9	34	1		1				1				0	6	9	11			0	
12		10	28	1		1				1				7	0	10	12			0	
24		1	37	1		1				1				0	9	12	16			0	
24		2	49	1		1				1				0	8	11	14	-		0	
24		3	55	1		1				1				0	8	16	15			0	
24		4	42	1		1				1				0	8	14	15			0	
24		5	70	1		1				1		- 1		8	0	13	16			0	
24		6	41	1		1				1				7	0	14	15			0	
24		7	40	1		1				1				0	7	13	13			0	
24		8	48	1		1		-		1				0	6	12	13			0	
24		9	31	1		1				1				6	0	11	17			0	
24		10	13	1		1				1				7	0	13	15			0	
48		1	7	1		1				1				0	7	14	13			0	
48		2	56	1	- 1	1				1				0	7	13	15			0	
48		3	33	1		1				1				0	8	15	14			0	
48		4	54	1		1				1				0	8	12	13			0	-
48	-	5	15	1		1				1	-		-	7	0	13	17			0	

CETIS Test Data Worksheet

Report Date:

19 Jun-18 09:50 (p 2 of 2)

				-										Test	Code	ID:		0	8-1633	-6902	/8128
Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Note
48		6	45	1	-	1				1				6	0	11	15	-	-	0	Note
48		7	3	1		1				1			7	0	7	13	13	-		0	
48	7 = 1	8	19	1		1				1				0	8	13	16			0	-
48		9	9	1		1				1				5	0	12	14			0	
48	1.77	10	22	1	7	1				1				7	0	14	17			0	+
50		1	66	1		1				1				0	8	12	12			0	
50		2	47	1		1				1				0	7	10	16			0	
50		3	68	1		1				1				0	9	13	13	-		0	-
50		4	53	1		1				1	_			0	7	14	14	-		0	-
50		5	58	1		1				1				6	0	10	17		-	0	-
50		6	5	1		1				1				5	0	12	19			0	
50		7	29	1.		1				1				6	0	10	14			0	
50		8	12	1		1				1				0	6	12	13			0	-
50		9	52	1		1				1				5	0	11	16	-		0	-
50		10	44	1	-	1				1				4	0	12	16			0	1
100		1	50	1	7	1				1				0	8	14	13			0	-
100		2	35	1		1				1				0	7	14	15			0	
100		3	26	1		1				1				0	8	13	13			0	
100		4	18	1		1				1				0	7	13	15			0	
100		5	6	1		1				1				7	0	12	17			0	
100		6	14	1		1				1				6	0	12	19			0	
100		7	10	1		1				1				0	7	12	14			0	
100		8	25	1		1				1				0	6	13	16			0	-
100		9	62	1		1				1				6	0	12	17			0	
100		10	17	1		1				1				8	0	13	16			0	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: Ke	ene/Ley					Permit No	. NH010	0790	Pipe No.	1
FOXICITY T % Effluent	EST DA Rep.	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	81283
	1	0	0	0	Ò	9	12	16		
- /	2	0	8	0	0	7	13	0		
DV	3	0	0	0	0	7	12	150		
0 %	4	0	0	0	0	8	11	17		
O % Soft CTRL	5 6	0	0	0	6	7	13	15		
CTPI		0	0	0	0	7	10	15		
CINL	7	0	Q	Q	0	6		13		
	8	0	Q	Q	2	6		15		
	9	0	0	0	7	0	1	15		
	10	0		0		0	iO	15		
	1	0	0	0	0	8	15	15		
	2	0	2	0	0	8	14	14		
	3	0	0	0	0	8	15	17		
0 %	4	0	0	0	0	7	16	16		
	5	0	Ø	0	7	0	13	15		
RW	6	0	0	0	7	9	12	16		
IVVV	7	0		0	0	9	16			
	8	0	2	0	9	8	15	16		
	9	0	2	0	-6	0	13	19		
	10	0	U	Ŏ	+	0	13	1		
	1	0	0	0	0	7	14	15		
	2	0	0	Ŏ	0	6	12			
	3	0	0	0	Q	900	1.4	12		
12 %	4	0	Ò	Ö	0	8	1	14		
	5	0	Q	0	5	8	13	18		
EFF	6	0	0		0	8	14	14		
LIT	7	0	0	Ó	8	7	(3	13		
	8	0	0	Q	0	7	a	15		
	9	0	8	Õ	7	6		12	-	
	10	0	0	0	7	0	10	12		
	1	0	0	0	0	9	12	16		
	1 2 3	0	0	0	0	8	1/	14		
		0	0	0	Q	8	15	1,5		
24 %	4	0	0	0	8	8		15		
-27.7.2	5 6	0	()	Ò	3	98880079	13	19573		
EFF	6	0	Ö	Q	I	0	14	5		
LIT	7	0	C	Õ	8	1	13	13		
	8	. 0	0	C	7	9	12	13		
	8 9 10	0	2	-	9	0	17	17		
	10	0	C	U	+	0	13	15		

al

 $0 = Original \ organism \ surviving, \ No \ young; \ D = Original \ organism \ dead; \ \# = Number \ young \ released; \ * = Lab-induced \ mortality$

Aquatec Environmental, Inc.

Reviewed by: SB Date: 6-18-18

SDG: Project 15349 18017

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID:	Keene/Ley					Permit No.	NH010	0790	Pipe No.	1
FOXICITY % Effluent	TEST DAT	Γ A : Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8128
	1	0	0	0	8	7	14	13		
	2	0	0	0	0	7	13	15		
	3	0	0	0	Q	7 8 8	15	14		
48 %	4	0	00	8	Ŏ	8	12	13		
	5	0	0		7	0	13	17		
EFF	6	0	0	C	0	0	11	15		
	7	0	S		0	7 8	13	13	-	
	8	0	0	0	5	ô	12	14	-	
	9 10	0	00	0	5	0	14	17		
	1	0	0	0	0	8	12	la		
	2	0	Õ	Ŏ	0	7	10	110		
	3	0		ŏ	Ŏ	7	13	13		
50 %	4	0	Õ	0	0	7	H	14		
30 70	5	0	0	0	(a)	0	10	17		
EFF	6	0	0	C	5	0	13	79		
EFF	7	0	0	0	6	0		14		
	8	0	0	C	0	6	12	12		
	9	0	0	ŏ	5	0	12	le	-	
	10	0	U			0		16		
	1	0	Q	0	2	8	14	13		
	2	0	0	0	00	7	12	13		
4000/	3	0	2	2	0	7	13	12		
100 %	4 5	0	0	2		6	13	77		
	6	0	0	0	7	0	12	19		
EFF	7	0	0	6	Ò	7	12	14		
	8	0	Q	Ò	0,	6	13	le		
	9	0	Q	0	68	0	12	17		
	10	0	U	C	8	0	13	16		
	Sample #	50952	50952	50955	50955	50957	50957	50957		
	Fed	/	1	1	1	/	V			
	Renewal	6/5/18	6/6/18	4/7/18	11:50	6.9:18	(cholis	6/11/18		
	(D/T/I)	1929	15:05	1450 KN	11.50	1120 KP	KN	13.50		

cd

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

lient ID: Keene/					Permit No.	NH0100	790	Pipe No.	
NITIAL CHEMI	STRY DAT	A:						Test ID	8128
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
DVOV	рН								
DWO% Soft CTRL	DO							8	
CTRI	Temp.							Rest	
CINE	Cond.							0	
0.0/	рН							ni.d	
0 %	DO						-12		
RW	Temp.						(0)		
11.00	Cond.						1.6		
12 %	рН					1	(1)		7
12 %	DO					(29)			
EFF	Temp.					0			
	Cond.	1				20000			20
24.0/	рН				72 1 3	25'			7.0
24 %	DO				Oc	05			
EFF	Temp.				10/10			7	
LI I	Cond.				SON X				5
48 %	рН			(4)	Soc Xr	= 1			
40 %	DO			-15/					
EFF	Temp.			m m					
	Cond.			Son ho					
50 %	рН		-3	5					
30 %	DO		Jon or						
EFF	Temp.	(2)	Son So						
	Cond.	70	/)				2		
100 %	рН	11.							
100 /0	DO	/						/	
EFF	Temp.	1							
	Cond.								
	Sample #	50952	50952	50955	50955	50957		-	
	Date							ju i	
	Initials								

Aquatec Environmental, Inc. Reviewed by: EB Date: 1/2 (1)

SDG: **Project** 15349 18017

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

ID: Keene/	Ley				Permit N	o. NH010	0790	Pipe No.	1
L CHEMIST			1.					Test ID	8128
% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
0%	рН	7.3	7.4	75	7.60	7.4	7.3		_
SOFT	DO	7.3	7.5	7.1	7.6	7.6	7.6		
CTRL	Temp.	25.1	25.1	24.9	24.8	24.7	6		
	Cond.	194	196	200	180	184	186	1	
0 %	рН	6.9	30	7.1	7.3	7.1	7.1		7
0 70	DO	73	+5	1.1	7.60	7.6	7.6		
RW	Temp.	25.1	25.2	250	24.9	24.7	24.7		
	Cond.	192	193	153	151	146	145		
12 %	рН	7.3	7.4	7.5	7.60	7.4	7.4		
12 /0	DO	7.3	7.5	7.1	7.60	7.6	7.6		
EFF	Temp.	249	25.2	25.0	24.9	247	24. Ce		
	Cond.	2+6	177	275	275	309	265		
24 %	рН	7.4	7.4	75	7.7	7.5	75		
24 /0	DO	7.3	7.4	7.1	7.60	7.6	7.6		
EFF	Temp.	25.1	25.1	24.9	25.0	24.7	24.4		
	Cond.	353	353	349	347	355	344		
48 %	рН	7.4	7.5	7.6	7,8	7.6	77		
40 /0	DO	1.3	7.4	7,1,	7.6	7.6	7.6		
EFF	Temp.	25.2	251	25-1	25.0	24.7	24.4		
	Cond.	499	501	499	495	509	504		
50 %	рН	7.4	7.5	7.6	7.8	7.6	7.7		3.1
30 %	DO	7.3	7.4	7.	7.6	7.6	7.6		
EFF	Temp.	25.0	25	25.0	24.9	24.7			
	Cond.	505	25 I 518	514	508	523	518		
100 %	рН	7.5	7.6	7.8	8.0	7.8	7.9		7
100 /0	DO	7.4	7.4	7,T	7.7	7.6	7.6		
EFF	Temp.	25.6	25.1	24.9	24.8	24.7	24.5		
	Cond.	811	824	814	810	838	845		
	Sample #	50952	50952	50955	50955	50957	50957		
	Date	6/6/18	6/7/18	6/8/18	6.9.18	6/10/18	6/11/18		
	Initials	KN)	KN	KN	19	UN	ien		

Cd

SDG: **Project**

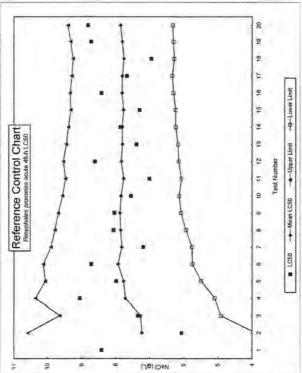
Documentation of Collection

Species: Source:	Ceriodaphnia dubia In-House Cultures	Client/Project: Keens
Acolina - At -		Testing Date: (c/5/18

Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold_at appropriate testing temperature.

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 52\18が) and YTC (Lot #: 2012618が to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.

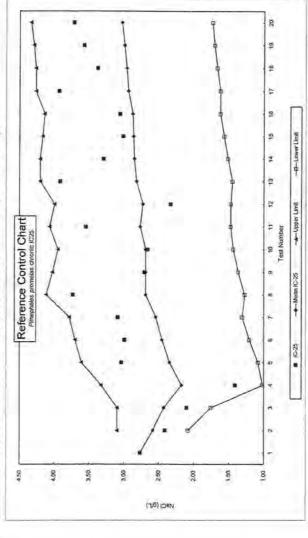
Culture ID	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fed
052918 BB	15	6/4/18/6:23 00	3	(1)
052918 33	614/18/150/A)	6/4/18/6:30KN		V
953118 BB	6/4/13 16:23 pm	6/4/13 22:55 or	(13)	V
05291888	6/4/13 22:55	6/5/18 04:54	51	~
		eight per cup, and he from a		


^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female

Standard Reference Toxicant Control Chart(s)

Pimephales promelas acute survival LC50 Control Chart: Reference toxicant: sodium chloride (g/L)

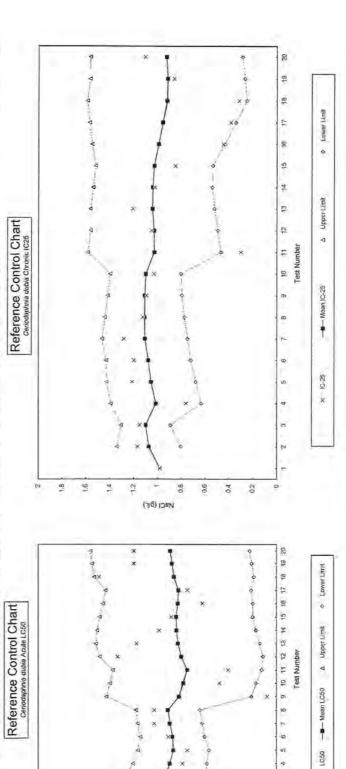
Test	Test	LC50	Mean	Calculated limits	ad limits	
Number	Date	(a/L)	LC60	Upper	Lower	Source
	4/5/16-4/12/16	8.42				Aquatic Biosystems
2	7/12/16-7/14/16	90'9	7.24	10.58	3.90	Aquatic Biosystems
0	8/12/16-8/14/16	7.36	7.28	9.64	4.92	Aquatic Biosystems
4	9/13/16-9/15/16	90.6	7.73	10.35	5.10	Aquatic Biosystems
'n	10/19-21/2016	7.994	7.78	10.07	5.49	Aquatic Biosystems
9	11/29/16-12/1/16	8.722	7.94	10.12	5.75	Aquatic Biosystems
7	1/10/17-1/12/17	7.204	7.83	9.90	5.76	Aquatic Biosystems
8	27117-219117	8.071	7.86	9.79	5.94	Aquatic Biosystems
6	3/21/17-3/23/17	8.042	7.88	9.69	80.9	Aquatic Biosystems
10	512/17-5/4/17	7.561	7.85	9.56	6.14	Aquatic Biosystems
11	7112/17-7/14/17	7.005	7.77	9.48	6.07	Aquatic Biosystems
12	8/8/17-8/10/17	8.61	7.84	9.54	6.15	Aquatic Biosystems
13	9/12/17-9/14/14	7.403	7.81	9.45	6.17	Aquatic Biosystems
14	10/24/17-10/26/17	7.867	7.81	9.39	6.24	Aquatic Biosystems
15	11/117-11/9/17	7.31	7.78	9.32	6.24	Aquatic Biosystems
16	1/25/18-1/27/18	8.42	7.82	9.34	6.30	Aquatic Biosystems
17	2/6/18-2/8/18	7.678	7.81	9.29	6.34	Aquatic Biosystems
18	3/6/18-3/8/18	6.952	7.76	9.25	6.28	Aquatic Biosystems
19	4/3/18-4/5/18	8.722	7.81	9.33	6.30	Aquatic Biosystems
20	6/5/18-6/7/18	8.819	7.86	9.40	6.33	Aquatic Biosystems



Note: Tests through September of 2016 were as Aquatec Biological Sciences, inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, inc.

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

Test	Test	10-25	Mean	Calculated limits	d limits	CV of Avg.	Avg.	Growth	Avg.	
Number	Date	(a/L)	IC-25	Upper	Lower	1025	S	PMSD (%)	PMSD (%)	Source
+	4/5/16-4/12/16	2,77	2.77					11.00	11.00	Aquatic Biosystems
2	7/12/16-7/19/18	2.41	2.59	3.10	2.08	0.10	0.10	15.60	13.30	Aquatic Biosystems
63	8/12/16-8/19/16	2.10	2.43	3.10	1.76	0.14	0.12	11.70	13,65	Aquatic Biosystems
4	9/13/16-9/20/16	1.41	2.17	3,33	1.02	0.27	0.17		12.77	Aquatic Biosystems
2	10/19-26/2016	3.04	2,35	3.61	1.08	0.27	0.19	18.00	14.08	Aquatic Biosystems
90	11/29/16-12/6/16	2.99	2.45	3.70	1.21	0.25	0.21	20,40	15.34	Aquatic Biosystems
1	1/10/17-1/17/17	3.09	2.54	3.78	1.31	0.24	0.21	11.20	14.65	Aquatic Biosystems
8	20117-2114/17	3.73	2.69	4.11	1.27	0.26	0.22	7.45	13.62	Aquatic Biosystems
6	3/21/17-3/28/17	2.71	2.69	4.02	1.37	0.25	0.22	14.80	13.77	Aquatic Biosystems
10	5/2/14-5/9/17	2,66	2.69	3.94	1.44	0.23	0.22	15.10	13.92	Aquatic Biosystems
F	7112/17-7/19/17	3.55	2.77	4.06	1.47	0.23	0.22	12.90	13.82	Aquatic Biosystems
12	8/8/17-8/15/17	2,33	2,73	3.99	1.47	0.23	0.23	only 2 reps	12.56	Aquatic Biosystems
13	9/12/17-9/19/17	3.91	2.82	4.20	1.45	0.24	0.23	19.00	13.10	Aquatic Biosystems
14	10/24/17-10/31/17	3,29	2.86	4.20	1.51	0.23	0.23	22.10	13.79	Aquatic Biosystems
5	11/7/17-11/14/17	3.02	2.87	4.16	1.57	0.23	0.23	27.00	14.73	Aquatic Biosystems
16	1/25/18-2/1/18	3.06	2.88	4.14	1.62	0.22	0.23	15.50	14.78	Aquatic Biosystems
17	2/6/18-2/13/18	3.93	2,84	4.26	1.62	0.22	0.23	14.70	14.78	Aquatic Biosystems
18	3/6/18-3/13/18	3.38	2.97	4.26	1.67	0.22	0.23	19.20	15.29	Aquatic Biosystems
19	4/3/18-4/10/18	3.57	3.00	4.29	1.71	0.22	0.23	13.20	14.94	Aquatic Biosystems
20	6/5/18-6/12/18	3.72	3.03	4.33	1.74	0.21	0.22	12.80	14.82	Aquatic Biosystems



Assessment of fest precision and sensitivity: The average CVs of IC25 values are within the 25th Percentile (0.21) for fathread minnow growth (Table 3-2, EPA 833-R-00-003) indicating high precision (only 25% of labs reported CVs of not more than 0.21). The per-fest PMSD values were less than the EPA upper limit of 30% indicating low-to moderate variability (moderate to high sensitivity) for this method. The cumulativa average PMSD value of 20 tests (14.8) was near the EPA lower boundary (12%), indicating high statistical sensitivity for this test method. Updated 6/21/18

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Reference Control	Reference Control Chart for NaCl Acute Toxicity														
Test	Test	LCSO	Mean	Calculated limits	d limits	Test	Test	IC-25	Mean	Calculated limits	limits	CV of Avg.	Avg.	Repro.	Avg.
-	THOME THAME	2 200	250	radda	10000	-	7112/16 7118/16	0.078	000	obba	LOWE	6701	3	TWSD (70)	LINSD (70)
	9/20/16-9/22/16	1.956	2.08	2.42	1.73	- 17	9/20/16-9/26/16	1167	1.07	1.34	0.81	0.12	0.12	32.6	187
6	10/18/16-10/20/16	2.195	2.12	2.40	1.84	ca	10/18/19-10/25/16	1.149	1.10	1.31	0.89	0,10	0.11	10.7	24.7
Ą	11/29/16-12/1/16	2.000	2.09	2.34	1.83	4	11/29/16-12/5/16	0.7583	1.01	1.39	0.63	0.19	0.14	15.8	20.0
22	1/10/17-1/12/17	1.966	2.06	2.31	1.82	5	1/10/17-1/16/17	1.211	1.05	1.43	0.68	0.18	0.15	13.7	19.0
0	2/14/17-2/16/17	2.098	2.07	2.29	1.85	8	2/14/17-2/22/17	1.2	1.08	1.43	0.72	0.16	0.15	33.2	17.9
7	3/21/17-3/23/17	2.195	2.09	2.31	1.86	7	3/21/17-3/28/17	1.282	1.11	1.47	0.75	0.16	0.15	34.9	20.5
8	5/16/17-5/18/17	2.195	2.10	2.32	1.88	80	5/16/17-5/22/17	1.123	1.11	1.44	0.78	0.15	0.15	10.5	22.5
6	711117-7113117	1.414	2.02	2.53	1.52	0	7/14/17-7/13/17	1.093	1.11	1.42	0.80	0.14	0.15	6.72	21.0
10	8/1/17-8/3/17	1.743	2.00	2.50	1.49	10	8/1/17-8/7/17	1.03	1.10	1.40	0.80	0.14	0.15	16	19.4
11	9/12/17-9/14/17	1.684	1.97	2.48	1.45	11	9/12/17-9/18/17	0.2996	1.03	1.59	0.47	0.27	0.16	32.1	19.1
12	9/28/17-9/30/17	2.449	2.01	2.57	1.44	12	9/28/17-10/4/17	1.048	1.03	1.56	0.50	0,26	0.17	15.8	20.3
13	10/31/17-11/2/17	2.319	2.03	2.60	1.46	13	10/31/17-11/6/17	1.208	1.04	1.56	0.52	0.25	0.18	9.47	19.9
14	11/28/17-11/30/17	2.161	2.04	2.59	1.49	14	11/28/17-12/4/17	1,023	1.04	1.54	0.54	0,24	0.18	9.72	19.1
15	1/9/18-1/11/18	2.077	2.04	2.57	1.51	15	1/9/18-1/16/18	0,85	1.03	1,52	0.54	0.24	0.19	30.3	18.4
16	2/6/18-2/8/18	1.861	2.03	2.55	1.51	16	2/6/18-2/12/18	0.4474	66'0	1.55	0.44	0.28	0.19	20,6	19.2
17	3/6/18-3/8/18	1.966	2.03	2.53	1.52	17	3/6/18-3/12/18	0.3857	96.0	1.57	0.34	0.32	0.20	13.8	19.3
18	4/3/18-4/5/18	2.577	2.06	2.61	1.51	18	4/3/18-4/10/18	0.315	0.92	1.59	0.25	0.36	0.21	36.3	19.0
19	5/15/18-5/17/18	2.337	2.07	2.63	1.52	19	5/15/18-5/21/18	0.8601	0.92	1.57	0.27	0.35	0.22	17.3	19.9
20	6/12/18-6/14/18	2.337	2 09	264	1 54	06	SHOHB SHEHB	1 105	0.03	1 56	000	40.0	000	000	000

Organisms Sources; Aquatec Biological Sciences, Inc. in-house cultures and Aquatec Environmental, Inc. in-house cultures (beginning in October 2016)

were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data. The cumulative average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 06/21/18. Assessment of test precision and sensitivity: The cumulative average CV of 0.22 for reproduction was near the 50th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values

\quade\srts\Cd SRT including CV and PMSD

4 2 3

1350

×

2,850

2,600

(8/r)

1.850

1,600

2,350

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID:

Keene/Ley

Permit No. NH0100790

TOXICITY SUMMARY REPORT:

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP:

WET-A-001

Test Start:

7/10/2018 2:30:00 PM

Test End:

7/17/2018 2:50:00 PM

ACUTE

CHRONIC

Number Sample Name 50988 Keene WWTP SEC 2° Clar#2

NOEC LC50 100 >100 NOEC 100

LOEC >100

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

ACUTE

-%

CHRONIC

%

Number Sample Name Keene WWTP SEC 2° Clar#2 50988

NOEC LC50 100 >100 NOEC 100

LOEC >100

SAMPLES RECEIVED:

Number	Sample Name	Date Time and Collected	Туре
50988	Keene WWTP SEC 2° Clar#2	7/9/2018 7:03:00 AM	Effluent
50989	Ashuelot River	7/9/2018 10:05:00 AM	Receiving
50990	070618-SOFT		Lab Water
50991	Keene WWTP SEC 2° Clar#2	7/11/2018 7:15:00 AM	Effluent
50992	Ashuelot River	7/11/2018 8:45:00 AM	Receiving
50993	Keene WWTP SEC 2° Clar#2	7/13/2018 7:00:00 AM	Effluent
50994	Ashuelot River	7/13/2018 8:10:00 AM	Receiving

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: ____ Date: ___ B/8/18 . Saturday, August 4, 2018

SDG:

15368

Project 18017

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley TOXICITY DETAIL REPORT: Permit No. NH0100790

Sample ID: 50988 / Keene WWTP SEC 2° Clar#2 1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001

Test Start:

7/10/2018 2:30:00 PM

Test End:

7/17/2018 2:50:00 PM

Response: Survival (%)

	Additional	1	-	Concent	ration %	·	
Day	Control	0	12	24	48	50	100
2	100	100	100	100	100	100	97.5
7	95	95	95	97.5	92.5	97.5	85

Response: Growth per Original Number of Larvae (mean dry weight,mg)

	Additional	1		Concent	ration %	·	1	
	Control	0	12	24	48	50	100	
7	0.547	0.510	0.595	0.622	0.567	0.628	0.590	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

Response: Survival (%)

	Additional	1		Concent	ration 9	6		
Day	Control	0	12	24	48	50	100	
2	100	100	100	100	100	100	100	
7	100	100	100	100	90	100	100	

Response: Reproduction (mean neonates per female)

	Additional	1		Concent	ration %		1
	Control	0	12	24	48	50	100
7	37	36.7	33.7	35.6	32.6	32.2	34.4

Submitted By:

1 of 1

Aquatec Environmental, Inc.

Friday, August 3, 2018

SDG: 15368 18017

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start: 7/10/2018 2:30:00 PM Test End: 7/17/2018 2:50:00 PM

Response: Survival (%)

> Day Sample ID Dilution Control Additional Control 2 50988 100 100 7 50988 95 95

Growth per Original Number of Larvae (mean dry weight, mg)

Day Sample ID Dilution Control Additional Control 7 50988 0.51 0.547

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 21.9% PMSD Criteria Range:

12%-30%

The calculated test PMSD was within the acceptable boundary range indicating test data with acceptable variability and statistical sensitivity. The chronic values (C-NOEC, C-LOEC) were reported as calculated by the statistical program.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as the additional control.

> 1 of 3 Aquatec Environmental, Inc

Project

15368 18017

SDG:

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

Response: Survival (%)

Day	Sample ID	Dilution Control	Additional Control
2	50988	100	100
7	50988	100	100

Reproduction (mean neonates per female)

Day	Sample ID	Dilution Control	Additional Control
7	50988	36.7	37

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 11.6%

PMSD Criteria Range:

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as the additional control.

SDG:

18017

15368 Project

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:

August 8, 2018

(Date)

(Authorized signature)

John Williams Director

Aquatec Environmental, Inc.

Project 1

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

7/10/2018 2:30:00 PM

Test End:

7/17/2018 2:50:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method

Modified Chronic Pimephales promelas Effluent Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

July 9, 11, & 13, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

July 24-31, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6

Aquatec Environmental, Inc.
Reviewed by: ______ Date: 8/1/18.

SDG: Project 15368

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

7/10/2018 2:30:00 PM

Test End:

7/17/2018 2:50:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 95 %

Mean Control Growth: 0.510 (mg)

B. Additional Control:

Ashuelot River

Mean Control Survival: 95 %

Mean Control Growth: 0.547 (mg)

C. Lab Control: See

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Growth (%): 21.9

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%) RESULTS (%) 48-Hour LC50: 48-Hour LC50: > 100 Upper Value: N/A Lower Value: N/A **Data Analysis** Dunnett Multiple Comparison Test, Method(s): Linear Interpolation (ICPIN), Steel Many-One Rank Sum Test A-NOEC: 100.0 A-NOEC: 100 C-NOEC: 48.0 C-NOEC: 100 C-LOEC: > 100 IC25: IC25: > 100

2 of 6

Aquatec Environmental, Inc.
Reviewed by: Date: 6/7/18

SDG: Project

15368

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

7/10/2018 2:30:00 PM

Test End:

7/17/2018 2:50:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was within the boundaries of 12%-30%, indicating test data with normal variability and statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

3 of 6

Aquatec Environmental, Inc.

SDG:

15368 18017

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method

Modified Chronic Ceriodaphnia dubia Effluent Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

July 9, 11, & 13, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

July 24-30, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

<24h collected within an 8h period

Source of Organisms:

Aquatec Environmental, Inc. - Williston, VT

4 of 6

Aquatec Environmental, Inc.

SDG: Project 15368

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Reproduction: 36.7 (neonates)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Reproduction: 37 (neonates)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Reproduction (%): 11.6

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%)

RESULTS (%)

48-Hour LC50:

48-Hour LC50:

> 100

Upper Value:

N/A

Lower Value:

N/A

Data Analysis

Fisher Exact/Bonferroni-Holm Test,

Method(s):

Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC:

100.0

A-NOEC:

100

C-NOEC:

48.0

C-NOEC:

100

C-LOEC:

> 100

IC25:

IC25:

> 100

5 of 6

Aquatec Environmental, Inc Reviewed by: Date: 10

SDG:

15368

Project

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP:

WET-A-002

Test Start:

7/10/2018 11:55:00 AM

Test End:

7/17/2018 1:40:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 13%-47%, indicating test data with low variability and high statistical sensitivity. Responses in the 12%, 48%, and 50% effluent were viewed as not significant because the % effect was lower than 13%, the lower PMSD boundary.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in reproduction were detected in the 12%, 48%, and 50% effluent concentrations by comparison to the response in the dilution water control.

6 of 6

Aquatec Environmental, Inc. Reviewed by: _____ Date: 8/ 11

Wednesday, August 8, 2018

SDG: 15368

18017

Project

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1807-16373

DATE RECEIVED: July 10, 2018

DATE REPORTED: July 26, 2018

SAMPLER: BB

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 07/26/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1807-16373
PROJECT: Keene NH NPDES DATE RECEIVED: 07/10/2018

001	Site: Keene Sec 2 Clar#2			I	Date Sampled: 7/9/18	Time: 7	7:03	
Parameter		<u>Result</u>	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organ	nic Carbon	3.2	mg/L	SM 5310C (00)	7/19/18	N JGM	A	
Hardness, T	Cotal as CaCO3	62	mg/L	EPA 200.7	7/13/18	W FAA	A	
Ammonia a	s N	0.09	mg/L	EPA 350.1, R.2	7/17/18	N JGM	A	
Solids, Tota	al Dissolved	474	mg/L	SM 2540C-97	7/18/18	W JSS	A	
Total Solids	3	447	mg/l	SM 2540 B97	7/24/18	W JSS	A	
Metals Dige	estion	Digested		EPA 200.7/200.8	7/11/18	W FAA	A	
Aluminum,	Total	0.042	mg/L	EPA 200.8	7/12/18	W SJM	A	
Cadmium,	Гotal	< 0.0002	mg/L	EPA 200.8	7/12/18	W SJM	A	
Calcium, To	otal	19	mg/L	EPA 200.7	7/13/18	W FAA	A	
Copper, Tot	tal	0.0067	mg/L	EPA 200.8	7/12/18	W SJM	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	7/12/18	W SJM	A	
Magnesium	ı, Total	3.6	mg/L	EPA 200.7	7/13/18	W FAA	A	
Nickel, Tota	al	< 0.0050	mg/L	EPA 200.8	7/12/18	W SJM	A	
Zinc, Total		0.029	mg/L	EPA 200.8	7/12/18	W SJM	A	

002	Site: Ashuelot River			Ι	Date Sampled: 7/9/18	Time: 10	0:05	
Parameter		<u>Result</u>	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organ	nic Carbon	2.3	mg/L	SM 5310C (00)	7/19/18	N JGM	A	
Hardness,	Total as CaCO3	32	mg/L	EPA 200.7	7/13/18	W FAA	Α	
Ammonia a	as N	0.07	mg/L	EPA 350.1, R.2	7/17/18	N JGM	Α	
Metals Dig	estion	Digested		EPA 200.7/200.8	7/11/18	W FAA	Α	
Aluminum,	, Total	0.044	mg/L	EPA 200.8	7/12/18	W SJM	Α	
Cadmium,	Total	< 0.0002	mg/L	EPA 200.8	7/12/18	W SJM	Α	
Calcium, T	otal	9.5	mg/L	EPA 200.7	7/13/18	W FAA	A	
Copper, To	tal	0.0021	mg/L	EPA 200.8	7/12/18	W SJM	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	7/12/18	W SJM	A	
Magnesiun	n, Total	2.0	mg/L	EPA 200.7	7/13/18	W FAA	A	
Nickel, Tot	al	< 0.0050	mg/L	EPA 200.8	7/12/18	W SJM	Α	
Zinc, Total		< 0.020	mg/L	EPA 200.8	7/12/18	W SJM	Α	

1807-16373

Aquatec Environmental, Inc Keene NH NPDES

nvironmental, Inc.

of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

	-	<u>-</u>	<u> </u>	N	1	PROJ	ECT	INFC	RMATIO	N
Name:	Aquatec Env	ironm	ental, In	с.	Proje	ct Nam	e:	Keene N	H NPDES	
Address:	273 Comme	ce Str	eet		Proje	ct Num	ber:	18017		
City/State/Zip:	Williston, VT	0540	3		Sam	oler Nan	ne(s):	8B		
Telephone:	(802) 860 - 2	960								
Contact Name:	John William	s								
SAMPLE IDEN	ITIFICATION	CO DAT	LLECTIO E TI	!	ANALYSIS etection Limit, m	ng/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER
Keene WWTP	SEC 2 Clar#;	07/0	9/18 7	: 03 Gr	ab: N/A	Compo	osite:	х	,, · · · · · · ·	
		Amı	monia (0.:	1)			500mL	Plastic	H2SO4	1
				b (0.0005); C 02); Mg, Ca (u (0.003); Zn, Ni (0.05)		250mL	Plastic	НОЗ	1
		Tota	l Organic	Carbon (0.5)	}.	·	40mL	Glass	H2SO4	2
		Tota	l Solids/T	otal Dissolve	d Solids		1/2gal	Plastic	Ice (4C)	1
Ashuelot River	(50989)	07/09	9/18 10	:05 Gra	ab: X	Compo	site: N	I/A		
		TOC					500mL 40 m√	Plastic G(As)	H2SO4 (1) 3504	1 2
				o (0.0005); Ci 02); Mg, Ca (i	a (0.003); Zn, Ni 0.05)		250mL	Plastic	HNO3	1
Relinquished by		ATÉ	TIME 3/2		by: (signature)	DATE	TIME	Cooler/ Notes T	Sample Temp.; _ o Lab:	7.1
Relinquished by (ATE	TIME		oy: (signature) o∰U	DATE 7/10/18	TIME (2:10			

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES 7/11

WORK ORDER: 1807-17141

DATE RECEIVED: July 16, 2018

DATE REPORTED: July 26, 2018

SAMPLER: BB, MM

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 07/26/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1807-17141
PROJECT: Keene NH NPDES 7/11 DATE RECEIVED: 07/16/2018

001 Site: Keene WWTP Sec 2 Clarifier Composite Date Sampled: 7/11/18 Time: 7:15 Result Method Analysis Date/Time Lab/Tech **NELAC** Parameter Units Qual. Ammonia as N < 0.05 mg/L EPA 350.1, R.2 7/26/18 11:32 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY INFORMATION	PROJ	ECT INFORMATION
Name:	Aquatec Environmental, Inc.	Project Name	e: Keene NH NPDES
Address:	273 Commerce Street	Project Numb	ber: 18017
City/State/Zip	: Williston, VT 05403	Sampler Nam	ne(s): BB; MM
Telephone:	(802) 860 - 2960		
Contact Name	: John Williams		
SAMPLE IDE		ANALYSIS tion Limit, mg/L)	BOTTLE/CONTAINER SIZE TYPE PRESERVATIVE NUMBER
Keene WWT	P SEC 2° Clar# 07/11/18 7:15 Grab	: N/A Compo	osite: X
	Ammonia (0.1)		500mL Plastic H2504 1
Relinquished to	7/16/18 12:30 Elew	Tomey 7/10	, /230 Notes To Lab:

1807-17141

1807-17141

Aquatec Environmental, Inc Keene NH NPDES 7/11

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES 7-13

WORK ORDER: 1807-17142

DATE RECEIVED: July 16, 2018

DATE REPORTED: July 26, 2018

SAMPLER: BB.MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 07/26/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1807-17142
PROJECT: Keene NH NPDES 7-13 DATE RECEIVED: 07/16/2018

001 Site: Keene WWTP Sec 2 Clarifier Composite Date Sampled: 7/13/18 Time: 7:00 NELAC Result Method Analysis Date/Time Lab/Tech Parameter Units Qual. Ammonia as N 0.05 mg/L EPA 350.1, R.2 7/26/18 11:32 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	COMPANY INFORMATION						PROJECT INFORMATION							
Name:	Aquatec En	vironme	ental, Inc	•	Projec	t Name	e: k	Keene NH NPDES						
Address:	273 Comme	erce Stre	et		Projec	t Numb	er: 1	18017						
City/State/Zip:	Williston, V	T 05403			Sampler Name(s): BB and MM									
Telephone:	(802) 860 - 1	2960												
Contact Name:	John Williar	ns												
SAMPLE IDEN	ITIFICATION	COL	LECTIO		NALYSIS on Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINEI PRESERVATIVE					
Keene WWTP	SEC 2° Clar#	07/13	3/18 7:	00 Grab:	N/A	Compo	site:	Х						
		Amn	nonia (0.1)		·	500mL	Plastic	H2SO4	1				
Relinquished by Relinquished by		-/	TIME	Received by: (Turney	DATE 7/16 DATE	12:30	1	/Sample Temp.: o Lab:	0.7				

1807-17142

1807-17142

Aquatec Environmental, Inc Keene NH MPDES 7-13

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1805-09573

DATE RECEIVED: May 01, 2018

DATE REPORTED: May 14, 2018

SAMPLER: John Williams

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 05/14/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1805-09573
PROJECT: Tox Lab QC DATE RECEIVED: 05/01/2018

001 Site: 042718SOFT (5)	0884)		Т	Date Sampled: 5/1/18	Time: 1	1.00	1
Parameter Site: 042/1830F1 (5)	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	⊿ Qua
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	5/7/18	N JGM	A	
Hardness, Total as CaCO3	49	mg/L	EPA 200.7	5/7/18	W FAA	A	
Ammonia as N	0.12	mg/L	EPA 350.1, R.2	5/11/18	N JGM	A	
Solids, Total Dissolved	143	mg/L	SM 2540C-97	5/8/18	W JSS	A	Е
Total Solids	104	mg/l	SM 2540 B97	5/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	5/3/18	W FAA	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	5/9/18	W MGT	A	
Calcium, Total	6.5	mg/L	EPA 200.7	5/7/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	5/9/18	W MGT	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	5/9/18	W MGT	A	
Magnesium, Total	7.9	mg/L	EPA 200.7	5/7/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	5/9/18	W MGT	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	5/9/18	W MGT	A	

Report Summary of Qualifiers and Notes

B: Blank contamination was observed at levels that could affect analytical results.

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	PANYIN	IFOR	MA	TIC	N	PROJECT INFORMATION								
Name:	Aguatec Env	ironmen	tal, Ind	C.			ct Name		Tox Lab					
Address:	273 Comme	rce Stree	t			Project Number: 18000								
City/State/Zip:	Williston, VT	05403	·		···	Samp	ler Nan	ne(s): .	JW					
Telephone:	phone: (802) 860 - 2960									<u> </u>	·			
Contact Name:	John William	S									<u></u>			
SAMPLE IDEN	TIFICATION	COLLI DATE	ECTIO TI	N ME		VALYSIS on Limit, m	ng/L)	SIZE	BOTT TYPE	LE/CONTAINE	R NUMBER			
042718SOFT (5	0884)	05/01/: Metals			Grab: . Pb (0.000	X 5); Cu (0.00	<u> </u>	osite: 1		HNO3	1			
				i, Mg (0		5), cu (6.6)	,,,,,,,,,	ZJOILL	riastic	ПІЧОЗ	1			
		Ammo	nia-Nit	rogen(0	0.1)			250mL	Plastic	H2SO4	1			
		TS/TDS	5-Total	Solids/	Total Disso	lved Solids		1/2gai	Plastic	Ice(4C)	1			
		TOC - T	otal O	rganic (Carbon(0.5)		40mL	Glass	H2SO4	2			
Relinguished by	si gnat ure) [DATE T	IME	Rece	1	ignature)	i	TIME 14,27		/Sample Temp.: o Lab:	6.1			
Relinquished by (signature) [ATE T	IME	Rece	ived by; (s	ignature)	DATE	TIME						

1805-09573

1805-09573

Aquatec Environmental, Inc Tox Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Aquatec Environmental, Inc.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMAT	ION	PR	OJECT	NFO	RMAT	TION		VOL			al Residual Chlo			
NAME: Keene, NH		PROJEC	r: Keene	NH/L	ey								TALS: Cd & dual Chlor (0.5mg/L)	
ADDRESS: 420 Airport Road		(.	1 st Sampi	le Ship	Mona	ay) 7/9/1	8	103		1°C	2504			
Swanzey, NH 03446	1	PROJEC	r#: 18	8017			4.	= =	4°C	tic	C H	1250		
TEL: (603) 357 – 9836 [x65	502]	SAMPLE	RS NAME	(s): Bot	Bish	go	lastic	lastic	ass	Plas	Plasti	ISS		
CONTACT: Mary Ley							J uc	J. P	1 6	llon	mL [1	689		
E-MAIL: mley@ci.keene.nh.us		PERMIT	NUMBER:	NH01	00790		Galle	250n	TRC: 40mL Glass 4°C	% Ga	250	10mC	AINERS 2 2 ETALS: Cd & Sidual Chlorin (0.5mg/L) istry subdanalytical quired on ther	
			CTION	8	SITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ½ Gallon Plastic 4°C	MMONIA	TOC: /		
SAMPLE IDENTIFICATION		DATE	TIME	GRAB	COMPOSITE	MATRIX			lumbi	R OF		AINER		
Keene WWTP SEC 2° Clar#2	1	7/9/18	703		Х	Effluent	2	1	1	1				
Ashuelot River		7/9/18	1005	Х		Receiving	1	1			1	2		
ANALYSIS (TEST/DETECTION LIMIT (0.0005mg/L); Cu (0.003mg/L); (0.02mg/L) – TS/TDS: Total Soli	Zn, & Ni	(0.005)	mg/L); A	(0.02	mg/L);	Mg & Ca	(0.05	mg/L) - TR	C: Tot	tal Re	sidua	Chlo	orine
RELINQUISHED BY: (Signature)	DATE: 7/9/18	_	Pi	RECEIVED BY: (Signature or carrier) Priority Express				Aqua	tec de	livers	chem	nistry		al
Priority Express RELINQUISHED BY: (Signature)	DATE: HOUS DATE:	TIME:	RECEIVED	Olu	ce. f	F 18	ab; Ar ach n Chem	nmon ew ef	ia and fluent only if	TRC a	are re ole; *O	quire ther	d on	-

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	PROJECT INFORMATION					VOL	Mile 27505	/CON			/PE/
NAME: Keene, NH	PROJECT	Keene	NH/L	ey								
ADDRESS: 420 Airport Road	(2 nd	Sample	Ship W	/edne.	sday)		103		J.t	504		
Swanzey, NH 03446	PROJECT	PROJECT#: 18017 SAMPLERS NAME(s): DOBBING					H	4°C	tic /	C H	1250	
TEL: (603) 357 – 9836 [x6502]	SAMPLER						lastic	TRC: 40mL Glass 4°C	Plas	lasti	- Iss	
CONTACT: Mary Ley	SAMPLERS MAINE(S). MILL MARCH					n P	METALS: 250mL Plastic HNO ₃	1	llon	교	Gla	
E-MAIL: mley@ci.keene.nh.us	PERMIT NUMBER: NH0100790					Gallo		40m	% Ga	250	10mL	1
	1	FINAL COLLECTION		SITE	COMPOSITE	Tox: 1 Gallon Plastic 4°C	METALS:	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPC	Effluent							
									ER OF			5
Keene WWTP SEC 2° Clar#2	7/11/13	715		X	Effluent	2	1	1	1	1	2*	
Ashuelot River	7/11/18	845	Х		Receiving	1						
Analysis In the												

ANALYSIS (Test/Detection Limits) – Tox: Renewal (P. promelas and C. dubia chronic toxicity; %) – Metals: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) – TRC: Total Residual Chlorine (0.02mg/L) – TS/TDS: Total Solids / Total Dissolved Solids – Ammonia: (0.1mg/L) – TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 2-6
may 2	7/11/18	915	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 7-12-18	TIME: 1:00	RECEIVED BY; (Signature)	samples to a NELAC-Accredited analytical lab; Ammonia and TRC are required on each new effluent sample; *Other
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	'ChemSub' only if ≥50% mortality on renewal samples

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

7/15/11

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

Chain-of-Custody

COMPANY INFORMAT	ION	PRO	ROJECT INFORMATION VOLUME/CONTA										/PE/	
NAME: Keene, NH		PROJECT	: Keene	NH/L	ey		1							
ADDRESS: 420 Airport Road		(3 rd Samp	le Ship	o Frida	y)	63	03		J.1	504			
Swanzey, NH 03446		PROJECT	#: 18	017	17			H	4°C	tic 4	C H	12504		
TEL: (603) 357 – 9836 [x6	502]	SAMPLE	RS NAME(s): Bo	bBis	hop	lastic	lastic	lass	Plas	olasti	Iss F		
CONTACT: Mary Ley						larkell	al uc	ار ا	TRC: 40mL Glass 4°C	llon	nL F	Gla		
E-MAIL: mley@ci.keene.nh.us		PERMIT I	NUMBER:				Gallo	250n	40m	% Ga	2501	10mL		
		FINAL COLLECTION		81	COMPOSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄		
SAMPLE IDENTIFICATION		DATE	GRAB			MATRIX			LUNADI	ER OF		AINIED		
Keene WWTP SEC 2° Clar#2		7/12-7/13	1520U	-9 (Х	Effluent	3	1.	1	1*	1	2*	5	
Ashuelot River		7/13/10		Х		Receiving	2			-	-	-		-
ANALYSIS (TEST/DETECTION LIM (0.0005mg/L); Cu (0.003mg/L)														
(0.02mg/L) - TS/TDS: Total Sol		TIME:	ME: RECEIVED BY: (Signature or carrier) Priority Express ME: RECEIVED BY: (Signature)					RATURE: Aqua	tal Org	ELIVERY elivers	(°C): chencredit	5.0 nistry ed and	c sub-)
Priority Express RELINQUISHED BY: (Signature)	7-14-18 DATE:		RECEIVED	BY: (Si	gnature)	nl	each n	ew ef Sub' c	fluent	samp	le; *C	ther		

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

renewal samples

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

Keene/Ley

	Initial S	Sample	Second	Sample	Third	Sample	
	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	50988	50989	50991	50992	50993	50994	50990
Filtration	160 Micron	60 Micron	60 Micron	60 Micron	180 Micron	L60 Micron	N/A
Chlorine (1)	ND	_	ND	_	ND	1	N/A
Chlorine (2)		_	_	-	-	-	N/A
NaThio Lot No.	_		-	-	-	-	N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Date / Initials:	7/10/18	HIONE	7-12-18	7-12-1A EB	7-14-18	7-14-16	H10118

⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

Aquatec Environmental, Inc.

SDG: 15368

Project

18017

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity: (mg/L)	Hardness:	TRC:
50988 - Keene WWTP SEC 2° Clar#2	7/10/2018	44.0	52.0	0.06
50989 - Ashuelot River	7/10/2018	16.0	32.0	
50990 - 070618-SOFT	7/10/2018	28.0	44.0	
50991 - Keene WWTP SEC 2° Clar#2	7/12/2018	56.0	56.0	0.04
50992 - Ashuelot River	7/12/2018	20.0	34.0	-
50993 - Keene WWTP SEC 2° Clar#2	7/14/2018	88.0	64.0	0.03
50994 - Ashuelot River	7/14/2018	28.0	36.0	

INF: Interference. The color endpoint was reached immediately

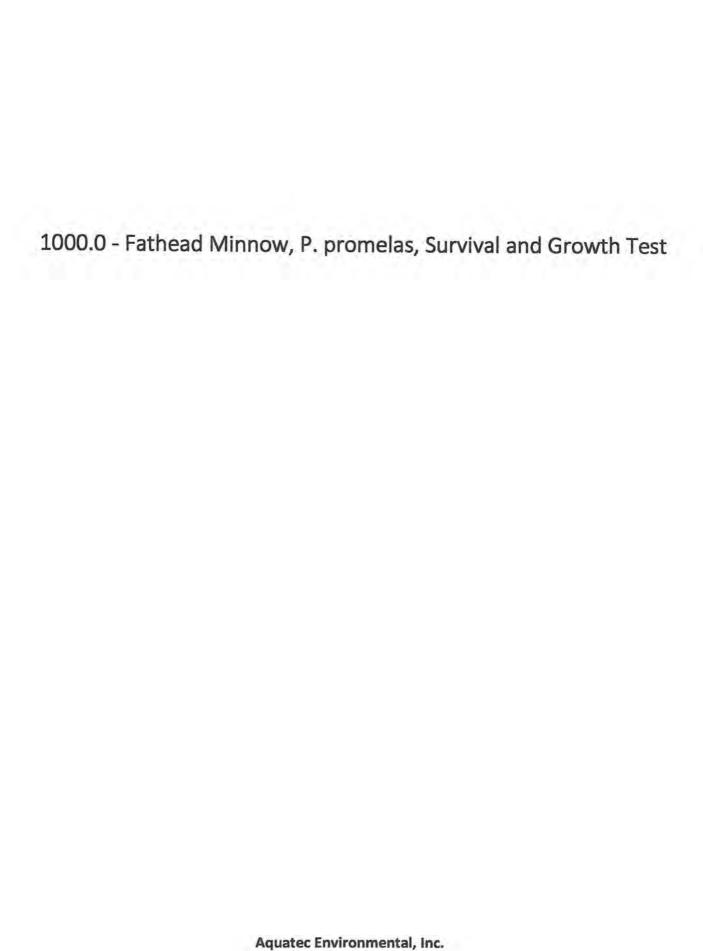
Toxicity Test Method(s)

Aquatec Environmental, Inc.

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP:

WET-A-001

roje	t: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25+/- 1C, Test temperatures must not deviate (i.e., maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)
5	Photoperiod:	16h light/8h dark
6	Test chamber size:	300mL
7	Test solution volume:	Nominal 250mL
8	Test solution renewal:	Daily
9	Age of test organisms:	Newly hatched larvae less than 24h old. If shipped, not more than 48h old, 24h range in age
10	No. larvae per test chamber:	10
11	No. replicate chambers per concentration:	4
12	No. larvae per concentration:	40
13	Source of food:	Newly hatched Artemia nauplii (< 24h old)
14	Feeding regime:	On days 0-6, feed 0.1g newly hatched (less than 24h old) brine shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to provide an excess.
15	Cleaning:	Siphon daily, immediately before test solution renewal
16	Aeration:	None: unless DO concentration falls below 4.0mg/L.
17	Dilution water:	Soft Water
18	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
19	Additional control:	Ashuelot River
20	Test duration:	7 days
21	Endpoints:	Survival and growth (weight)
22	Test acceptability criteria:	80% or greater survival in controls; average dry weight per surviving organism in control chambers equals or exceeds 0.25mg
23	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
24	Sample volume required:	2.5L/day


1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

SOP:

WET-A-002

rojec	t: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels)
5	Photoperiod:	16h light, 8h dark
6	Test chamber size:	30mL
7	Test solution volume	Nominal 15mL
8	renewal of test solutions:	Daily
9	Age of test organisms:	Less than 24h; and all released within a 8h period
10	No. neonates per test chamber:	1
11	No. replicate test chambers per concentration:	10
12	No. neonates per test concentration:	10
13	Feeding regime:	Feed 0.1mL each of YCT and algal suspension per test chamber daily
14	Cleaning:	Use new plastic cups daily
15	Aeration:	None
16	Dilution water:	Soft Water
17	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
18	Additional control:	Ashuelot River
19	Test duration:	Until 60% or more of surviving control females have three broods (maximum test duration 8 days)
20	Endpoints:	Survival and reproduction
21	Test acceptability criteria:	80% or greater survival of all control organisms and an average of 15 or more young per surviving female in the control solutions. 60% of surviving control females must produce three broods
22	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
23	Sample volume required:	1L/day

CETIS Summary Report

Report Date:

03 Aug-18 10:31 (p 1 of 1)

Test Code: 81364 | 14-4145-2483

							10	or oode.		0100-11-	7170	270
Fathead Minn	ow 7-d Larval	Survival	and Growt	th Test					Aquate	c Environm	72.77	
Batch ID:	12-9637-5392		Test Type:	Growth-Surviva	al (7d)		An	alyst:	Kaitlyn Priest			_
Start Date:	10 Jul-18 14:3	80	Protocol:	EPA/821/R-02-	-013 (2002)		Dil	luent:	Soft Synthetic V	Vater		
Ending Date:	17 Jul-18 13:5	55	Species:	Pimephales pr	omelas		Br	ine:	Not Applicable			
Duration:	6d 23h		Source:	Aquatic Biosys	tems, CO		Ag	e:	1d			
Multiple Com	parison Summ	nary										
Analysis ID	Endpoint		Comp	parison Method			NOEL	LOEL	TOEL	TU	PMS	D V
00-8652-1501	2d Survival Ra	ate	Steel	Many-One Rank	Sum Test		100	> 100	n/a	1	4.57	%
16-4057-0362	7d Survival Ra	ate	Dunn	ett Multiple Com	parison Tes	t	100	> 100	n/a	1	16.5	%
01-2469-6838	Mean Dry Bior	mass-mg	Dunn	ett Multiple Com	parison Tes	ť	100	> 100	n/a	1	21.9	%
Point Estimat	e Summary											
Analysis ID	Endpoint		Point	Estimate Meth	od		Level	%	95% LCL	95% UCL	TU	V
06-3411-5524	2d Survival Ra	ate	Linea	r Interpolation (I	CPIN)		EC5	>100	n/a	n/a	<1	-
	TO THE PERSON				E 1575		EC10	>100	n/a	n/a	<1	V
							EC15	>100	n/a	n/a	<1	1
							EC20	>100	n/a	n/a	<1	~
							EC25	>100	n/a	n/a	<1	V
							EC40	>100	n/a	n/a	<1	~
							EC50	>100	n/a	n/a	<1	
17-3368-6811	Mean Dry Bior	mass-mg	Linea	r Interpolation (I	CPIN)		IC5	>100	n/a	n/a	<1	V
							IC10	>100	n/a	n/a	<1	V
							IC15	>100	n/a	n/a	<1	V
							IC20	>100	n/a	n/a	<1	~
							IC25	>100	n/a	n/a	<1	~
							IC40	>100	n/a	n/a	<1	~
							IC50	>100	n/a	n/a	<1	1
2d Survival R	ate Summary											
Conc-%	Code	Coun	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Eff	fect
0	R	4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
0	L	4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
12		4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
24		4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
48		4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
50		4	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
100		4	0.975	0 0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50	%
	ate Summary				touch	V.7			20.20		5,57	
Conc-%	Code	Count				Min	Max	Std E		CV%	%Eff	_
0	R	4	0.950		1.0000	0.9000	1.0000	0.0289		6.08%	0.00	- 1
0	L	4	0.950	The second second	1.0000	0.9000	1.0000	0.0289		6.08%	0.00	
12		4	0.950		1.0000	0.9000	1.0000	0.0289		6.08%	0.00	
24		4	0.975		1.0000	0.9000	1.0000	0.0250		5.13%	-2.63	
48		4	0.925		1.0000	0.8000	1.0000	0.0479		10.35%	2.63	
50		4	0.975	0 0.8954	1.0000	0.9000	1.0000	0.0250		5.13%	-2.63	
100		4	0.850	0 0.5744	1.0000	0.7000	1.0000	0.0866	0.1732	20.38%	10.5	3%
1000	mass-mg Sum										6.5	
Conc-%	Code	Count					Max	Std E		CV%	%Eff	_
0	R	4	0.547		0.5967	0.512	0.588	0.0156		5.72%	0.00	
0	L	4	0.509		0.5518	0.486	0.547	0.0132		5.21%	6.86	
12		4	0.595		0.7011	0.527	0.686	0.0333		11.21%	-8.78	
24		4	0.621		0.7708	0.552	0.76	0.0468		15.07%	-13.6	
49		1	0 566	7 0 5075	0.626	0.510	0.61	0.0186	3 0.03725	6 57%	-3 61	10/

6.57%

6.99%

15.61%

-3.61%

-14.76%

-7.82%

48

50

100

0.626

0.6976

0.7362

0.519

0.572

0.485

0.61

0.676

0.704

0.01863

0.02194

0.04603

0.03725

0.04388

0.09206

0.5667

0.6277

0.5897

0.5075

0.5579

0.4433

Report Date:

03 Aug-18 10:31 (p 1 of 2)

Test Code: 81364 | 14-4145-2483

Fathead Minnov	v 7-d Larva	Survival	and Growth	Test
----------------	-------------	----------	------------	------

Aquatec Environmental, Inc.

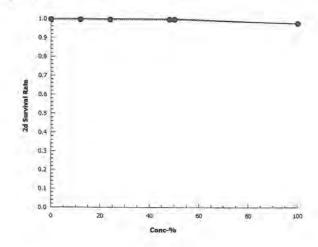
Analysis ID: 06-3411-5524 Endpoint: 2d Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: 03 Aug-18 10:30 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Sample ID: 08-0834-5556 Code: 15368 Client: Keene WWTP Sample Date: 09 Jul-18 07:03 Material: **POTW Effluent** Project: Special Studies Receipt Date: 10 Jul-18 10:00 Source:

Permit # NH0100790 (KEENE NH) Sample Age: 31h Station: Keene WWTP

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	767865	200	Yes	Two-Point Interpolation	
Point Estimate	s					


Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	n/a	n/a	<1	n/a	n/a
EC10	>100	n/a	n/a	<1	n/a	n/a
EC15	>100	n/a	n/a	<1	n/a	n/a
EC20	>100	n/a	n/a	<1	n/a	n/a
EC25	>100	n/a	n/a	<1	n/a	n/a
EC40	>100	n/a	n/a	<1	n/a	n/a
EC50	>100	n/a	n/a	<1	n/a	n/a

2d Survival Rate Summary

2d Survival R	d Survival Rate Summary			Calculated Variate(A/B)							
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	L	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
12		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
24		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
48		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
50		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
100		4	0.9750	0.9000	1.0000	0.0250	0.0500	5.13%	2.5%	39	40

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		0.9000	1.0000	1.0000	1.0000	

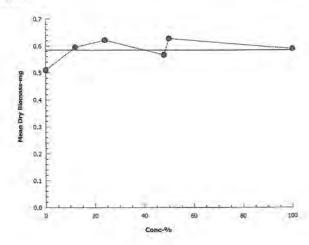
Report Date: Test Code: 03 Aug-18 10:31 (p 2 of 2) 81364 | 14-4145-2483

Fathead Minn	now 7-d Larval Survi	val and Growt	h Test		Aquatec Environmental, Inc.
Analysis ID:	17-3368-6811	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.2
Analyzed:	03 Aug-18 10:30	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
	77 77 78				

Sample ID: 08-0834-5556 Code: 15368 Client: Keene WWTP
Sample Date: 09 Jul-18 07:03 Material: POTW Effluent Project: Special Studies

Receipt Date: 10 Jul-18 10:00 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 31h Station: Keene WWTP


Linear Interpolation Options

X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method	
Linear		Linear	1236	915	200	Yes	Two-Point Interpolation	
Point E	stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
IC5	>100	n/a	n/a	<1	n/a	n/a		
IC10	>100	n/a	n/a	<1	n/a	n/a		
IC15	>100	n/a	n/a	<1	n/a	n/a		
IC20	>100	n/a	n/a	<1	n/a	n/a		
IC25	>100	n/a	n/a	<1	n/a	n/a		
IC40	>100	n/a	n/a	<1	n/a	n/a		
IC50	>100	n/a	n/a	<1	n/a	n/a		

Mean Dry Bio	mass-mg Sum	nmary			C	alculated Va	riate			
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	L	4	0.5095	0.486	0.547	0.01328	0.02656	5.21%	0.0%	
12		4	0.595	0.527	0.686	0.03335	0.06671	11.21%	-16.78%	
24		4	0.6217	0.552	0.76	0.04684	0.09368	15.07%	-22.03%	
48		4	0.5667	0.519	0.61	0.01863	0.03725	6.57%	-11.24%	
50		4	0.6277	0.572	0.676	0.02194	0.04388	6.99%	-23.21%	
100		4	0.5897	0.485	0.704	0.04603	0.09206	15 61%	-15.75%	

Mean Dry Biomass-mg Detail

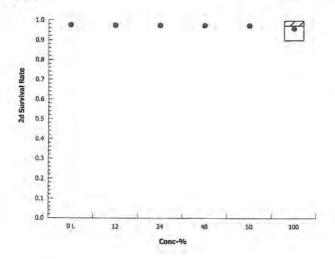
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	0.497	0.508	0.486	0.547	
12		0.686	0.574	0.593	0.527	
24		0.586	0.76	0.552	0.589	
48		0.568	0.57	0.61	0.519	
50		0.619	0.572	0.676	0.644	
100		0.485	0.559	0.611	0.704	

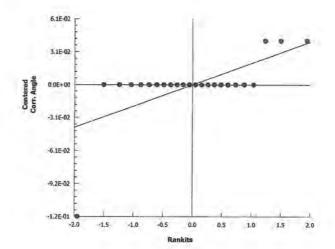
Report Date: Test Code: 03 Aug-18 10:30 (p 1 of 6) 81364 | 14-4145-2483

Fathead Minn	ow 7-d Larva	l Survival a	nd Growth	Test						Aguate		mental, In
Analysis ID:	00-8652-150	1 E	ndpoint:	2d Survival Ra	te			CET	IS Version			02350
Analyzed:	03 Aug-18 1	0:30 A	nalysis:	Nonparametric	-Control	vs 7	reatments		cial Result			
Sample ID:	08-0834-5556	S C	ode:	15368				Clie	nt: Ke	ene WWTP		
Sample Date:	09 Jul-18 07:0			POTW Effluen	t			911	110	ecial Studies		
Receipt Date:		779		Permit # NH01		EE	NE NH)		jeot. Op	occiai otacici		
Sample Age:				Keene WWTP			- 18-V					
Data Transform	m	Alt Hy	0			-		NOEL	LOEL	TOEL	TU	PMSD
Angular (Corre	cted)	C > T						100	> 100	n/a	1	4.57%
Steel Many-Or	ne Rank Sum	Test										
	s Conc-9	%	Test St	tat Critical	Ties	DF	P-Type	P-Value	Decision	n(a:5%)		
Lab Water	12		18	10	1	6	Asymp	0.8333	Non-Sign	nificant Effec	t	
	24		18	10	1	6	Asymp	0.8333	Non-Sign	nificant Effec	t	
	48		18	10	1	6	Asymp	0.8333	Non-Sign	nificant Effec	t	
	50		18	10	1	6	Asymp	0.8333		nificant Effec		
	100		16	10	1	6	Asymp	0.6105	And a second second second	nificant Effec		
ANOVA Table												
Source	Sum So	quares	Mean S	Square	DF		F Stat	P-Value	Decision	n(a:5%)		
Between	0.00553	32	0.00110	066	5		1	0.4457	Non-Sign	nificant Effec	t	
Error	0.01991	95	0.00110	066	18							
Total	0.02545	27			23							
Distributional	Tests											
Attribute	Test				Test St	tat	Critical	P-Value	Decision	n(a:1%)		
Variances	Levene	Equality of '	Variance Te	est	9		4.248	2.0E-04	Unequal	Variances		
Variances	Mod Lev	vene Equalit	y of Variand	ce Test	1		4.248	0.4457	Equal Va	ariances		
Distribution	Shapiro-	-Wilk W No	rmality Test		0.4634		0.884	2.5E-08	Non-Non	mal Distribut	ion	
2d Survival Ra	te Summary											
Conc-%	Code	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1,0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	0.9750	0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
Angular (Corre	ected) Transfo	ormed Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
12		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
24		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
48		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
50		4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
100		4	1.371	1.242	1.501		1.412	1.249	1.412	0.04074	5.94%	2.89%
2d Survival Ra	te Detail											
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0	Ļ	1.0000	1.0000	1.0000	1.0000							
12		1.0000	1.0000	1.0000	1.0000							
24		1.0000	1.0000	1.0000	1.0000							
48		1.0000	1.0000	1.0000	1.0000							
50		1.0000	1.0000	1.0000	1.0000							
100		0.9000	1.0000	1.0000	1.0000							
		0.8000	1.0000	1.0000	1.0000							

Report Date: Test Code: 03 Aug-18 10:30 (p 2 of 6) 81364 | 14-4145-2483

Fathead Minnow 7-d Larval Survival and Growth Test


Aquatec Environmental, Inc.


Analysis ID: 00-8652-1501 Endpoint: 2d Survival Rate CETIS Version: CETISv1.9.2

Analyzed: 03 Aug-18 10:30 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

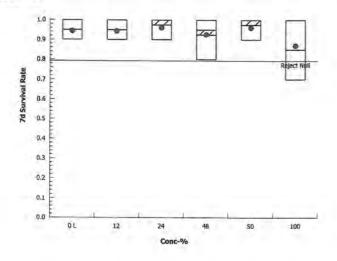
Angular (Corrected) Transformed Detail

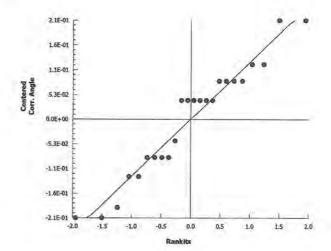
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.249	1.412	1.412	1,412	

Report Date: Test Code: 03 Aug-18 10:30 (p 3 of 6) 81364 | 14-4145-2483

to for the bush												45-C41 4-4
Fathead Min	now 7-d Larva	ıl Survival	and Grow	th Tes	st					Aquateo	Environn	nental, In
Analysis ID: Analyzed:	16-4057-036 03 Aug-18 1		Endpoint: Analysis:		urvival Rat metric-Cor	e ntrol vs Trea	tments		IS Version: cial Results		9.2	
Sample ID:	08-0834-555	6	Code:	1536	88			Clie	nt: Kee	ne WWTP		
Sample Date	: 09 Jul-18 07:	:03	Material:	POT	W Effluent			Proj	ect: Spe	cial Studies		
Receipt Date	: 10 Jul-18 10:	:00	Source:	Pem	nit # NH010	00790 (KEE	NE NH)					
Sample Age:			Station:		ne WWTP	, , , , , , , , , , , , , , , , , , ,						
Data Transfo			1.32.110					NOT	1051	TOPI	4.0	21102
Angular (Corr	7 111	Alt H						NOEL 100	> 100 > 100	n/a	TU 1	PMSD 16.53%
	tiple Comparis	son Test										- 100000
Control	vs Conc-		Test:	Stat	Critical	MSD DF	P-Type	P-Value	Decision	(a:5%)		
Lab Water	12		0		2.407	0.232 6	CDF	0.8333		ificant Effect		
	24		-0.42	24	2.407	0.232 6	CDF	0.9281		ificant Effect		
	48		0.367		2.407	0.232 6	CDF	0.7032		ificant Effect		
	50		-0.422		2.407	0.232 6	CDF	0.9281		ificant Effect		
	100		1.337		2.407	0.232 6	CDF	0.2842	and the second second	ificant Effect		
ANOVA Table												
Source		quares	Moor	Squa	are	DF	F Stat	P-Value	Decision	(n:5%)		
Between	0.0802		0.016	_	AI O	5	0.8626	0.5248		ficant Effect		
Error	0.3348	2 10 2	0.018			18	0.0020	0.0240	(voir-oigh	moant Enect		
Total	0.4151		0.010	0037		23						
Distributiona	22.1				-			_				
Attribute	Test					Test Stat	Critical	P-Value	Decision	(a:1%)		
Variances		Equality c	of Variance	Test		5.953	15.09	0.3108	Equal Var			
Distribution			Normality Te			0.94	0.884	0.1635	Normal D			
7d Survival F	Rate Summary	,										
Conc-%	Code	Coun	t Mean	-	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.950		0.8581	1.0000	0.9500	0.9000	1.0000	0.0289	6.08%	0.00%
			0.950		0.8581	1.0000	0.9500	0.9000	1.0000	0.0289	6.08%	0.00%
12		4				1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	-2.63%
		4	0.975	0	0.0934		1.0000				3.1370	
24		4	0.975 0.925		0.8954					Secretary and a second		2.63%
24 48		4	0.925	0	0.7727	1.0000	0.9500	0.8000	1,0000	0,0479	10.35%	2.63%
24 48		4		0 0						Secretary and a second		2.63% -2.63% 10.53%
24 48 50 100	rrected) Trans	4 4 4	0.925 0.975 0.850	0 0	0.7727 0.8954	1.0000 1.0000	0.9500 1.0000	0.8000 0.9000	1.0000 1.0000	0.0479 0.0250	10.35% 5.13%	-2.63%
24 48 50 100 Angular (Cor	rrected) Trans	4 4 4	0.925 0.975 0.850 ummary	0 0 0	0.7727 0.8954	1.0000 1.0000	0.9500 1.0000	0.8000 0.9000	1.0000 1.0000	0.0479 0.0250	10.35% 5.13%	-2.63% 10.53%
24 48 50 100 Angular (Cor	The state of the state of	4 4 4 4 formed Su	0.925 0.975 0.850 ummary at Mean	0 0 0 0	0.7727 0.8954 0.5744 95% LCL	1.0000 1.0000 1.0000 95% UCL	0.9500 1.0000 0.8500 Median	0.8000 0.9000 0.7000 Min	1,0000 1,0000 1,0000 Max	0.0479 0.0250 0.0866	10.35% 5.13% 20.38%	-2.63% 10.53%
24 48 50 100 Angular (Cor Conc-%	The state of the state of	4 4 4 formed Su Coun	0.925 0.975 0.850 ummary at Mean 1.331	iO iO	0.7727 0.8954 0.5744 95% LCL 1.181	1.0000 1.0000 1.0000 95% UCL	0.9500 1.0000 0.8500 Median 1.331	0.8000 0.9000 0.7000 Min 1.249	1,0000 1,0000 1,0000 Max 1,412	0,0479 0.0250 0.0866 Std Err 0.04705	10.35% 5.13% 20.38% CV% 7.07%	-2.63% 10.53% %Effect 0.00%
24 48 50 100 Angular (Cor Conc-% 0	The state of the state of	4 4 4 4 formed Su Coun 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331	60 60 0	0.7727 0.8954 0.5744 95% LCL 1.181 1.181	1,0000 1,0000 1,0000 95% UCL 1,48 1,48	0.9500 1.0000 0.8500 Median 1.331 1.331	0.8000 0.9000 0.7000 Min 1.249 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412	0.0479 0.0250 0.0866 Std Err 0.04705 0.04705	10.35% 5.13% 20.38% CV% 7.07% 7.07%	-2.63% 10.53% %Effect 0.00% 0.00%
24 48 50 100 Angular (Cor Conc-% 0 12 24	The state of the state of	4 4 4 formed Su Coun 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331	60 60 60	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412	0.0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48	The state of the state of	4 4 4 4 formed Su Coun 4 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331 1.371 1.295	60	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% 2.67%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50	The state of the state of	4 4 4 formed Su Coun 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331 1.371 1.295 1.371	0000	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412	0.0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100	Code	4 4 4 formed Su Coun 4 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331 1.371 1.295	0000	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% -3.06% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F	Code L	4 4 4 formed Su Coun 4 4 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.331 1.371 1.295 1.371 1.202	60 60 60	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% -3.06% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F	Code L Rate Detail Code	4 4 4 formed Su Coun 4 4 4 4 4 4	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202	000000000000000000000000000000000000000	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% -3.06% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F Conc-% 0	Code L	4 4 4 formed Su Coun 4 4 4 4 4 4 4 4 1.000	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202	2	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149 Rep 3 0.9000	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588 Rep 4 1.0000	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% 2.67% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F Conc-% 0 12	Code L Rate Detail Code	4 4 4 4 formed Sc Coun 4 4 4 4 4 4 4 1.000 0.900	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202 1 Rep 2 00 0.900 00 1.000	22000	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149 Rep 3 0.9000 1.0000	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588 Rep 4 1.0000 0.9000	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% 2.67% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F Conc-% 0 12	Code L Rate Detail Code	4 4 4 4 4 4 4 4 4 4 4 1.000 0.900 1.000	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202 1 Rep 2 00 0.900 00 1.000	2200	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149 Rep 3 0.9000 1.0000	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588 Rep 4 1.0000 0.9000 0.9000	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% 2.67% -3.06%
24 48 50 100 Angular (Cor Conc-% 0 12 24 48 50 100 7d Survival F Conc-% 0 12 24 48 48	Code L Rate Detail Code	4 4 4 4 4 4 4 4 4 4 4 4 1.000 0.900 1.000 0.900	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202 1 Rep 2 00 0.900 00 1.000 00 1.000	22 200 00 00 00 00 00 00 00 00 00 00 00	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149 Rep 3 0.9000 1.0000 1.0000	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588 Rep 4 1.0000 0.9000 0.9000 0.9000	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% -3.06% -3.06%
-	Code L Rate Detail Code	4 4 4 4 4 4 4 4 4 4 4 1.000 0.900 1.000	0.925 0.975 0.850 ummary at Mean 1.331 1.371 1.295 1.371 1.202 1 Rep 2 00 0.900 00 1.000 00 1.000 00 1.000 00 0.900	22 200 00 00 00 00 00 00 00 00 00 00 00	0.7727 0.8954 0.5744 95% LCL 1.181 1.181 1.242 1.061 1.242 0.8149 Rep 3 0.9000 1.0000	1.0000 1.0000 1.0000 95% UCL 1.48 1.48 1.501 1.529 1.501 1.588 Rep 4 1.0000 0.9000 0.9000	0.9500 1.0000 0.8500 Median 1.331 1.331 1.412 1.331 1.412	0.8000 0.9000 0.7000 Min 1.249 1.249 1.249 1.107 1.249	1,0000 1,0000 1,0000 Max 1,412 1,412 1,412 1,412 1,412 1,412	0,0479 0.0250 0.0866 Std Err 0.04705 0.04705 0.04074 0.07348 0.04074	10.35% 5.13% 20.38% CV% 7.07% 7.07% 5.94% 11.35% 5.94%	-2.63% 10.53% %Effect 0.00% 0.00% -3.06% -3.06% -3.06%

Report Date: Test Code: 03 Aug-18 10:30 (p 4 of 6) 81364 | 14-4145-2483


Aquatec Environmental, Inc.


Analysis ID:	16-4057-0362	Endpoint:	7d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	03 Aug-18 10:30	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes

Angular (Corrected) Transformed Detail

Fathead Minnow 7-d Larval Survival and Growth Test

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.249	1.249	1.412	
12		1.249	1.412	1.412	1.249	
24		1.412	1.412	1.412	1.249	
48		1.249	1.412	1.412	1.107	
50		1.412	1.249	1.412	1.412	
100		0.9912	0.9912	1.412	1.412	

Report Date: Test Code: 03 Aug-18 10:30 (p 5 of 6) 81364 | 14-4145-2483

Fathead Min	now 7	d Larval	Survival a	nd Growt	h Te	st						Aquateo	Environn	nental, Inc
Analysis ID: Analyzed:		2469-6838 Aug-18 10:		ndpoint: nalysis:		an Dry Biom ametric-Con	100 M M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M	reat	tments		TIS Version: cial Results		9.2	
Sample ID: Sample Date Receipt Date Sample Age	e: 09 Ji e: 10 Ji		S M	ode; aterial: ource; tation:	Per	68 TW Effluent mit # NH010 ene WWTP		ŒEI	NE NH)	Clie Pro		ene WWTP ecial Studies		
Data Transfe	orm		Alt Hyp							NOEL	LOEL	TOEL	TU	PMSD
Untransforme	ed		C > T							100	> 100	n/a	1	21.87%
Dunnett Mul	tiple C	ompariso	n Test											
Control	vs	Conc-%		Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	(a:5%)		
Lab Water		12		-1.84	7	2.407	0.111	6	CDF	0.9986	Non-Sign	ificant Effect		
		24		-2.42	5	2.407	0.111	6	CDF	0.9998	Non-Sign	ificant Effect		
		48		-1.23	7	2.407	0.111	6	CDF	0.9911	Non-Sign	ificant Effect		
		50		-2.55	4	2.407	0.111	6	CDF	0.9998	Non-Sign	ificant Effect		
		100		-1.73	3	2.407	0.111	6	CDF	0.9980	Non-Sign	ificant Effect		
ANOVA Tab	е				T									
Source		Sum Squ	uares	Mean	Squ	are	DF		F Stat	P-Value	Decision	(a:5%)		
Between		0.037335	8	0.007	4672		5		1.742	0.1761	Non-Sign	ificant Effect		
Error		0.077157	9	0.004	2866	j	18							
Total		0.114494	, -				23							
Distribution	al Test	s												
Attribute		Test					Test S	tat	Critical	P-Value	Decision	(a:1%)		
Variances		Bartlett E	quality of	Variance 1	Test		6.1		15.09	0.2967	Equal Va	riances		
Distribution		Shapiro-	Nilk W No	rmality Te	st		0.9572	2	0.884	0.3844	Normal D	istribution		
Mean Dry Bi	omass	-mg Sum	mary											
Conc-%		Code	Count	Mear	1	95% LCL	95% U	ICL	Median	Min	Max	Std Err	CV%	%Effect
0		L	4	0.509	5	0.4672	0.5518	3	0.5025	0.486	0.547	0.01328	5.21%	0.00%
12			4	0.595	i	0.4889	0.7011	0	0.5835	0.527	0.686	0.03335	11.21%	-16.78%
24			4	0.621	7	0.4727	0.7708	3	0.5875	0.552	0.76	0.04684	15.07%	-22.03%
48			4	0.566		0.5075	0.626		0.569	0.519	0.61	0.01863	6.57%	-11.24%
50			4	0.627		0.5579	0.6976		0.6315	0.572	0.676	0.02194	6.99%	-23.21%
100			4	0.589	17	0.4433	0.7362	2	0.585	0.485	0.704	0.04603	15.61%	-15.75%
Mean Dry Bi	omass	s-mg Deta	1											
Conc-%		Code	Rep 1	Rep		Rep 3	Rep 4							
0		L.	0.497	0.508	}	0.486	0.547							
12			0.686	0.574		0.593	0.527							
24			0.586	0.76		0.552	0.589							
48			0.568	0.57		0.61	0.519							
50			0.619	0.572	2	0.676	0.644							

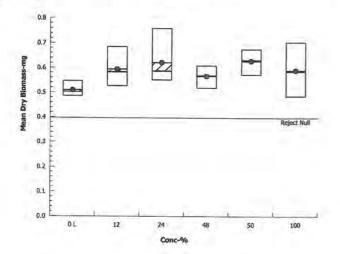
100

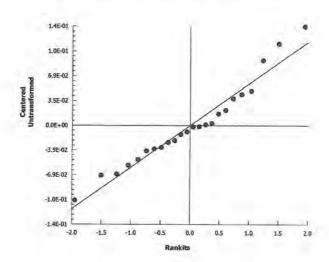
0.485

0.559

0.704

0.611


Report Date: Test Code: 03 Aug-18 10:30 (p 6 of 6) 81364 | 14-4145-2483


Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Analysis ID: 01-2469-6838 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISv1.9.2

Analyzed: 03 Aug-18 10:30 Analysis: Parametric-Control vs Treatments Official Results: Yes

Report Date: Test Code/ID: 03 Aug-18 10:19 (p 1 of 1) 14-4145-2483/81364

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: 10 Jul-18 14:30

Sample Date: 09 Jul-18 07:03

End Date:

17 Jul-18 13:55

Species: Pimephales promelas

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15368

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Total Weight-mg	Tare Weight-mg	Pan Count	Notes
0	L	1	2	10	-	10					10	26.72	21.75	10	
0	L	2	18	10		10					9	26.21	21.13	9	
0	L	3	9	10		10					9	26.29	21.43	9	
0	L	4	17	10	T	10					10	27.61	22.14	10	
0	R	1	11	10		10					9	26.58	21.12	9	
0	R	2	15	10		10	-				10	26.32	21.2	10	
0	R	3	6	10		10					9	26.61	21.19	9	
0	R	4	4	10		10					10	25.1	19.22	10	
12		1	8	10	-	10					9	26.95	20.09	9	
12		2	13	10		10					10	27.69	21.95	10	
12		3	7	10		10					10	27.69	21.76	10	
12		4	16	10	-	10					9	26.77	21.5	9	
24		1	5	10		10					10	29.67	23.81	10	
24		2	24	10		10					10	29.96	22.36	10	
24		3	22	10		10					10	27.81	22.29	10	
24	-	4	12	10		10	1				9	26.72	20.83	9	
48		1	25	10		10					9	27.32	21.64	9	
48		2	1	10		10					10	28.14	22.44	10	
48		3	14	10		10					10	28.88	22.78	10	
48		4	3	10		10					8	28.18	22.99	8	
50		1	21	10		10					10	27.22	21.03	10	
50		2	10	10		10		1			9	27.38	21.66	9	
50		3	26	10		10					10	28.44	21.68	10	
50		4	23	10		10					10	28.99	22.55	10	
100		1	28	10		9					7	27.32	22.47	7	
100		2	19	10		10					7	27.24	21.65	7	
100		3	20	10		10	1	1	-		10	27.18	21.07	10	
100		4	27	10		10					10	28.38	21.34	10	

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test
Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP:

WET-A-001

OXICITY 7	PPCT I						ermit No		0.000		Pipe No.	_
% Effluent	I E21 I	DATA:									Test ID	8136
	Rep.	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	No. weighed	Initial Pan Weight	Final Pan Weight
~00	A	10	10	10	10	10	10	10	10	10	21.75	26.7
50 % Soft	В	10	10	10	9	9	9	9	9	9	21.13	26.21
CTRL	С	10	10	10	,9	9	9	9	9	9	21.43	-
CINE	D	10	10	10	10	10	10	10	10	10	22.14	27.61
0%	Α	10	10	10	9	9	9	9	9	9	21.12	- U-
0 %	В	10	10	10	10	10	10	10	10	10	21.20	26.30
RW	C	10	10	10	10	9	9	9	9	9		26.61
344.0	D	10	10	10	10	10	10	10	10	10	19 22	25.10
12 0/	Α	10	10	10	10	10	10	10	9	9	20.09	26,95
12 %	В	10	10	10	10	10	10	10	10	10	21.95	
EFF	C	10	10	10	10	10	10	10	10	10	21.76	27.60
rej t	D	10	10	10	9	9	9	9	9	9	21.50	26.77
24 %	Α	10	10	10	10	10	10	10	10	10	23.81	29.67
24 %	В	10	10	10	10	10	10	10	10	10	22.29	29.96
EFF	C	10	10	10	10	10	10	10	10	10	22.29	27,81
511	D	10	10	10	9	9	9	9	9	9	20.83	26.73
48 %	Α	10	10	10	10	10	10	10	9	.9	21.64	27.32
40 /0	В	10	10	10	10	10	10	10	10	10	02 44	28.14
EFF	С	10	10	10	10	10	10	10	10	10	22.78	28,88
-1.1	D	10	10	10	9	9	8	8	Š	8	22.99	28,18
50 %	Α	10	10	10	10	10	10	10	10	10	21.03	27-22
30 /0	В	10	10	10	10		10	9	9	9	21.68	27,38
EFF	C	10	10	10	10	10	10	10	10	10	21.68	28,44
	D	10	10	10	10	10	10	10	10	10		
100 %	Α	10	10	9	9	8	7	7	7	7	22.47	27.30
700 /0	В	10	10	10	8		7	17	7	7	21.65	27-24
EFF	С	10	10	10	10	10	10	10	10	10	210+	27-18
	D	10	10	10	10	10	10	16	10	10	21.34	
Samp		50988	50988	50992	50992	50993	50993	5093	Test End	Date/Init (I	nitial Pan We	ights):
Fed AM		10110	845	840	830	1030	120	825		IN (Date/Ti	me/Temp/In	it):
Fed PM / Init.		1545	1540	1600	1515	3414h	7/12/10	1330	7/12/16	7117/1	8 1450	10201
Renewal		7-10-18	7-11-18	7/12/18	1215	1250	115.220 7/15/18 1400	7116119	417/18	OUT (Date)	Time/Temp/	Init) o
(D/T/I)		1430 EB	EB	15:19		KN	141	EN	1	DNIC		
				50991	50991		Brine Sh	rimp Lot	# :	0 1113	32-Br	1111
γ				7/17/18	4 carre	Long						

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

Aquatec Environmental, Inc.
Reviewed by: Date: 8 /4/1

SDG: 15368

18017 Project

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species:

Keene/Ley

Client ID:

Pimephales promelas

Reference:

EPA-821-R-02-013

Permit No. NH0100790

SOP:

WET-A-001

Pipe No.

TIAL CHEMIS	TRY DAT	ΓA:						Test ID	8
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
50 (+) CTRL	pH DO Temp.	74 76 24 7	7.1	7.0	7.1 24.1	723	7.4	7.4	7
	Cond.	181	165	172	168	16-t	174	182	٥.
0 %	pH DO	72	7.1	7.0	\$.0	83	7.4	7.3	
RW	Temp. Cond.	253	300	333	25.6 319	318	35.0	314	_
12 %	pH DO	7.5° 7.7	7.4	7.2	7.3	3.3	74	7.4	
EFF	Temp.	24.6	256	265	24.5	24.3	34.3	24.7	_
24 %	pH DO	7.5	7.5	7-3 8-4	7.9	7.5	8.2	7.5	
EFF	Temp.	341	333	340	24.8 330	332	340	346	
48 %	pH DO	7.5	7.6	7.4	7.5	7.62	7:7	7.5	
EFF	Temp.	25.1	25.0 487	25-2 494	25.5	24. le 506	24.8	503	
50 %	pH DO	7.5	7.6	7.4	7.5	7.7	7.7	7.5	
EFF	Temp.	35.0	84.9 515	25.2	25.C 505	24.6	34.8	24.9	
100 %	pH DO	7.5	7.6 7.4	7.4	7.6	7.8	7.8	7.5	
EFF	Temp.	25.5	25.3	25.5	26.1	25.0 837	25.7	35.5	
	Sample # Date Initials	50988 7/10/18	50988 71118	50995 7/12/18	50998	150993 7/17/18	7)15/18	7-16-16 EB	

0 50991 is sample # Gow 7/12/18

SDG: Project

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species:

Pimephales promelas Reference:

SOP:

WET-A-001

Client ID:	Keene/I	_ey				Permit No.	. NH0100	0790	Pipe No.	1
FINAL C	HEMIST	RY DATA	\ ;						Test ID	81364
%	Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
ons	0 % CTRL	pH DO Temp. Cond.	7.2 6.8 24.8 183	7.0	7.0 7.0 24.2 173	(9 7.2 24.3 176	7.5	7.1 6.9 24.7 186	7.0 6.5 24.3 189	
	0 % RW	pH DO Temp.	7.2 6.9 24.8 290	7.0 6.8 25.3 295	7.0	24.3	6.9	7.9	7.0	
	12 % EFF	pH DO Temp. Cond.	7.2	7.0	7.2	7.07.1	7.0	7.2 6.6 24.7 265	7.1	
	24 % EFF	pH DO Temp. Cond.	7.3 6.8 24.8 336	7.1	7.1 6.7 24.3 330	7.0	7.1	7.3	7.2 6.2 24.3 351	30.
	48 % EFF	pH DO Temp. Cond.	7.3	7.1	7.2	7.1	7.3 6.7 24.2 500	7.3 6.6 24.5 502	73 6.0 24.0 506	
	50 % EFF	pH DO Temp. Cond.	7.3 6.8 24.8 508	7.1 7.1 25.3 508	7.2	7.1 6.7 24.3 502	7.4 4.7 24.3 506	7.4 6.4 24.7 519	7.3 6.0 24.1 52)	
	100 % EFF	pH DO Temp. Cond.	7.3 6.8 24.7 808	7.2 7.0 25.2 831	7.3	7.2 6.5 24.3 8216	7.5 6.3 24.3 834	7.6 24.7 845	7.4 5.9 24.1 840	
		Sample # Date Initials	50988 71118 KN	50988 7/12/18 KN	50993 7/113/18	150912 7114118 KN	50993 7/15/18	50993 741418 KN	50993 7117118 EN	
			0	509911:	5 Sample	# KN-	1/13/18			

SDG:

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524


Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

- Rec 7/10/18/10/18

DATE:	7/9/20	118		
SPECIES:		hales promelas		Temp: 23.4 Cond: 368%00 DO: 10.0 Mg/L
AGE:	N/A	ranco promistas	THE STANDARD	Cond: 368/00
LIFE STAGE: _	Embry	/0	- Lammiphiladous	PH: 7.8 PH
HATCH DATE:	7/9/20	818		Condition: Normal/
BEGAN FEEDING: _	N/A	(Latitetti Mantes (Letterani))		Active
FOOD:	N/A			Added Soft wat
Water Chemistry Record:		Current	Range	Hadre 2017 MAR
TEMPER	ATURE:	25°C		
SALINITY/CONDUC	TIVITY:	· ·		
TOTAL HARDNESS (as	CaCO3):	118 mg/l	. Aria	
TOTAL ALKALINITY (as	CaCO ₃):	90 mg/l		
	рН:	8.26	-	
Comments:				
		-//	11	
		-///		

Facility Supervisor

CETIS Summary Report

Report Date:

03 Aug-18 10:32 (p 1 of 1) 81365 | 09-3760-0454

Test Code:

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Batch ID: 15-5265-8396 Start Date: 10 Jul-18 11:55 Ending Date: 17 Jul-18 13:40

Duration:

Test Type: Reproduction-Survival (2-8d) Protocol: Species:

Source:

EPA/821/R-02-013 (2002) Ceriodaphnia dubia

In-House Culture

Analyst: Diluent:

Kaitlyn Priest Soft Synthetic Water

Brine:

Not Applicable

<24h Age:

Multiple	Compariso	n Summary
----------	-----------	-----------

7d 2h

Analysis ID Endpoint	Comparison Method	NOEL	LOEL	TOEL	TU	PMSD V
13-0437-2543 2d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a
20-7417-7213 7d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a (2
02-1639-8495 Reproduction	Steel Many-One Rank Sum Test	512-	12	n/a	>8.333	(11.6%)
Point Estimate Summary		100	>100 /	N		W

Point Estimate Summary	100	>100 G

Analysis ID	Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	1
00-9891-1513	2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	
	A 1777 1 11 W	and the second control of the second control	EC10	>100	n/a	n/a	<1	1
			EC15	>100	n/a	n/a	<1	1
			EC20	>100	n/a	n/a	<1	1
			EC25	>100	n/a	n/a	<1	1
			EC40	>100	n/a	n/a	<1	1
			EC50	>100	n/a	n/a	<1	1
01-9711-9981	Reproduction	Linear Interpolation (ICPIN)	IC5	10.74	6.557	n/a	9.31	1
			IC10	>100	n/a	n/a	<1	1
			IC15	>100	n/a	n/a	<1	1
			IC20	>100	n/a	n/a	<1	V
			IC25	>100	n/a	n/a	<1	1
			IC40	>100	n/a	n/a	<1	1
			IC50	>100	n/a	n/a	<1	1

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	0.9000	0.6738	1.0000	0.0000	1.0000	0.1000	0.3162	35.14%	10.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

Reproduction Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	37	35.12	38.88	32	41	0.83	2.625	7.09%	0.00%
0	L	10	36.7	35,27	38,13	34	40	0.6333	2.003	5.46%	0.81%
12		10	33.7	31.82	35.58	28	37	0.8307	2.627	7.79%	8.92%
24		10	35.6	33.84	37.36	32	39	0.7775	2.459	6.91%	3.78%
48		10	32.6	29.01	36.19	21	39	1.586	5.016	15.39%	11.89%
50		10	32.2	27.88	36.52	17	38	1.908	6.033	18.74%	12.97%
100		10	34.4	30.75	38.05	26	41	1.614	5.103	14.84%	7.03%
											The

(1) Relative difference from control was 413% (lower pmsD boundary)

By definition - no effect (EPA Prosocol) - NOEC = 100

CETIS™ v1.9.2.4

(2) PMSD 4 13% (Lower Bougdary)

008-615-283-3

Report Date: Test Code: 03 Aug-18 10:32 (p 1 of 2) 81365 | 09-3760-0454

Aquatec Environmental, Inc.

Ceriodaphnia	7-d Survival	and	Reproduction	est

Aquatec Em

Analysis ID:	13-0437-2543	Endpoint:	2d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	03 Aug-18 10:31	Analysis:	STP 2xK Contingency Tables	Official Results:	Yes

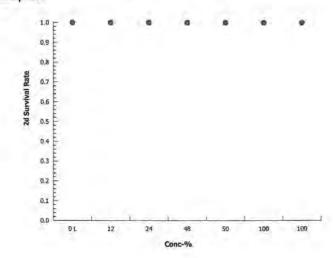
Sample ID: 08-0834-5556 Code: 15368 Client: Keene WWTP
Sample Date: 09 Jul-18 07:03 Material: POTW Effluent Project: Special Studies

Receipt Date: 10 Jul-18 10:00 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 29h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL LOEL TOEL TU	
Untransformed	C>T	100 > 100 n/a 1	

Fisher Exact/Bonferroni-Holm Test


Control v	s	Group	Test Stat	P-Type	P-Value	Decision(a:5%)	
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect	
		24	1.0000	Exact	1.0000	Non-Significant Effect	
		48	1.0000	Exact	1.0000	Non-Significant Effect	
		50	1.0000	Exact	1.0000	Non-Significant Effect	
		100	1.0000	Exact	1.0000	Non-Significant Effect	

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date:

03 Aug-18 10:32 (p 2 of 2)

Test Code: 81365 | 09-3760-0454

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Analysis ID: Analyzed:	20-7417-7213 03 Aug-18 10:31		7d Survival Rate STP 2xK Contingency Tables	CETIS Version: Official Results:	
Sample ID:	08-0834-5556	Code:	15368	Client: Keen	e WWTP

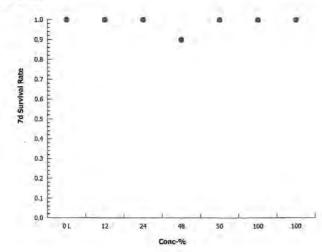
Sample ID: 08-0834-5556 Code: 15368 Client: Keene WWTP
Sample Date: 09 Jul-18 07:03 Material: POTW Effluent Project: Special Studies
Receipt Date: 10 Jul-18 10:00 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 29h Station: Keene WWTP

 Data Transform
 Alt Hyp
 NOEL
 LOEL
 TOEL
 TU

 Untransformed
 C > T
 100
 > 100
 n/a
 1

Fisher Exact/Bonferroni-Holm Test

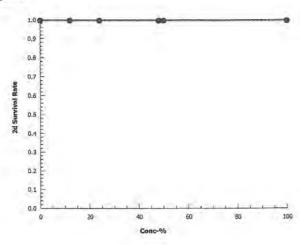

Control	VS	Group	Test Stat	P-Type	P-Value	Decision(α:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	0.5000	Exact	1.0000	Non-Significant Effect
		50	1.0000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		9	1	10	0.9	0.1	10.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000



Report Date: Test Code: 03 Aug-18 10:32 (p 1 of 2) 81365 | 09-3760-0454

											-10-01	
Ceriod	aphnia	7-d Survival an	d Reprodu	ction T	est					Aquate	c Environ	mental, Inc.
Analys	is ID:	00-9891-1513	End	point:	2d Survival Rat	e		CETIS Ve	rsion:	CETISv1	.9.2	
Analyz	ed:	03 Aug-18 10:3	2 Ana	lysis:	Linear Interpola	ation (ICPIN)		Official R	esults:	Yes		
Sample	ID:	08-0834-5556	Coc	le:	15368			Client:	Keen	e WWTP		
Sample	Date:	09 Jul-18 07:03	Mat	erial:	POTW Effluent			Project:	Spec	ial Studies		
Receip	t Date:	10 Jul-18 10:00	Sou	rce:	Permit # NH010	00790 (KEENE	NH)					
Sample	Age:	29h	Stat	ion:	Keene WWTP							
Linear	Interpo	lation Options										
X Trans	sform	Y Transform	See	d	Resamples	Exp 95% CL	Method					
Linear		Linear	429	105	200	Yes	Two-Poin	t Interpolatio	n			
Point E	stimat	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	>100	n/a	n/a	<1	n/a	n/a						
EC10	>100	n/a	n/a	<1	n/a	n/a						
EC15	>100	n/a	n/a	<1	n/a	n/a						
EC20	>100	n/a	n/a	<1	n/a	n/a						
EC25	>100	n/a	n/a	<1	n/a	n/a						
EC40	>100	n/a	n/a	<1	n/a	n/a						
EC50	>100	n/a	n/a	<1	n/a	n/a						
2d Sur	Survival Rate Summary					Calculate	ed Variate(A	(B)				
Conc-9	6	Code	Count	Mear	Min	Max St	d Err St	d Dev CV	%	%Effect	Α	В

CONC-76	Code	Count	wean	IVIIII	wax	SIU EII	Std Dev	CV 70	/oEnect	A	D
0	L	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
12		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
24		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
48		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
50		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
100		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10

2d Survival R	ate Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code: 03 Aug-18 10:32 (p 2 of 2) 81365 | 09-3760-0454

Ceriodaphnia	7-d Survival and Re	eproduction T	est		Aquatec Environmental, Inc.
Analysis ID:	01-9711-9981	Endpoint:	Reproduction	CETIS Version:	CETISv1.9.2
Analyzed:	03 Aug-18 10:32	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Sample ID: 08-0834-5556 Code: 15368 Client: Keene WWTP
Sample Date: 09 Jul-18 07:03 Material: POTW Effluent Project: Special Studies

Resamples

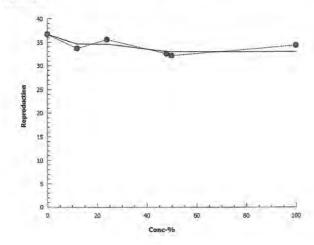
Receipt Date: 10 Jul-18 10:00 Source: Permit # NH0100790 (KEENE NH)
Sample Age: 29h Station: Keene WWTP

Seed

Linear Interpolation Options

Y Transform

X Transform


Linear		Linear	1605	5442	200	Yes	Two-Point Interpolation	
Point E	Stimates							
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
IC5	10.74	6.557	n/a	9.31	n/a	15.25		
IC10	>100	n/a	n/a	<1	n/a	n/a		
IC15	>100	n/a	n/a	<1	n/a	n/a		
IC20	>100	n/a	n/a	<1	n/a	n/a		
IC25	>100	n/a	n/a	<1	n/a	n/a		
IC40	>100	n/a	n/a	<1	n/a	n/a		
IC50	>100	n/a	n/a	<1	n/a	n/a		

Exp 95% CL Method

Reproduction	Summary				(alculated Va	riate		
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	L	10	36.7	34	40	0.6333	2.003	5.46%	0.0%
12		10	33.7	28	37	0.8307	2.627	7.80%	8.17%
24		10	35.6	32	39	0.7775	2.459	6.91%	3.0%
48		10	32.6	21	39	1.586	5.016	15.39%	11.17%
50		10	32.2	17	38	1.908	6.033	18.74%	12.26%
100		10	34.4	26	41	1.614	5.103	14.84%	6.27%

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	40	38	35	36	38	35	34	35	39	37
12		36	34	32	36	34	33	32	35	37	28
24		32	32	37	37	39	36	37	34	34	38
48		21	30	39	34	35	37	34	29	34	33
50		38	17	33	38	32	36	29	34	32	33
100		38	33	35	41	38	34	26	27	32	40

Report Date:

03 Aug-18 10:32 (p 1 of 2)

	Aquatec Environmental, Inc.
Test Code:	81365 09-3760-0454

Ceriodaphnia	7-d	Survival and	Reprod	luction Te	est							Aquate	Enviror	mental, Inc.
Analysis ID: Analyzed:		1639-8495 Aug-18 10:31		ndpoint: nalysis:		production parametric-	-Contro	l vs T	reatments		IS Version		.9.2	
Sample ID:	08-0	834-5556	Co	ode:	153	368				Clie	nt: Ke	ene WWTP		
Sample Date:	09 J	ul-18 07:03		aterial:		TW Effluent				Proj	100	ecial Studies		
Receipt Date:	10 J	ul-18 10:00	Sc	ource:	Per	mit # NH010	00790 (KEE	NE NH)	1000	east dele			
Sample Age:		342.55		ation:		ene WWTP								0
Data Transfor	m		Alt Hyp							NOEL	LOEL	TOEL	TU	PMSD
Untransformed	1	- +	C > T							(12)	(12)	n/a	>8.333	11.64%
Steel Many-O	ne R	ank Sum Tes	t							100	\$ 100			
Control	vs	Control II		Test S	Stat	Critical	Ties	DF	P-Type	P-Value	Decision	n(a:5%)		
Lab Water		12*		73		75	4		Asymp	0.0318	Significa	nt Effect		
		24		92.5		75	5	18	Asymp	0.4393	Non-Sigr	nificant Effect		
		48*		73		75	4	18	Asymp	0.0318	Significa	nt Effect		
	50*			74		75	3	18	Asymp	0.0384	Significal			
ANOVA Table				91.5		75	4	18	Asymp	0.4046		nificant Effect		
ANOVA Table	1				T									
Source		Sum Squar	es	Mean	Squ	iare	DF		F Stat	P-Value	Decision	n(a:5%)		
Between		150.6		30.12			5		1.728	0.1438	Non-Sign	ificant Effect		
Error		941		17.42	59		54							
Total		1091.6					59							
Distributional	Tes	ts												
Attribute		Test					Test S	Stat	Critical	P-Value	Decision	n(a:1%)		
Variances		Bartlett Equ	ality of V	/ariance T	est		16.81		15.09	0.0049	Unequal	Variances		
Distribution		Shapiro-Wil	k W Nor	mality Tes	st		0.905	5	0.9459	2.1E-04	Non-Non	mal Distribution	on	
Reproduction	Sun	nmary												
Conc-%			Count	Mean		95% LCL	95% (Median	Min	Max	Std Err	CV%	%Effect
0		L	10	36.7		35.27	38.13		36.5	34	40	0.6333	5.46%	0.00%
12			10	33.7		31.82	35.58		34	28	37	0.8307	7.79%	8.17%
24			10	35.6		33.84	37.36		36.5	32	39	0.7775	6.91%	3.00%
48			10	32.6		29.01	36.19		34	21	39	1.586	15.39%	11.17%
50			10	32.2		27.88	36.52		33	17	38	1.908	18.74%	12.26%
100			10	34.4		30.75	38.05	-	34.5	26	- 41	1.614	14.84%	6.27%
Reproduction	Deta	ail												
Conc-%			Rep 1	Rep 2	-	Rep 3	Rep 4		Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		L	40	38		35	36		38	35	34	35	39	37
12		36 3				32	36		34	33	32	35	37	28
24		14	32	32		37	37		39	36	37	34	34	38

@ AmsD < 13% (EPA Lower Boundary) - highly sensitive Test due To low variability in 1887 data.

2) % Effect was <13%. Defined as not Toxic per EPA oTESTISTICAL protocol. JU C-NOEC = 100

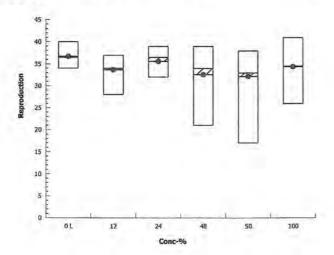
Report Date: Test Code:

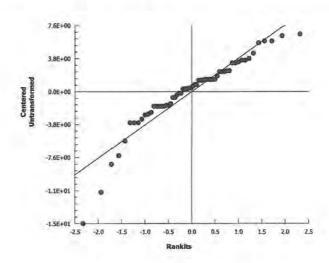
03 Aug-18 10:32 (p 2 of 2) 81365 | 09-3760-0454

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Analysis ID: Analyzed:


02-1639-8495 03 Aug-18 10:31 Endpoint: Reproduction Analysis:


Nonparametric-Control vs Treatments

CETIS Version:

CETISv1.9.2

Official Results: Yes

Sample Date: 09 Jul-18 07:03

Report Date: Test Code/ID: 03 Aug-18 10:31 (p 1 of 2) 09-3760-0454/81365

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Start Date: End Date:

10 Jul-18 11:55 17 Jul-18 13:40 Species: Ceriodaphnia dubia

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15368

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Notes
0	L	1	60	1		1					1				8	13	0	19		0	11000
0	L	2	6	1		1					1				9	14	0	15		0	
0	L	3	66	1	-	1					1				8	13	0	14		0	
0	L	4	63	1		1					1				8	13	0	15		0	+
0	L	5	35	1		1					1		-		7	13	0	18		0	+
0	L	6	37	1		1					1				7	12	0	16		0	
0	L	7	9	1		1					1				8	12	0	14		0	
0	L	8	59	1		1					1				7	12	0	16		0	1
0	L	9	38	1		1					1				8	13	0	18		0	
0	L	10	36	1		1					1				8	12	0	17		0	
0	R	1	47	1		1					1				9	12	1	19		0	+
0	R	2	15	1		1					1				9	13	0	17		0	\vdash
0	R	3	1	1		1					1				8	11	0	15		0	_
0	R	4	30	1		1					1				8	11	1	16		0	1
0	R	5	21	1		1					1				8	13	0	15		0	
0	R	6	67	1		1			-		1				7	13	0	18		0	+
0	R	7	28	1		1			-		1				8	12	1	16		0	+
0	R	8	22	1		1					1				8	12	0	19		0	1
0	R	9	41	1		1					1				6	11	0	15		0	+
0	R	10	64	1		1					1				8	13	0	17		0	1
12		1	8	1		1		-			1				8	12	0	16		0	_
12		2	69	1		1	-				1				8	11	0	15		0	_
12		3	2	1		1		-	-		1				7	13	0	12		0	+
12		4	52	1		1		-			1				8	13	0	15		0	_
12		5	55	1	-	1		-	-		1	-			7	13	0	14		0	+
12		6	31	1		1	-				1				6	12	0	15		0	+
12		7	39	1		1					1				7	12	0	13	-	0	1
12		8	19	1		1	-				1				7	12	0	16	-	0	+
12	-	9	33	1	-	1			_		1				8	12	0	17		0	1
12		10	32	1		1					1				6	9	0	13		0	1
24		1	54	1		1				-	1	-	-	-	6	12	0	14		0	+
24		2	70	1		1					1				7	12	0	13		0	1
24		3	25	1		1		1			1				8	14	0	15		0	1
24		4	12	1		1		-			1		-	-	6	13	0	18		0	1
24		5	17	1	-	1				-	1	-	-	-	8	12	0	19		0	-
24		6	56	1		1					1	-	-		7	11	0	18	-	0	+-
24		7	62	1		1				-	1	-	-	-	7	13	0	17	-	0	+-
24		8	65	1	-	1				-	1			-	6	11	0	17	-	0	+
24		9	51	1		1					1			-	7	13	0	14	-	0	1
24		10	58	1		1		-			1			-	7	13	0	18		0	+
48		10	29	1		1		-			0	-			6	15	0	0		0	-
	-	-	-	-	-	-					1				7	11	0	12		0	+
48		2	44	1	-	1			-		1	-			8	14	0	17		0	+
48		3	68	1	-	1		-					-	-	-	-	-	-		0	+
48		5	26	1		1			-	-	1		-	-	7	12	0	14		0	1

CETIS Test Data Worksheet

Report Date: Test Code/ID: 03 Aug-18 10:31 (p 2 of 2) 09-3760-0454/81365

								_	1				_	Test	Code/	ID:		09	3-3760	-0454	/81365
Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Notes
48		6	40	1		1					1				6	14	0	17		0	1
48		7	5	1		1					1				7	11	0	16		0	
48		8	4	1		1					1				7	0	7	15		0	
48		9	27	1		1					1				7	12	0	15		0	
48		10	48	1		1					1				6	13	0	14		0	
50		1	18	1		1					1				8	12	0	18		0	
50		2	57	1		1					1		-		0	0	11	6		0	
50		3	34	1		1					1				7	12	0	14		0	
50		4	50	1		1					1				7	14	0	17		0	
50		5	43	1		1					1				7	12	0	13		0	
50		6	10	1		1					1				6	11	0	19		0	
50		7	7	1		1					1				8	10	0	11		0	
50		8	49	1		1					1				8	10	0	16		0	
50		9	16	1		1					1				6	10	0	16		0	
50		10	20	1		1					1				6	12	0	15		0	
100		1	14	1		1					1				8	12	0	18		0	
100		2	53	1		1					1				7	11	0	15		0	
100		3	11	1	7	1	-200.0				1				7	10	0	18		0	
100		4	46	1		1					1				7	12	0	22		0	
100		5	61	1		1					1				8	13	0	17		0	
100		6	23	1		1					1				6	12	0	16		0	
100		7	24	1		1					1				7	3	0	16		0	
100		8	42	1		1					1				6	3	0	18		0	
100		9	13	1		1					1				5	12	0	15		0	
100		10	45	1		1					1				7	13	0	20		0	

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: K	eene/Ley					Permit No	. NH010	0790	Pipe No.	1
TOXICITY '	ΓEST DA Rep.	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8136
	1	0	0	6	0	8	13	0	19	
1	2	0	0	8	0		14	0		
Du	3	0	Ŏ	0	Õ	SOCALITICAL SOCIAL SOCI	13	0	14	
00/	4	0		0	Ö	8	13	0	1,5,	
SOFT	5	0	8	0	0	7	13	Q	18	
2011	6	0	0	Ò	0	7)22ama	0	16	
CTRL	7	0	0	8	Ô	8	12	0	14	
	8	0	Q	0	Q	t	12	2	13	
	9	0	2	- Q	8	Z,	13	0	1.7	
	10	0	0	0				0	1+	
	1	0	0	0	0	9	12		19	
	2	0		0	0	9	13	Q	17.	
	3	0	0	0	0	8		Q	(5	
0 %	4	0	Q	Q	8	Š	13	1	16	
	5	0	0	8	8	Q.	13	8	13	
RW	6	0	2	8	8	3	13	7	19	
IVV	7	0	2	8	8	-8	19	0	16	
	8	0	8	6	8	Po	10	0	15	
	9	0	8	Õ	8	ASSA HOSA	13	6	17	
	10						10	0	11/	
	1	0	0	8	0	0001-701-	12	ŏ	16	
	2	0	1-2-	8		9	12	0	12	
	3	0	8	8	8	2	13	0	15	
12 %	4	0	6	X	0	9	13	Ó	14	
	5	0	8	8	0	10.	13	0	15	
EFF	6 7	0	8	8	a	9		Õ	13	
	8	0	No.	Ö	0	1	12	0	1.0	
	9	0	0	Ö	0	78	12		19	
	10	0	0	0	0	(8	9	0	13	
		0	0	0	0		12	0	14	
	1 2 3	0	0	0	Ŏ	4	2	0	13	
	3	0	0	Õ	0	8	14	0	15	
2/10/	4	0	0	0000	0	066	13		15	
24 %	5	0	K	Q	000	.8	12	0	19	
	6	0	0	0	0	086		2	13	
EFF	5 6 7	0	8	8	8	7	13	0	17	
		0	0	Q	9	197	1	2	117	
	8	0	0	Ö	Q	7	13	9	17,	
	10	0	0	G	0	+	13		18	

@ clarified recording KN 2/14/18

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID:	Keene/Ley					Permit No.	NH010	0790	Pipe No.	. 1
FOXICITY % Effluent	TEST DA	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8136
	1	0	0	0	0	le	15	00	D-0	
	2	0	8	0	0	7		0	13	
	3	0	0	8	0	8	1,4	0	17	
48 %	4	0	0	Q	8	3	12	0	14	
	5	0	0	Q	0	7	13	0	15	
EFF	6	0	2	Q	Q_	le	17	Ø.	I,t	
	7	0	2	8	0	3	1	9	10	
	8	0	8	0	8	7	13	7	13	
	9 10	0	8	0	8	To	12	8	14	
	1	0	0	6			la	(DH)	18	
	2	0	X	Ó	Ã	8	5	110	6	
	3	0	8	8	X	F	12	6	14	
50 %	4	0	0	O	8	7	14	Ŏ	17	
30 70	5	0		6	3	7	12	Ŏ	13	
FFF	6	0	0	O	K	Ce	II	0	19	
EFF	7	0	0	0	0	8	10	0		
	8	0	8	8	0	8	,10	2	1 Ce	
	9	0		8	2	6	10	Q	16	
	10	0		0		0	12	0		
	1	0	Q	8	0	00/4/19/00	12	0	18	
	2	0	Q_	~	2	1	ŢŢ	0	15	
40004	3	0	8	0	8	4	19	0	32	
100 %	4	0	8	0	8	J	13	0	92	
	5 6	0	X	Q	8	6	12	A	Te	
EFF	7	0	8	Ŏ	0	7	3	8	16	
	8	0	0		Ŏ	6	3	0	19	
	9	0	0	8	0	5	12	Ŏ	195	
	10	0	(4)	0 3	00	7	13	Ŏ	20	
	Sample #	50988	50988	509912	150992	50993	50993	50993	50993	
	Fed	V	/	1	V	V	V	V	-	
	Renewal	710/18	7111113	7/12/18	7/13/18	7/14/18	7/15/18	7/16/18	747118	
	(D/T/I)	11:55	1140	7/12/18	11:25	12:05	7/15/18	1900	1340	
	(2/1/1)	051	PIV	IVIV	IGN	KAN	140	IN	0218-56	

1) Organism appears weak on 7/16/18 10 wrote in Wrong spot Kw7/16/18 3) 50991 is Sample # W

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: Keene/Lev Permit No. NH0100790 Pipe No. **INITIAL CHEMISTRY DATA:** Test ID 81365 % Effluent **Analysis** Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 pH W DO Temp. Cond. pH 0% DO Temp. RW Cond. pH 12 % DO Temp. **EFF** Cond. pH 24 % DO Temp. **EFF** Cond. pH 48 % DO Temp. EFF Cond. pH 50 % DO Temp. **EFF** Cond. pH 100 % DO Temp. **EFF** Cond. Sample # 50988 50988 Date Initials

Aquatec Environmental, Inc.

SDG:

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: Keene/Ley Permit No. NH0100790 Pipe No. 1 81365 Test ID FINAL CHEMISTRY DATA: % Effluent Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 **Analysis** Day 1 0 pH DO 25. Temp. 9 Cond. pH 0% 0 2 DO Temp. RW Cond. pH 12 % DO 25.6 Temp. EFF 264 260 Cond. pH 24 % DO 25 Temp. EFF Cond. 7.5 pH 48 % DO Temp. **EFF** 505 Cond. pH 50 % DO Temp. **EFF** 516 Cond. 6 pH 100 % DO Temp. **EFF** Cond. 509921 50993 50993 50998 50993 50988 50988 Sample # Date Initials

1) Sample # 50991 KN 7/13/18
(2) Conductivity 269 WS KN 7/15/18

(d

SDG:

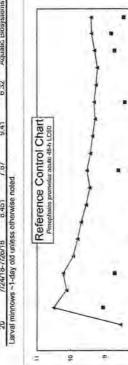
Documentation of Collection

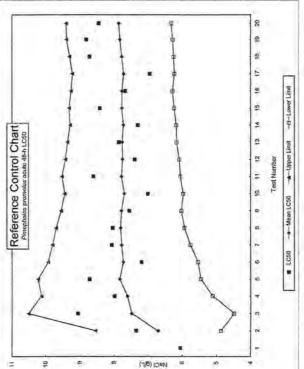
Source: In-House Cultures Client/Project: Keene / 3	Species:	C-d-f-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-		1
In-House Cultures	openes.	Ceriodaphnia dubia	Client/Projects 1/ 000-	1000
Ul-House Chimings	Source:	In House Colle	Chemitationed: Theelie	LSRT
resting Date: 4/		m-nouse cultures	Testing Date: 7	110/18

Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold at appropriate testing temperature.

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 070218 (N) and YTC (Lot #: 120 (N)51718) to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.

Culture ID	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fee
07031866	7/9/18/2:10 W	79/18/16:22 KN		-
70318 bb	7/9/18/16:22 4	19/18/16:25 KM	n 13	_
670318 BB	7/9/18/6/25 KN	7/10/18 23:10 0	our 7	V
070418 38	7/9/18 23:10 N	1/11/19 06:50	61	レレ

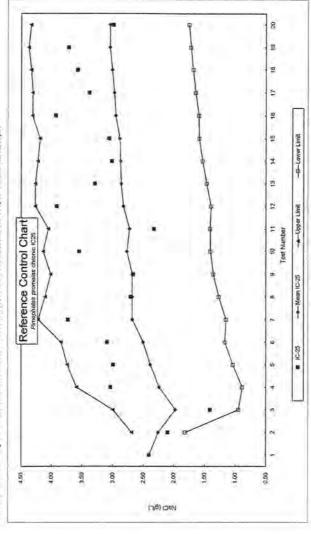

^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female


Aquatec Environmental, Inc.
DAPHNID COLLECTION FORM

Standard Reference Toxicant Control Chart(s)

Pimephales promelas acute survival LC50 Control Chart Reference toxicant: sodium chloride (g/L)

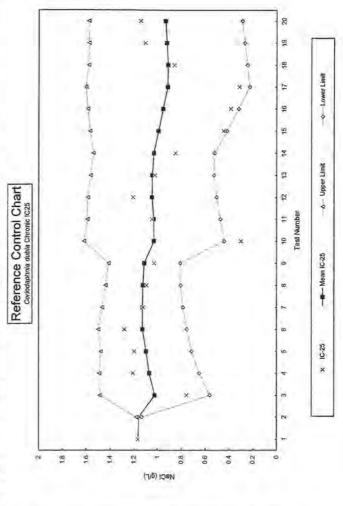
Test	Test	1050	Mean	Calculated limits	ed limits	
Number	Date	(g/L)	LC50	Upper	Lower	Source
	7/12/16-7/14/16	6.06				Aquatic Biosystems
2	8/12/16-8/14/16	7.36	6.71	8.55	4.87	Aquatic Biosystems
3	9/13/16-9/15/16	90.6	7.49	10.50	4.48	Aquatic Biosystems
4	10/19-21/2016	7.994	7.62	10.13	5.11	Aquatic Biosystems
5	11/29/16-12/1/16	8.722	7.84	10.22	5.45	Aquatic Biosystems
9	1/10/17-1/12/17	7.204	7.73	9.93	5.54	Aquatic Biosystems
7	27117-2/9/17	8.071	7.78	9.80	5.76	Aquatic Biosystems
80	3/21/17-3/23/17	8.042	7.81	69.6	5.93	Aquatic Blosystems
6	5/2/17-5/4/17	7.561	7.79	9.55	6.02	Aquatic Biosystems
10	7112117-7114117	7.005	7.71	9.44	5.97	Aquatic Biosystems
1	8/8/17-8/10/17	8.61	7.79	9.53	6.05	Aquatic Biosystems
12	9/12/17-9/14/14	7.403	7.76	9.43	60.9	Aquatic Biosystems
13	10/24/17-10/26/17	7.867	77.77	9.37	6.17	Aquatic Biosystems
14	11/17/17-11/9/17	7.31	7.73	9.29	6,18	Aquatic Biosystems
15	1/25/18-1/27/18	8.42	7.78	9.32	6.24	Aquatic Biosystems
16	2/6/18-2/8/18	7.678	7.77	9.26	6.28	Aquatic Biosystems
11	3/6/18-3/8/18	6.952	7.72	9.22	6.23	Aquatic Biosystems
18	4/3/18-4/5/18	8.722	7.78	9.31	6.25	Aquatic Biosystems
13	6/5/18-6/7/18	8.819	7.83	9.39	6.28	Aquatic Biosystems
20	7124/18-7/26/18	6.451	7.87	9.41	6.32	Aquatic Biosystems



Note: Tests through September of 2016 were as Aquatec Biological Sciences, Inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, Inc.

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

Test	Test	IC-25	Mean	Calculated fimits	d fimits	CV of Avg.	Avg.	Growth	Avg.	
Number	Date	(a/L)	IC-25	Upper	Lower	1025	S	PMSD (%)	PMSD (%)	Source
	7/12/16-7/19/16	2.41	2.41					15,60	15.60	Aquatic Biosystems
2	8/12/16-8/19/16	2.10	2.26	2.69	1.82	0.10	0.10	11.70	13.65	Aquatic Biosystems
e	9/13/16-9/20/16	1.41	1.97	3.00	0.95	0.26	0.18		11.70	Aquatic Biosystems
4	10/19-26/2016	3.04	2.24	3.59	0.89	0.30	0.22	18.00	15.10	Aquatic Biosystems
'n	11/29/16-12/6/16	2.99	2.39	3.74	1.04	0.28	0.24	20.40	16.43	Aquatic Biosystems
9	1/10/17-1/17/17	3.09	2.51	3.84	1.17	0,27	0.24	11.20	15.38	Aquatic Biosystems
1	27117-2/14/17	3.73	2.68	4.21	1.15	0.29	0.25	7.45	14.06	Aguatic Biosystems
8	3/21/17-3/28/17	2.71	2.68	4.10	1.27	0.26	0.25	14.80	14.16	Aquatic Biosystems
07	5/2/14-5/9/17	2.66	2.68	4.01	1.36	0.25	0.25	15.10	14.28	Aquatic Biosystems
10	7112/17-7/19/17	3.55	2.77	4.13	1,40	0.25	0.25	12.90	14 13	Aquatic Biosystems
F	8/8/17-8/15/17	2.33	2.73	4.05	1.41	0.24	0.25	only 2 reps	12.72	Aquatic Biosystems
12	9/12/17-9/19/17	3.91	2.83	4.26	1.39	0.25	0.25	19.00	13.29	Aquatic Biosystems
13	10/24/17-10/31/17	3.29	2,86	4.26	1.47	0.24	0.25	22.10	14.02	Aquatic Biosystems
14	11/117-11/14/17	3.02	2.87	4.22	1.53	0.23	0.25	27.00	15.02	Aquatic Biosystems
15	1/25/18-2/1/18	3.06	2.89	4.19	1.59	0.22	0.25	15.50	15.05	Aquatic Biosystems
16	2/6/18-2/13/18	3.93	2,95	4.31	1.59	0.23	0.25	14.70	15.03	Aquatic Biosystems
17	3/6/18-3/13/18	3.38	2.98	4.31	1.65	0.22	0.24	19.20	15.29	Aquatic Biosystems
18	4/3/18-4/10/18	3.57	3.01	4.33	1.69	0.22	0.24	13.20	15.14	Aquatic Biosystems
19	6/5/18-6/12/18	3.72	3.05	4.37	1.72	0.22	0.24	12.80	15.04	Aquatic Biosystems
20	7724/18-7/31/18	2.99	3.04	4.33	1.75	0.21	0.24	20.80	15.34	Aquatic Biosystems


Assessment of fest precision and sensitivity: The average CVs of IC25 values are within the 25th Percentile (0.21) for fathead minnow growth (Table 3-2, EPA 833-R-00-003) indicating high precision (only 25% of labs reported CVs of not more than 0.21). The per-lest PMSD values were less than the EPA upper limit of 30% indicating low-to moderate veniability (moderate to high sensitivity) for this method. The cumulative average PMSD value of 20 tests (15.3) was near the EPA lower boundary (12%), indicating high statistical sensitivity for this test method. Updated 08/07/18

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Ceriodaphnia dubia Reference Control Chart for NaCl Chronic Toxicity based on reproduction

Test	Test Date	(a/L)	Mean LC50	Cafculated limits Upper Lowe	d limits Lower	Test	Test Date	(G/L)	Mean IC-25	Calculated limits Upper Lowe	d limits Lower	CV of Avg. IC25	Avg.	Repro. PMSD (%)	Avg. PMSD (%
	9/20/16-9/22/16	1.956	1.96			-	9/20/16-9/26/16	1.167	1.17					32.6	
2	10/18/16-10/20/16	2.195	2.08	2.41	1.74	2	10/18/19-10/25/16	1.149	1.16	1.18	1.13	0.01	10.0	10.7	32.6
63	11/29/16-12/1/16	2.000	2.05	2.30	1.80	3	11/29/16-12/5/16	0.7583	1.02	1.49	0.56	0.23	0.12	15.8	21.7
4	1/10/17-1/12/17	1.966	2.03	2.25	1.81	4	1/10/17-1/16/17	1.211	1.07	1,49	0.65	0.20	0.14	13.7	19.7
10	2/14/17-2/16/17	2,098	2.04	2.25	1,84	2	2/14/17-2/22/17	1.2	1,10	1.48	0.72	0.17	0.15	33.2	18.2
9	3/21/17-3/23/17	2.195	2.07	2.29	1.85	9	3/21/17-3/28/17	1.282	1.13	1.50	0.75	0.17	0.15	34.9	21.2
2	5/16/17-5/18/17	2.195	2.09	2.31	1.86	7	5/16/17-5/22/17	1.123	1.13	1.47	62.0	0.15	0.15	10.5	23.5
00	7/11/17-7/13/17	1.414	2.00	2.52	1.48	80	7/11/17-7/13/17	1.093	1.12	1.44	0.81	0.14	0.15	6.72	21.6
6	8/1/17-8/3/17	1,743	1.97	2.49	1.46	6	8/1/17-8/7/17	1.03	1.11	1.42	0.81	0.14	0.15	16	19.8
10	9/12/17-9/14/17	1.684	1.94	2.46	1.43	10	9/12/17-9/18/17	0.2996	1.03	1.62	0.44	0.29	0.17	32.1	19.3
11	9/28/17-9/30/17	2,449	1.99	2.57	1.41	11	9/28/17-10/4/17	1.048	1.03	1.59	0.47	0.27	0.18	15.8	20.6
12	10/31/17-11/2/17	2,319	2.02	2.60	1.43	12	10/31/17-11/6/17	1,208	1,05	1.59	0.51	0,26	0,18	9.47	20.2
13	11/28/17-11/30/17	2.161	2.03	2.59	1.46	13	11/28/17-12/4/17	1.023	1.05	1.56	0,53	0.25	0.19	9.72	19.3
14	1/9/18-1/11/18	2.077	2.03	2.57	1.49	14	1/9/18-1/16/18	0.85	1.03	1.54	0.52	0.25	0,19	30.3	18.6
15	2/6/18-2/8/18	1,861	2.02	2.55	1.49	15	2/6/18-2/12/18	0.4474	0.99	1.57	0.42	0,29	0.20	20.6	19.4
16	3/6/18-3/8/18	1,966	2.02	2.53	1.50	16	3/6/18-3/12/18	0.3857	0.95	1,59	0.32	0.33	0.21	13.8	19.5
17	4/3/18-4/5/18	2,577	2.05	2.62	1.48	17	4/3/18-4/10/18	0.315	0.92	1.60	0.23	0.37	0.22	36.3	18.1
18	5/15/18-5/17/18	2,337	2.07	2.63	1.50	18	5/15/18-5/21/18	0.8601	0.91	1.58	0.25	0.37	0.23	17.3	20.1
19	6/12/18-6/14/18	2.337	2.08	2.64	1.52	19	6/12/18-6/18/18	1.105	0.92	1.58	0.27	0.35	0,23	6.82	20.0
20	7/24/18-7/26/18	1,966	2.07	2.63	1.52	20	7/24/18-7/30/19	1,145	0.94	1.58	0.29	0.34	0.24	16.1	19.1

Reference Control Chart

Assessment of test precision and sensitivity: The cumulative average CV of 0.24 for reproduction was near the S0th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data. The cumulative average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 08/07/18,

19 20

18 17 16

42 4

CV

1,350

Test Number Q

Lower Limit

0

Upper Limit

-E-Mean LC50

1,050 × \qqqc\srts\Cd SRT including CV and PMSD

2600

2,850

(J/g) (g/L)

1.650

1,600

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley Permit No. NH0100790

TOXICITY SUMMARY REPORT:

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Reference: EPA-821-R-02-013 Species: Pimephales promelas

SOP: WET-A-001

Test Start:

51048

Number Sample Name

8/7/2018 3:10:00 PM

Test End:

8/14/2018 3:10:00 PM

CHRONIC ACUTE LC50 LOEC NOEC NOEC >100 100 100 >100

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Keene WWTP (2° Clarifier #2)

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

WET-A-002 SOP:

Test Start:

8/7/2018 1:00:00 PM

Test End:

8/13/2018 2:50:00 PM

ACUTE

CHRONIC

		y9	6	9	6
Number	Sample Name	NOEC	LC50	NOEC	LOEC
51048	Keene WWTP (2° Clarifier #2)	100	>100	100	>100

SAMPLES RECEIVED:

Number	Sample Name	Date Time and Collected	Туре
51048	Keene WWTP (2° Clarifier #2)	8/6/2018 7:00:00 AM	Effluent
	Ashuelot River	8/6/2018 8:56:00 AM	Receiving
51050	080518-SOFT	8/7/2018 10:45:00 AM	Lab Water
51063	Keene WWTP (2° Clarifier #2)	8/8/2018 6:30:00 AM	Effluent
51064	Ashuelot River	8/8/2018 9:50:00 AM	Receiving
51067	Keene WWTP (2° Clarifier #2)	8/10/2018 6:33:00 AM	Effluent
51068	Ashuelot River	8/10/2018 9:40:00 AM	Receiving

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: ____ Date: ___9/4/(8

p. 1

Wednesday, August 29, 2018

SDG:

15390

18017 Project

Client ID:

1000.0

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Route 32 Swanzey, NH 03446

Keene/Ley TOXICITY DETAIL REPORT: Permit No. NH0100790

Sample ID: 51048 / Keene WWTP (2° Clarifier #2) Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013

SOP:

WET-A-001

Test Start:

8/7/2018 3:10:00 PM

Test End:

8/14/2018 3:10:00 PM

Response: Survival (%)

	Additional			Concent	ration %		
Day	Control	0	12	24	48	50	100
2	100	100	100	100	100	100	100
7	97.5	100	100	100	100	100	100

Response: Growth per Original Number of Larvae (mean dry weight, mg)

Additional	1		Concent	ration 9	6		
Control	0	12	24	48	50	100	
0.646	0.625	0.655	0.682	0.676	0.689	0.701	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

8/7/2018 1:00:00 PM

Test End:

8/13/2018 2:50:00 PM

Response: Survival (%)

	Additional	J		Concent	ration %	-		
Day	Control	0	12	24	48	50	100	
2	100	100	100	100	100	100	100	
6	100	100	100	100	100	100	100	

Response: Reproduction (mean neonates per female)

9	Additional Control			Concentration %		6	1
		0	12	24	48	50	100
6	29.6	38.44	40.5	42	38.9	40.6	38.5

Submitted By:

1 of 1

Aguatec Environmental, Inc

Wednesday, August 29, 2018

SDG: 15390

Project 18017

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Reference: EPA-821-R-02-013 Species: Pimephales promelas

SOP: WET-A-001

8/7/2018 3:10:00 PM Test End: 8/14/2018 3:10:00 PM Test Start:

Response: Survival (%)

Sample ID Dilution Control Additional Control 100 100 2 51048 100 97.5 7 51048

Growth per Original Number of Larvae (mean dry weight, mg) Response:

> Sample ID Dilution Control Additional Control 0.646 7 51048 0.625

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 11.4%

PMSD Criteria Range:

12%-30%

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, there were no special conditions or qualifiers that relate to the samples in this report with the following exceptions:

Soft water was used as dilution water and statistical control. Receiving water (Ashuelot River) was the additional control.

The ambient temperature (temperature blank) of the third cooler (received on August 11, 2018) was 8.5°C which was above the target range of 0-6°C.

> 1 of 3 Aguatec Environmental, Inc. Date: 9/4/18

SDG: Project

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Keene/Ley

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Reference: EPA-821-R-02-013 SOP: Species: Ceriodaphnia dubia WET-A-002

8/7/2018 1:00:00 PM 8/13/2018 2:50:00 PM **Test Start:** Test End:

Response: Survival (%)

> Sample ID Dilution Control Additional Control Day 100 2 51048 100 100 100 6 51048

Reproduction (mean neonates per female) Response:

> Sample ID Dilution Control Additional Control Day 51048 38.4 29.6 6

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 10.7%

PMSD Criteria Range:

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, there were no special conditions or qualifiers that relate to the samples in this report with the following exceptions:

Soft water was used as dilution water and statistical control. Receiving water (Ashuelot River) was the additional control.

The ambient temperature (temperature blank) of the third cooler (received on August 11, 2018) was 8.5°C which was above the target range of 0-6°C.

An accidental mortality of one of the parent organisms in the Laboratory Control replicates occurred on Day 2. The survival and reproduction data for this organism was excluded from data tabulations and statistical analysis.

SDG: Project 15390

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: <u>September 9, 2018</u>.
(Date)

Authorized signature)

John Williams Director

Aguatec Environmental, Inc.

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013 WET-A-001

Test Start:

8/7/2018 3:10:00 PM

Test End:

8/14/2018 3:10:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type

Test Species

Sample Type

Sampling Method

Modified Chronic

Pimephales promelas

Effluent

Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

August 6, 8, & 10, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

August 14-21, 2018

Reference Toxicant Test

Yes

Acceptable?

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6

Aquatec Environmental, Inc. p. 6 SDG:

15390 18017

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

8/7/2018 3:10:00 PM

Test End:

8/14/2018 3:10:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Growth: 0.625 (mg)

B. Additional Control:

Ashuelot River

Mean Control Survival: 97.5 %

Mean Control Growth: 0.646 (mg)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Growth (%): 11.4

PERMIT LIMITS AND TEST RESULTS:

	LIMITS (%)	RESULTS (%)	
48-Hour LC50):	48-Hour LC50:	> 100
		Upper Value: Lower Value:	N/A N/A
		Data Analysis Method(s):	Dunnett Multiple Comparison Test, Linear Interpolation (ICPIN), Steel Many-One Rank Sum Test
A-NOEC:	100.0	A-NOEC:	100
C-NOEC:	48.0	C-NOEC:	100
		C-LOEC:	> 100
IC25:		IC25:	> 100

2 of 6

Aquatec Environmental, Inc. Reviewed by: ____ Date: ___

SDG:

15390

Project 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001 SOP:

Test Start:

8/7/2018 3:10:00 PM

Test End:

8/14/2018 3:10:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 12%-30%, indicating test data with low variability and high statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

3 of 6

Aquatec Environmental, Inc. Reviewed by: _____ Date: __ p. 8

SDG: Project 15390

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

Client ID: Keene/Ley

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Reference: Species: Ceriodaphnia dubia EPA-821-R-02-013

WET-A-002

Test Start:

8/7/2018 1:00:00 PM

Test End:

8/13/2018 2:50:00 PM

TOXICITY TEST SUMMARY SHEET:

Sampling Method Sample Type **Test Type Test Species** Composite Effluent **Modified Chronic** Ceriodaphnia dubia

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

August 6, 8, & 10, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

August 14-20, 2018

Reference Toxicant Test

Yes

Acceptable?

Age and Age Range of Test

<24h collected within an 8h period

Organisms:

Source of Organisms:

Aquatec Environmental, Inc. - Williston, VT

4 of 6

Aquatec Environmental, Inc. Reviewed by: Date: 9/4

SDG: Project 15390

18017

R. Edward Company

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

Client ID: Kee

1002.0

Keene/Ley

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

8/7/2018 1:00:00 PM

Test End:

8/13/2018 2:50:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Reproduction: 38.44 (neonates)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Reproduction: 29.6 (neonates)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Reproduction (%): 10.7

PERMIT LIMITS AND TEST RESULTS:

	LIMITS (%)		RESULTS (%)				
48-Hour LC50):	48-Hour LC50:	> 100				
		Upper Value: Lower Value:	N/A N/A				
		Data Analysis Method(s):	Fisher Exact/Bonferroni-Holm Test, Linear Interpolation (ICPIN), Wilcoxon Rank Sum Two-Sample Test				
A-NOEC:	100.0	A-NOEC:	100				
C-NOEC:	48.0	C-NOEC:	100				
		C-LOEC:	> 100				
IC25:		IC25:	> 100				

5 of 6

Aquatec Environmental, Inc.
Reviewed by: Date: 9/4/19

SDG:

15390 18017

Project

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1002.0 Da

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

8/7/2018 1:00:00 PM

Test End:

8/13/2018 2:50:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 13%-47%, indicating test data with low variability and high statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or reproduction were not detected.

6 of 6

Aquatec Environmental, Inc.

p. 11

Wednesday, August 29, 2018

SDG: 15390

Project 18017

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1808-19506

DATE RECEIVED: August 07, 2018

DATE REPORTED: August 29, 2018

SAMPLER: BB/MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED:

08/29/2018

CLIENT: Aquatec Environmental, Inc
PROJECT: Keene NH NPDES

WORK ORDER: 1808-19506
DATE RECEIVED: 08/07/2018

001 Site: Keene WWTP Co	mposite		Γ	Pate Sampled: 8/6/18	Time: 7	7:00	
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organic Carbon	5.1	mg/L	SM 5310C (00)	8/10/18	N JGM	A	
Total Hardness, Total as CaCO3	67	mg/L	EPA 200.7	8/27/18	W FAA	A	
Ammonia as N	0.11	mg/L	EPA 350.1, R.2	8/13/18	N JGM	A	
Solids, Total Dissolved	437	mg/L	SM 2540C-97	8/8/18	W JSS	A	
Total Solids	19	mg/L	SM 2540 B97	8/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	8/20/18	W SJM	A	
Aluminum, Total	0.048	mg/L	EPA 200.8	8/21/18	W SJM	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	8/21/18	W SJM	A	
Calcium, Total	22	mg/L	EPA 200.7	8/27/18	W FAA	A	
Copper, Total	0.0065	mg/L	EPA 200.8	8/21/18	W SJM	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	8/21/18	W SJM	A	
Magnesium, Total	2.9	mg/L	EPA 200.7	8/27/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	8/21/18	W SJM	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	

002	Site: (51049) Ashuelot	River Grab		Ε	Date Sampled: 8/6/18	Time: 8	3:56	
<u>Parameter</u>		Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organ	nic Carbon	8.2	mg/L	SM 5310C (00)	8/10/18	N JGM	A	
Total Hardr	ness, Total as CaCO3	8	mg/L	EPA 200.7	8/23/18	W FAA	A	
Ammonia a	ns N	0.09	mg/L	EPA 350.1, R.2	8/13/18	N JGM	A	
Metals Dig	estion	Digested		EPA 200.7/200.8	8/20/18	W SJM	A	
Aluminum,	Total	0.21	mg/L	EPA 200.8	8/21/18	W SJM	A	
Cadmium,	Total	< 0.0002	mg/L	EPA 200.8	8/21/18	W SJM	A	
Calcium, To	otal	2.2	mg/L	EPA 200.7	8/23/18	W FAA	A	
Copper, Tot	tal	0.0022	mg/L	EPA 200.8	8/21/18	W SJM	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	8/21/18	W SJM	A	
Magnesium	n, Total	0.57	mg/L	EPA 200.7	8/23/18	W FAA	A	
Nickel, Tota	al	< 0.0050	mg/L	EPA 200.8	8/21/18	W SJM	A	
Zinc, Total		< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	COMPANY INFORMATION						PROJECT INFORMATION					
Name:	Aquatec Er	vironm	ental, inc			Proje	ct Name	: :	Keene N	H NPDES		
Address:	273 Comm	erce Str	eet		:	Proje	ct Numl	er:	18017			
City/State/Zip:	Williston, \	/T 05403				Samp	ler Nam	ie(s):	вв/мм			
Telephone:	(802) 860 -	2960										
Contact Name:	John Willia	ms										
I NAMEDIE BEENLIEB ALBEND					AN (Detection	ALYSIS n Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	:	
Keene WWTP (2 Clarifier	1 08/0	6/18 7	:00	Grab:	N/A	Compo	site:	х	*** P		
		Amı	monia (0.:	1)				500ml.	Plastic	H2SO4	1	
	Metals: Cd, Pb (0.0005); Cu (0.003 (0.005); Al (0.02); Mg, Ca (0.05)					13); Zn, Ni		250mL	Plastic	HNO3	<u>.</u> 1	
		Tota	l Organic	Carbon	(0.5)			40mL	Glass	H2SO4	2	
		Tota	ıl Solids/T	otal Diss	olved Solid	ls		1/2gal	Plastic	ice (4C)	1	
Ashuelot River	(51049)	08/0	5/18 8:	56	Grab:	х	Compo	site: I	N/A	<u> </u>	<u> </u>	
			nonia (0.1		w phor	re cal	/	500mL	Plastic	H2SO4	1	
		Met		(0.000	5); Cu (0.00			250mL	Plastic	НИОЗ	1	
Relinquished by (signature) DATE TIME Received by: (signature) States 15:20 Electromen						DATE 8/7	TIME /520	Cooler Notes T	/Sample Temp.: _ o Lab:	5.6		
Relinquished by ((signature)	DATE	7					TIME				

1808-19506

1908–19506

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St 101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1808-19921

DATE RECEIVED: August 09, 2018

DATE REPORTED: August 22, 2018

SAMPLER: MM

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED:

08/22/2018

CLIENT:Aquatec Environmental, IncWORK ORDER:1808-19921PROJECT:Keene NH NPDESDATE RECEIVED:08/09/2018

001	Site: 51063 Keene WWTP 2 C	larifier Composite	;	Da	ate Sampled: 8/8/18	Time: 6	:30	
Parameter	<u>R</u>	<u>esult</u>	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Ammonia as	s N	0.55 r	mg/L	EPA 350.1, R.2	8/21/18	N CAL	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY IN	IFORMAT	ION	PRO	JECT	INFO	RMATIO	N
Name:	Aquatec Envi	ronmental, inc.		Project Name: Keene NH NPDES			H NPDES	
Address:	273 Commerce Street			Project Nu	nber: 3	18017		
City/State/Zip:	City/State/Zip: Williston, VT 05403			Sampler Na	me(s): 1	ИM		••
Telephone:	(802) 860 - 2	960						
Contact Name:	John William	s	· · · · · · · · · · · · · · · · · · ·					
SAMPLE IDEN	ITIFICATION	COLLECTION DATE TIME	/Datasti	NALYSIS on Limit, mg/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER
	-	08/08/18 6:30	0 Grab:	N/A Com	posite:	х	•	
5106	3	Ammonia (0.1)			500mL	Plastic	H2SO4	1
Relinquished by	bul 81	5/18 11:35	Received by: (s	oney 8/al	18 11:35	Notes	/Sample Temp.: Fo Lab:	3.7

1808-19921

1808-19921

Rquatec Environmental, Inc Keene NH NPDES

August 14, 2018

Aquatec Environmental, Inc

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: **1808-20446**

DATE REPORTED: September 10, 2018

SAMPLER: BB,MM

DATE RECEIVED:

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 09/10/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1808-20446
PROJECT: Keene NH NPDES DATE RECEIVED: 08/14/2018

001 Site: 51067 Keene WWTP 2 Clairifier Composite Date Sampled: 8/10/18 Time: 6:33 Parameter Result Method Analysis Date/Time Lab/Tech **NELAC** Units Qual. Ammonia as N 1.1 mg/L EPA 350.1, R.2 9/7/18 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	COMPANY INFORMATION						PROJECT INFORMATION					
Name:	Aquatec Environmental, Inc.				Projec	t Name	: К	eene N	H NPDES			
Address:	273 Comm	erce Stre	et			Projec	t Numb	er: 1	8017			
City/State/Zip:	Williston, \	/T 05403				Sampl	er Nam	e(s): B	B; MM	···	·····	
Telephone:	(802) 860 -	2960						-				
Contact Name:	John Willia	ms							-			
SAMPLE IDEI	NTIFICATIO	N COL	LECTIOI	N VIE		NALYSIS on Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINEI PRESERVATIVE	R NUMBER	
Keene WWTP	-	<u>.</u>	/18 6:		Grab:	N/A	Compo		Х			
5/2	167	Amn	nonia (0.1	.}			!	500mL	Plastic	H2SO4	1	
Relinquished by		DATE 8/14/18 DATE	TIME ノ <u>バライ、</u> TIME	5/2	oomey	signature) signature)	DATE 8/14 DATE	TIME 1549 TIME	Notes 1	/Sample Temp.: Fo Lab: Temperati 1-6°C) 8.5°C.	_	

1808-20446

1808-20446

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St 101170

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1808-19923

DATE RECEIVED: August 09, 2018

DATE REPORTED: August 29, 2018

SAMPLER: EB

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED:

08/29/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1808-19923
PROJECT: Tox Lab QC DATE RECEIVED: 08/09/2018

001 Site: (51058) 080518 S	oft		Г	Date Sampled: 8/7/18	Time: 1	6:20	
,		T I:4-		<u> </u>]
<u>Parameter</u>	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	<u>NELAC</u>	Qι
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	8/16/18	N CAL	A	
Total Hardness, Total as CaCO3	53	mg/L	EPA 200.7	8/27/18	W FAA	A	
Ammonia as N	< 0.05	mg/L	EPA 350.1, R.2	8/21/18	N CAL	A	
Solids, Total Dissolved	111	mg/L	SM 2540C-97	8/10/18	W JSS	A	
Total Solids	94	mg/L	SM 2540 B97	8/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	8/20/18	W SJM	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	8/21/18	W SJM	A	
Calcium, Total	10	mg/L	EPA 200.7	8/27/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	8/21/18	W SJM	A	
Magnesium, Total	6.8	mg/L	EPA 200.7	8/27/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	8/21/18	W SJM	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	COMPANY INFORMATION				ROJ	ECT I	INFO	RMATIO	N
Name:	Aquatec Envi	ronmental, Inc.		Project Name: Tox Lab QC					
Address:	273 Commer	ce Street		Projec	t Numb	er: 1	18000		
City/State/Zip: Williston, VT 05403			Sampl	er Nam	e(s): E	В			
Telephone: (802) 860 - 2960									
Contact Name	John William	s							
SAMPLE IDE	NTIFICATION	COLLECTION DATE TIME	10	NALYSIS on Limit, mg	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	R NUMBER
080518SOFT	(51058)	08/07/18 16:2	20 Grab:	Х	Compo	site: N	I/A		
		Ammonia-Nitro	gen(0.1)		:	250mL	Plastic	H2SO4	1
		Metals: Al (0.02 Ni (0.005); Ca, N	• • •	5); Cu (0.00	3); Zn,	250mL	Plastic	HNO3	1
		TOC - Total Orga	anic Carbon(0.5	}		40mL	Glass	H2SO4	2
		TS/TDS-Total So	lids/Total Disso	ived Solids		1/2gal	Plastic	Ice(4C)	1
Relinquished b	7// //	PATE TIME F	leceived by: (s	signature) 20my/	DATE 8/9	TIME 1/: 35		/Sample Temp.: Fo Lab:	3.7

1808-19923

1828-19923

Aquatec Environmental, Inc Tex Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PROJECT INFORMATION						VOL		CON'		ER TY	PE/
NAME: Keene, NH	PROJECT: Keene NH/Ley											
Address: 420 Airport Road	(1s	t Sample	Ship	Monde	ay)	O	NO3	4	4°C	12504	4	
Swanzey, NH 03446	PROJECT	PROJECT #: 18017					H	4°C	stic	ic H	H ₂ SO	
TEL: (603) 357 – 9836 [x6502]	SAMPLER	S NAME(S): Bd	Byh	sp.	Plasti	Metals: 250mL Plastic HNO3	TRC: 40mL Glass 4°C	Pla	Plast	ass	
CONTACT: Mary Ley			Mik	emov	tell	- luo			allon	m	10	
E-MAIL: mley@ci.keene.nh.us	PERMIT N	UMBER:	NH010	00790		Gall		: 40u	% G	: 250	roc: 40mL Glass H ₂ SO ₄	
	FINAL SUPERIOR SERVICE		Tox: 1 Gallon Plastic 4°C	METALS:	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC				
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX			HIMBI	ER OF	CONT	AINERS	
Keene WWTP (2° Clarifier #2)	8/6/18	700		Х	Effluent	2	1	1	1	1	2	
Ashuelot River	8/6/14	856	Х		Receiving	1	1			1	2	
ANALYSIS (TEST/DETECTION LIMITS) - T												

ANALYSIS (Test/Detection LIMITS) – Tox: 1000.0 & 1002.0 (*P. promelas* & *C. dubia* chronic toxicity; %) – METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) – TRC: Total Residual Chlorine (0.02mg/L) – TS/TDS: Total Solids / Total Dissolved Solids – AMMONIA: (0.1mg/L) – TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): Q . 4 °C
mayon	8/6/18	915	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: Signature or carrier) Priority Express			RECEIVED BY: (Signature) 2001 ARDAEC CON	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Other 'ChemSub' only if ≥50% mortality on renewal samples

Sample Acceptance Policy: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

PRO	PROJECT INFORMATION						VOLUME/CONTAINER TYPE/ PRESERVATIVE					
PROJECT:	Keene	NH/Le	γ									
(2 nd	Sample S	Ship W	ednes	day)	O	NO3		4°C	12504	4		
PROJECT	PROJECT #: 18017						14°C	stic	tic H	H2SC		
SAMPLER	S NAME(S	Plasti	Plasti	slass	Pla	Plast	lass					
100					lon	mL F	nr lo	allon	JmC	1 G		
PERMIT I	NUMBER:	NH010	0790		l Gall	250	:: 40r	: % 6	4: 25(40m		
		AB	OSITE	TRIX	Tox:	METALS	TR	TS/TDS	AMMONI	700		
DATE	TIME	GRAI	COMP	MA			lumb	ER OF	CONT	AINER	s	
8/8/18	630		х	Effluent	2	1*	1		1			
8/8/18	0950	Х		Receiving	1							
	PROJECT: (2nd PROJECT SAMPLER PERMIT N COLLEGE EVA S/S/N	PROJECT: Keene (2 nd Sample S PROJECT #: 180 SAMPLERS NAME(S PERMIT NUMBER: FINAL COLLECTION EVA 8/8//8 630	PROJECT: Keene NH/Le (2 nd Sample Ship W PROJECT#: 18017 SAMPLERS NAME(s): M PERMIT NUMBER: NH010 FINAL COLLECTION BY SO SIGNAL COLLECTION B	PROJECT: Keene NH/Ley (2nd Sample Ship Wedness PROJECT #: 18017 SAMPLERS NAME(S): My My PERMIT NUMBER: NH0100790 FINAL COLLECTION BY SOMO S/8//8 630 X	PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT #: 18017 SAMPLERS NAME(S): My Markel PERMIT NUMBER: NH0100790 FINAL COLLECTION BY SOMO WO SINGLE OF ON X Effluent	PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT #: 18017 SAMPLERS NAME(S): My Markel PERMIT NUMBER: NH0100790 FINAL COLLECTION BY SING WOOD FINAL COLLECTION S/8//8 630 X Effluent 2	PROJECT INFORMATION PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT #: 18017 SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 FINAL COLLECTION BY SIZE OF A COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 FINAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 FINAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 FINAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 FINAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 TOTAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 TOTAL COLLECTION SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 TOTAL COLLECTION SAMPLERS NAME(s): M. (Marti) SAMPLERS NAME(s): M. (Marti) PERMIT NUMBER: NH0100790 TOTAL COLLECTION SAMPLERS NAME(s): M. (Marti) SAMP	PROJECT INFORMATION PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT#: 18017 SAMPLERS NAME(s): My Marki PERMIT NUMBER: NH0100790 FINAL COLLECTION PROJECT (40ml Glass 4°C NUMBER Glass 4°C NUMBER	PROJECT INFORMATION PRESER PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT#: 18017 SAMPLERS NAME(s): (100 blastic 4°C PERMIT NUMBER: NH0100790 FINAL COLLECTION PRESER AND	PROJECT INFORMATION PRESERVATIV PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT #: 18017 SAMPLERS NAME(S): Mark Collection Plastic Hos PERMIT NUMBER: NH0100790 FINAL COLLECTION Plastic Hos PRESERVATIV NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 2 1 1 1 NUMBER OF CONT. 2 1 1 1 NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 1 1 1 1 1 NUMBER OF CONT. 1 1 1 1 1 NUMBER OF CONT. 1 1 1 NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 1 1 1 1 NUMBER OF CONT. 1	PROJECT INFORMATION PRESERVATIVE PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PROJECT #: 18017 SAMPLERS NAME(s): Markin Plastic Hoo PERMIT NUMBER: NH0100790 FINAL COLLECTION PERMIT Gallon Plastic Hoo PERMIT Floor Floor PERMIT Flore PERMIT Floor PERMIT Flor	PROJECT: Keene NH/Ley (2nd Sample Ship Wednesday) PREMIT NUMBER: 18017 PERMIT NUMBER: NH0100790 PERMIT NUMBER: NH0100790 PERMIT NUMBER: NH0100790 PERMIT NUMBER: NH0100790 AMMONIA: 250mL Plastic H-2504 1

ANALYSIS (Test/Detection Limits) – Tox: Renewal (*P. promelas* and *C. dubia* chronic toxicity; %) – Metals: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) – TRC: Total Residual Chlorine (0.02mg/L) – TS/TDS: Total Solids / Total Dissolved Solids – AMMONIA: (0.1mg/L) – TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 1. 4°C
Inn	8/8/18	1005	Priority Express	NOTES: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 8/9/18	TIME: 9:50	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Metals analysis only if ≥50% mortality.

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

ENVIRONMEN.		4000000											47.11
COMPANY INFORMATION	PROJECT INFORMATION					VOLUME/CONTAINER TYPE/ PRESERVATIVE							
NAME: Keene, NH	PROJECT:	Keene	NH/Le	ey .									П
Address: 420 Airport Road	(3 rd Sample Ship Friday)						SO.		4°C	2504	4		
Swanzey, NH 03446	PROJECT #	PROJECT #: 18017					H .	4°C	stic	ic H	H ₂ S0		
TEL: (603) 357 – 9836 [x6502]	SAMPLERS NAME(S): Bob Bishop						lastic	lass	Pla	Plast	TOC: 40mL Glass H ₂ SO ₄		
CONTACT: Mary Ley	mike Markil						nL P	11.6	allon	mL			
E-MAIL: mley@ci.keene.nh.us	PERMIT N	UMBER:	NH010	00790		Gall	250r	TRC: 40mL Glass 4°C	% 6	: 250	40m		
	COLLEC	444	48	OSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃		TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC:		
SAMPLE IDENTIFICATION	SIOIS (TIME	GRAB	X COMPOSITE	MATRIX								
		Ē				Number of Containers							
Keene WWTP (2° Clarifier #2)					Effluent	3	1*	1		1			
Ashuelot River	8/10/18		Х		Receiving	2							
			7770		1.0 4.1.	a al-	tonic :	tovici	hu 9/1	DA.	FTAIC	C4 8	D D

ANALYSIS (TEST/DETECTION LIMITS) — Tox: Renewal (*P. promelas* and *C. dubia* chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 8.5°C
many	8/10/18 100		Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 8/11/18	TIME: 0835	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Metals analysis of renewal samples only if ≥50% mortality.

Sample Acceptance Policy: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

Keene/Ley

	Initial S	Sample	Second	Sample	Third S		
	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	51048	51049	51063	5064	51067	51068	51050
Filtration	60 Micron	60 Micron	N/A				
Chlorine (1)	MD	_	ND		AN		N/A
Chlorine (2)	_	~	_	_	1	/	N/A
NaThio Lot No.	_	_	_		/	/	N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Date / Initials:	8 7118	8/7/18	819118	89118	8.11.18 KP -	-1	8/7/18

⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

Aquatec Environmental, Inc. Reviewed by: _ Date: 9/4/13. p. 29

SDG:

18017 Project

15390

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Keene/Ley

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity:	Hardness:	TRC: (mg/L)
51048 - Keene WWTP (2° Clarifier #2)	8/7/2018	48.0	64.0	0.00
51049 - Ashuelot River	8/7/2018	8.0	14.0	
51050 - 080518-SOFT	8/7/2018	40.0	54.0	
51063 - Keene WWTP (2° Clarifier #2)	8/9/2018	136.0	68.0	0.05
51064 - Ashuelot River	8/9/2018	20.0	18.0	
51067 - Keene WWTP (2° Clarifier #2)	8/11/2018	68.0	68.0	0.00
51068 - Ashuelot River	8/11/2018	12.0	10.0	

INF: Interference. The color endpoint was reached immediately

SDG: Project 15390

18017

Toxicity Test Method(s)

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Static renewal
25+/- 1C, Test temperatures must not deviate (i.e., maximum minus minimum temperature) by more than 3C during the test
Ambient laboratory illumination
10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)
16h light/8h dark
300mL
Nominal 250mL
Daily
Newly hatched larvae less than 24h old. If shipped, not more than 48h old, 24h range in age
imber: 10
s per 4
tration: 40
Newly hatched Artemia nauplii (< 24h old)
On days 0-6, feed 0.1g newly hatched (less than 24h old) brine shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to provide an excess.
Siphon daily, immediately before test solution renewal
None: unless DO concentration falls below 4.0mg/L.
Soft Water
6): 0, 0, 12, 24, 48*, 50, 100*
Ashuelot River
7 days
Survival and growth (weight)
eria: 80% or greater survival in controls; average dry weight per surviving organism in control chambers equals or exceeds 0.25mg
ts: For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
red: 2.5L/day
1

Aquatec Environmental, Inc.

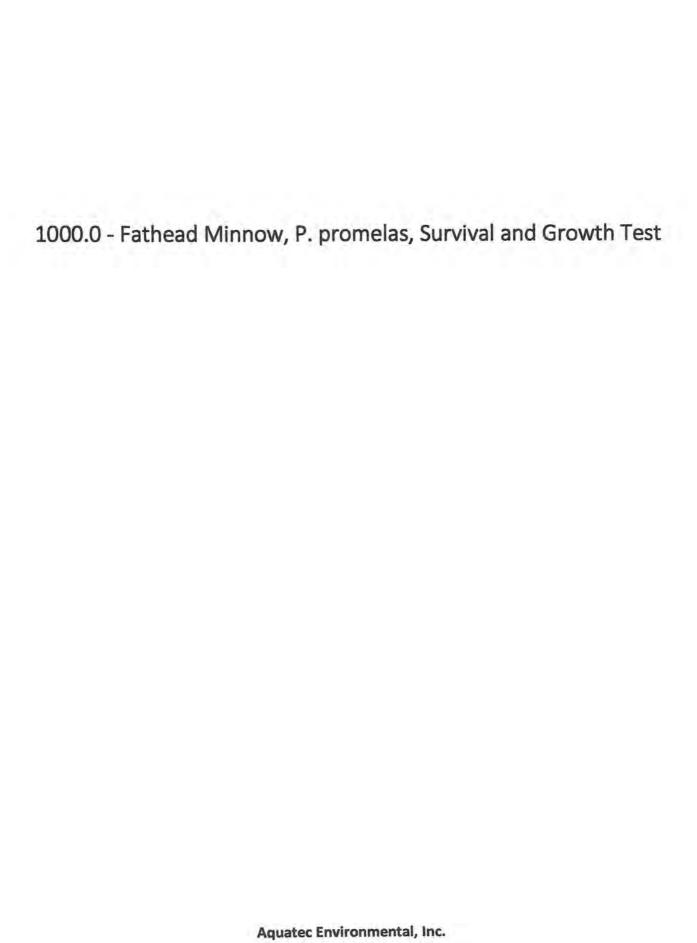
Reviewed by: Date: 9/4/18
p. 32

SDG: 15390

Project 18017

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002


roject	: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels)
5	Photoperiod:	16h light, 8h dark
6	Test chamber size:	30mL
7	Test solution volume	Nominal 15mL
8	renewal of test solutions:	Daily
9	Age of test organisms:	Less than 24h; and all released within a 8h period
10	No. neonates per test chamber:	1
11	No. replicate test chambers per concentration:	10
12	No. neonates per test concentration:	10
13	Feeding regime:	Feed 0.1mL each of YCT and algal suspension per test chamber daily
14	Cleaning:	Use new plastic cups daily
15	Aeration:	None
16	Dilution water:	Soft Water
17	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
18	Additional control:	Ashuelot River
19	Test duration:	Until 60% or more of surviving control females have three broods (maximum test duration 8 days)
20	Endpoints:	Survival and reproduction
21	Test acceptability criteria:	80% or greater survival of all control organisms and an average of 15 or more young per surviving female in the control solutions. 60% of surviving control females must produce three broods
22	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
23	Sample volume required:	1L/day

Aquatec Environmental, Inc.

Reviewed by: Date: 9/4/18.

p. 33

SDG: 15390 **Project** 18017

CETIS Summary Report

Report Date:

29 Aug-18 11:50 (p 1 of 1)

					Test Code: 81463 14-2513-8174							
Fathead Minn	low 7-d Larval	Survival	and Growt	h Test					Aquate	c Environm	ental,	Inc.
Batch ID:	12-2030-0203		Test Type:	Growth-Surviva	al (7d)		An	alyst:	Kaitlyn Priest			
Start Date:	07 Aug-18 15:	10	Protocol:	EPA/821/R-02-	013 (2002)		Dil	uent:	Soft Synthetic V	Vater		
Ending Date:	14 Aug-18 15:		Species:	Pimephales pr			Bri		Not Applicable			
Duration:	7d Oh		Source:	Aquatic Biosys			Ag		1d			
Multiple Com	parison Summ	агу										
Analysis ID	Endpoint		Comp	parison Method			NOEL	LOEL	TOEL	TU	PMS	D v
09-1941-8578	2d Survival Ra	te	Steel	Many-One Rank	Sum Test		100	> 100	n/a	1	n/a	
08-6450-5659	7d Survival Ra	te	Steel	Many-One Rank	Sum Test		100	> 100	n/a	1	n/a	
17-4172-2926	Mean Dry Bion	nass-mg	Dunn	ett Multiple Com	parison Test	F.	100	> 100	n/a	1	11.49	%
Point Estimat	te Summary											
Analysis ID	Endpoint		Point	Estimate Meth	od		Level	%	95% LCL	95% UCL	TU	- 9
13-1616-5088	2d Survival Ra	te	Linea	r Interpolation (I	CPIN)		EC5	>100	n/a	n/a	<1	
							EC10	>100	n/a	n/a	<1	
							EC15	>100	n/a	n/a	<1	
							EC20	>100	n/a	n/a	<1	
							EC25	>100	n/a	n/a	<1	-
							EC40	>100	n/a	n/a	<1	
							EC50	>100	n/a	n/a	<1	
01-8806-3816 Mean Dry Biomass-mg Linear Interpolation (ICPIN)							IC5	>100	n/a	n/a	<1	
01-0000-3010	Weall Dly Bloi										-4	
01-0000-3010	Weall Diy Blon	ilioo iiig					IC10	>100	n/a	n/a	<1	
01-0000-3010	Weall Dly Blon	nese mg					IC10 IC15	>100	n/a n/a	n/a n/a	<1	
01-0000-3010	Wear Dry Blon	nese mg					IC15 IC20					
01-0000-3010	Mean Diy Bion	neso mg					IC15	>100	n/a	n/a	<1 <1 <1	
01-0400-3010	Wear bry Bion						IC15 IC20 IC25 IC40	>100 >100 >100 >100	n/a n/a	n/a n/a n/a n/a	<1 <1 <1 <1	3
01-0000-3010	Wear by Bion						IC15 IC20 IC25	>100 >100 >100	n/a n/a n/a	n/a n/a n/a	<1 <1 <1	3
	ate Summary						IC15 IC20 IC25 IC40	>100 >100 >100 >100	n/a n/a n/a n/a	n/a n/a n/a n/a n/a	<1 <1 <1 <1 <1	
2d Survival R		Cour					IC15 IC20 IC25 IC40 IC50	>100 >100 >100 >100 >100 >100	n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a	<1 <1 <1 <1 <1	fect
2d Survival R Conc-%	tate Summary		1.000	0 1.0000	1.0000	1.0000	IC15 IC20 IC25 IC40 IC50 Max	>100 >100 >100 >100 >100 >100 Std E	n/a n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n/a n/a n/a n/a n/a CV%	<1 <1 <1 <1 <1 <1 0.000	fec:
2d Survival R Conc-% 0 0	tate Summary Code	Cour	1.000	0 1.0000 0 1.0000	1.0000 1.0000	1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000	>100 >100 >100 >100 >100 >100 >100 >100	n/a n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n/a n/a n/a n/a n/a CV% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 0.00°	fect % %
2d Survival R Conc-% 0 0 12	tate Summary Code R	Cour.	1.000 1.000 1.000	0 1.0000 0 1.0000 0 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000	>100 >100 >100 >100 >100 >100 >100 O.000 0.000 0.000	n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 *1 *1 *1 *0.00° 0.00°	fec: % %
2d Survival R Conc-% 0 0 12 24	tate Summary Code R	Court 4 4	1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 0.00° 0.00° 0.00°	fec % % %
2d Survival R Conc-% 0 0 12 24 48	tate Summary Code R	Cour. 4 4 4 4	1.000 1.000 1.000 1.000	0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 0.00 0.00 0.00 0.00 0.	fec: % % % %
2d Survival R Conc-% 0 0 12 24 48 50	tate Summary Code R	Cour. 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000	0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 0.00 0.00 0.00 0.00 0.	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2d Survival R Conc-% 0 0 12 24 48 50	tate Summary Code R	Cour 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000	0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 0.00 0.00 0.00 0.00 0.	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2d Survival R Conc-% 0 0 12 24 48 50 100	cate Summary Code R L	Cour 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 0.00 0.00 0.00 0.00 0.00	fec: % % % % %
2d Survival R Conc-% 0 12 24 48 50 100 7d Survival R	Code R L Rate Summary	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 Max	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a rrr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2d Survival R Conc-% 0 12 24 48 50 100 7d Survival R Conc-%	Code R L Rate Summary Code	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 crr Std Dev	n/a n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2d Survival R Conc-% 0 12 24 48 50 100 7d Survival R Conc-% 0	Code R L Rate Summary	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 0.9000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	fec % % % % % %
2d Survival R Conc-% 0 0 12 24 48 50 100 7d Survival R Conc-% 0 0	Code R L Rate Summary Code	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 0.9000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 Std E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	fec % % % % % % % %
2d Survival R Conc-% 0 0 12 24 48 50 100 7d Survival R Conc-% 0 0 12 24	Code R L Rate Summary Code	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 0.9000 1.0000 1.0000	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	fec % % % % % % % % %
2d Survival R Conc-% 0 0 12 24 48 50 100 7d Survival R Conc-% 0 0 12 24 48	Code R L Rate Summary Code	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	IC15 IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a n/a CV% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	fec %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2d Survival R Conc-% 0 0 12 24 48 50 100 7d Survival R Conc-% 0 0 12 24	Code R L Rate Summary Code	Cour 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 0.9000 1.0000 1.0000	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	>100 >100 >100 >100 >100 >100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	n/a n/a n/a n/a n/a n/a n/a n/a n/a rr Std Dev 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	n/a n/a n/a n/a n/a n/a n/a 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	% % % % % % % % % % % % % % % % % % %

CV%

3.72%

4.20%

5.16%

8.99%

8.16%

3.73%

4.83%

%Effect

0.00%

3.25%

-1.47%

-5.65%

-4.61%

-6.74%

-8.56%

Std Dev

0.02405

0.02621

0.03383

0.06135

0.0551

0.02572

0.03385

Std Err

0.01202

0.01691

0.03067

0.02755

0.01286

0.01693

0.0131

95% UCL Min

0.619

0.591

0.628

0.63

0.604

0.659

0.653

0.684

0.6665

0.7091

0.7799

0.7632

0.7302

0.7549

Max

0.676

0.655

0.703

0.751

0.73

0.718

0.731

Conc-%

0

0

12

24

48

50

100

Code

R

L

Count

4

4

4

4

4

4

4

Mean

0.6457

0.6247

0.6552

0.6823

0.6755

0.6893

0.701

95% LCL

0.6075

0.583

0.6014

0.5846

0.5878

0.6483

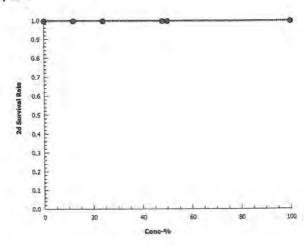
0.6471

Report Date:

29 Aug-18 11:50 (p 1 of 2)

Test Code:	81463	14-2513-8174
	Aquatec Enviro	nmental, Inc.

Fathead Minn	athead Minnow 7-d Larval Survival and Growth Test									
Analysis ID: Analyzed:	13-1616-5088 29 Aug-18 11:49	Endpoint: Analysis:	2d Survival Rat Linear Interpola			CETIS Ve		CETISv1.9.2 Yes		
Sample ID:	03-3867-3810	Code:	15390			Client:	Keene	WWTP		
Sample Date:	06 Aug-18 07:00	Material:	POTW Effluent			Project:	Specia	al Studies		
Receipt Date:	07 Aug-18 10:00	Source:	Permit # NH01	00790 (KEENE	NH)					
Sample Age:	32h	Station:	Keene WWTP							
Linear Interpo	olation Options									
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method					


Linear		Linear	1443	3544	200	Yes	Two-Point Interpolation	
Point E	stimates	11						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
EC5	>100	n/a	n/a	<1	n/a	n/a		
EC10	>100	n/a	n/a	<1	n/a	n/a		
EC15	>100	n/a	n/a	<1	n/a	n/a		
EC20	>100	n/a	n/a	<1	n/a	n/a		
EC25	>100	n/a	n/a	<1	n/a	n/a		
EC40	>100	n/a	n/a	<1	n/a	n/a		
EC50	>100	n/a	n/a	<1	n/a	n/a		

2d Survival Rate Summary		Calculated Variate(A/B)								
Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
L	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
			Code Count Mean L 4 1.0000 4 1.0000 4 1.0000 4 1.0000 4 1.0000	Code Count Mean Min L 4 1.0000 1.0000 4 1.0000 1.0000 4 1.0000 1.0000 4 1.0000 1.0000 4 1.0000 1.0000	Code Count Mean Min Max L 4 1.0000 1.0000 1.0000 4 1.0000 1.0000 1.0000 4 1.0000 1.0000 1.0000 4 1.0000 1.0000 1.0000 4 1.0000 1.0000 1.0000	Code Count Mean Min Max Std Err L 4 1.0000 1.0000 1.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000	Code Count Mean Min Max Std Err Std Dev L 4 1.0000 1.0000 0.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000	Code Count Mean Min Max Std Err Std Dev CV% L 4 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000	Code Count Mean Min Max Std Err Std Dev CV% %Effect L 4 1.0000 1.0000 0.0000 0.0000 0.0000 0.00% 0.0% 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 4 1.0000 1.0000 0.0000 0.0000 0.00% 0.0%	Code Count Mean Min Max Std Err Std Dev CV% %Effect A L 4 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.00% 0.0% 40 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 4 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40

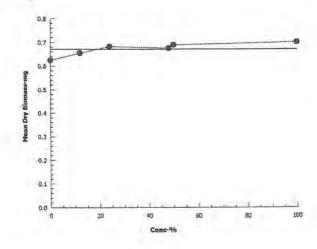
2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	-1	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Graphics

Report Date: Test Code: 29 Aug-18 11:50 (p 2 of 2) 81463 | 14-2513-8174

Fathead Minn	ow 7-d Larval Survi	val and Grow	th Test					Aquatec Environmental, Inc.
Analysis ID: Analyzed:	01-8806-3816 29 Aug-18 11:49	Endpoint: Analysis:	Mean Dry Biomass-mg Linear Interpolation (ICPIN)			CETIS Ve	CETISv1.9.2 Yes	
Sample Date:	03-3867-3810 06 Aug-18 07:00 07 Aug-18 10:00 32h	Code: Material: Source: Station:	15390 POTW Effluen Permit # NH01 Keene WWTP	00790 (KEENE	NH)	Client: Project:	10.5 504	e WWTP ial Studies
Linear Interpo	olation Options							
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method			
Linear	Linear	843006	200	Yes	Two-Point Interpolation		n	
Point Estimat	es							


r.ceinter-	Juliates					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC5	>100	n/a	n/a	<1	n/a	n/a
IC10	>100	n/a	n/a	<1	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	n/a
IC25	>100	n/a	n/a	<1	n/a	n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a

Mean Dry Biomass-mg Summary			Calculated Variate						
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	L	4	0.6247	0.591	0.655	0.0131	0.02621	4.20%	0.0%
12		4	0.6552	0.628	0.703	0.01691	0.03383	5.16%	-4.88%
24		4	0.6823	0.63	0.751	0.03067	0.06135	8.99%	-9.2%
48		4	0.6755	0.604	0.73	0.02755	0.0551	8.16%	-8.12%
50		4	0.6893	0.659	0.718	0.01286	0.02572	3.73%	-10.32%
100		4	0.701	0.653	0.731	0.01693	0.03385	4.83%	-12.2%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	0.591	0.627	0.626	0.655	
12		0.655	0.703	0.635	0.628	
24		0.751	0.631	0.63	0.717	
48		0.73	0.663	0.705	0.604	
50		0.679	0.718	0.701	0.659	
100		0.653	0.704	0.731	0.716	

Graphics

Report Date: Test Code: 29 Aug-18 11:49 (p 1 of 6) 81463 | 14-2513-8174

								V			the same of the same of
Fathead Mini	now 7-d Larval	Survival ar	nd Growth Te	est					Aquateo	Environ	mental, in
Analysis ID: Analyzed:	09-1941-8578 29 Aug-18 11			Survival Rat		Treatments	0.7.	'IS Version: cial Results:	CETISv1. Yes	9.2	
the country of the country of the country of	03-3867-3810 : 06 Aug-18 07:0 : 07 Aug-18 10:0 32h	00 Ma	aterial: PC ource: Pe	390 TW Effluent mit # NH010 ene WWTP		ENE NH)	Clie Proj		ne WWTP cial Studies		
Data Transfo	rm	Alt Hyp					NOEL	LOEL	TOEL	TU	
Angular (Corr	rected)	C>T					100	> 100	n/a	1	
Steel Many-C	one Rank Sum	Test									
Control	vs Conc-%		Test Stat	Critical	Ties D	F P-Type	P-Value	Decision(a:5%)		
Lab Water	12		18	10	1 6	Asymp	0.8333		ficant Effect		
	24		18	10	1 6	Asymp	0.8333	Wanter Control	ficant Effect		
	48		18	10	1 6	Asymp	0.8333		ficant Effect		
	50		18	10	1 6	Asymp	0.8333		ficant Effect		
	100		18	10	1 6	Asymp	0.8333	Non-Significant Effect			
ANOVA Table	e										
Source	Sum Sq	uares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0		0		5	65540	<1.0E-37	Significan	Effect		
Error	0		0		18	_					
Total	0				23						
2d Survival F	Rate Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effec
0	L.	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
Angular (Cor	rrected) Transfo	ormed Sum	imary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effec
0	L	4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
12		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
24		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
48		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
50		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
100		4	1.412	1.412	1,412	1.412	1.412	1.412	0	0.00%	0.00%
2d Survival I	Rate Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	L	1.0000	1.0000	1.0000	1.0000						
12		1.0000	1.0000	1.0000	1.0000						
24		1.0000	1.0000	1.0000	1.0000						
48		1.0000	1.0000	1.0000	1.0000						
50		1.0000	1.0000	1.0000	1.0000						
400		4 0000	4 0000	4 0000	1 0000						

100

1.0000

1.0000

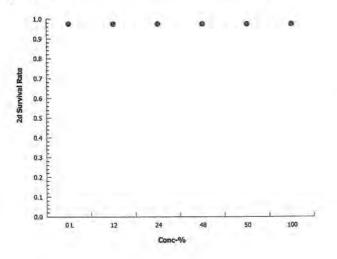
1.0000

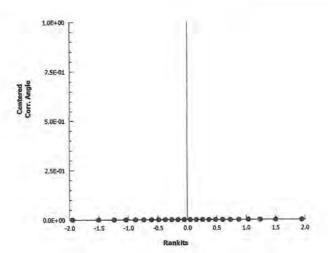
1.0000

Report Date: **Test Code:**

29 Aug-18 11:50 (p 2 of 6)

81463 | 14-2513-8174


Aguator	Environmental,	Inc
Myualec	Environmental,	HIG.


Analysis ID: 0	19-1941-8578	Endpoint:	2d Survival Rate	CETIS Version:	CETISv1.9.2	
Analyzed: 2	29 Aug-18 11:49	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes	

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	TL.	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1,412	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1.412	1.412	

Graphics

Report Date: Test Code: 29 Aug-18 11:50 (p 3 of 6)

	81463	14-2513-8174	
Aquatec	Enviro	nmental, Inc.	

Fathead Minnow 7-d Larval Survival and Growth Test									
Analysis ID:	08-6450-5659	Endpoint: 7d Survival Rate	CETIS Version:	C					

Analysis ID: 08-6450-5659 Endpoint: 7d Survival Rate CETIS Version: CETISv1.9.2

Analyzed: 29 Aug-18 11:49 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Sample ID: 03-3867-3810 Code: 15390 Client: Keene WWTP
Sample Date: 06 Aug-18 07:00 Material: POTW Effluent Project: Special Studies

Receipt Date: 07 Aug-18 10:00 Source: Permit # NH0100790 (KEENE NH)
Sample Age: 32h Station: Keene WWTP

 Data Transform
 Alt Hyp
 NOEL
 LOEL
 TOEL
 TU

 Angular (Corrected)
 C > T
 100
 > 100
 n/a
 1

Steel Many-One Rank Sum Test

Control vs	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Lab Water	12	18	10	1	6	Asymp	0.8333	Non-Significant Effect
	24	18	10	1	6	Asymp	0.8333	Non-Significant Effect
	48	18	10	1	6	Asymp	0.8333	Non-Significant Effect
	50	18	10	1	6	Asymp	0.8333	Non-Significant Effect
	100	18	10	1	6	Asymp	0.8333	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0	0	5	65540	<1.0E-37	Significant Effect
Error	0	0	18			
Total	0		23			

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L.	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12	â.	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
12		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
24		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
48		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
50		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
100		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%

7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Report Date: Test Code:

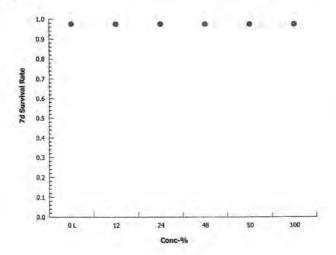
Official Results: Yes

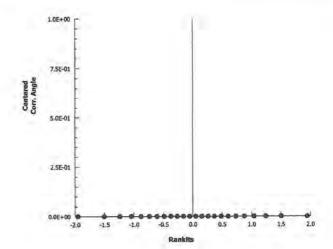
29 Aug-18 11:50 (p 4 of 6) 81463 | 14-2513-8174

Aquatec Environmental, Inc.

Fathead Minn	now 7-d Larval Surv	rival and Growth Test		Aquatec Enviro	ı
Analysis ID:	08-6450-5659	Endnoint: 7d Survival Rate	CETIS Version:	CETISv1.9.2	

Analysis: Nonparametric-Control vs Treatments


Ammuli	 and Tunn	-6	Deteil


29 Aug-18 11:49

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1,412	1.412	

Graphics

Analysis ID: Analyzed:

Report Date: Test Code: 29 Aug-18 11:50 (p 5 of 6) 81463 | 14-2513-8174

Fathead Mini	now 7-d Larval Survi	val and Growi	th Test		Aquatec Environmental, Inc.
	17-4172-2926	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.2
Analyzed:	29 Aug-18 11:49	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes

 Sample ID:
 03-3867-3810
 Code:
 15390
 Client:
 Keene WWTP

 Sample Date:
 06 Aug-18 07:00
 Material:
 POTW Effluent
 Project:
 Special Studies

 Receipt Date:
 07 Aug-18 10:00
 Source:
 Permit # NH0100790 (KEENE NH)

Sample Age: 32h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C>T	100	> 100	n/a	1	11.36%

Control	VS	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)
Lab Water		12	-1.034	2.407	0.071	6	CDF	0.9843	Non-Significant Effect
		24	-1.95	2.407	0.071	6	CDF	0.9990	Non-Significant Effect
		48	-1.721	2.407	0.071	6	CDF	0.9979	Non-Significant Effect
		50	-2.187	2.407	0.071	6	CDF	0.9995	Non-Significant Effect
		100	-2.585	2.407	0.071	6	CDF	0.9999	Non-Significant Effect

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.0150654	0.0030131	5	1.732	0.1783	Non-Significant Effect	
Error	0.031316	0.0017398	18				
Total	0.0463814		23				

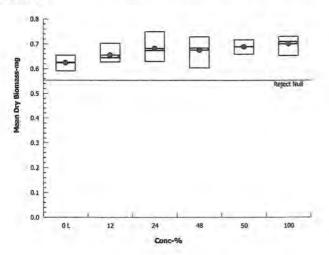
Distributional Tests									
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)				
Variances	Bartlett Equality of Variance Test	3.729	15.09	0.5890	Equal Variances				
Distribution	Shapiro-Wilk W Normality Test	0.9799	0.884	0.8942	Normal Distribution				

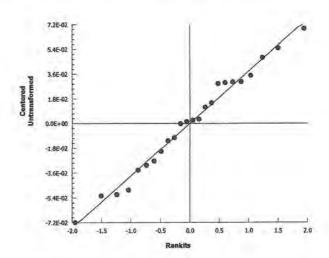
Mean Dry Bio	mass-mg Sum	mary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.6247	0.583	0.6665	0.6265	0.591	0.655	0.0131	4.20%	0.00%
12		4	0.6552	0.6014	0.7091	0.645	0.628	0.703	0.01691	5.16%	-4.88%
24		4	0.6823	0.5846	0.7799	0.674	0.63	0.751	0.03067	8.99%	-9.20%
48		4	0.6755	0.5878	0.7632	0.684	0.604	0.73	0.02755	8.16%	-8.12%
50		4	0.6893	0.6483	0.7302	0.69	0.659	0.718	0.01286	3.73%	-10.32%
100		4	0.701	0.6471	0.7549	0.71	0.653	0.731	0.01693	4.83%	-12.20%

Mean Dry Biomass-mg Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 0.591 0.627 0.626 0.655 0.635 0.628 0.655 0.703 12 0.63 0.717 0.751 0.631 24 0.604 48 0.73 0.663 0.705 0.701 0.659 50 0.679 0.718 0.653 0.704 0.731 0.716 100

Report Date: Test Code: 29 Aug-18 11:50 (p 6 of 6) 81463 | 14-2513-8174

Fathead Minnow 7-d Larval Survival and Growth Test


Aquatec Environmental, Inc.


Analysis ID: 17-4172 Analyzed: 29 Aug-

17-4172-2926 29 Aug-18 11:49 Endpoint: Mean Dry Biomass-mg
Analysis: Parametric-Control vs Treatments

CETIS Version: CET Official Results: Yes

CETISv1.9.2

CETIS Test Data Worksheet

Report Date:

29 Aug-18 11:49 (p 1 of 1)

Test Code/ID:

14-2513-8174/81463

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: 07 Aug-18 15:10 End Date: 14 Aug-18 15:10

Sample Code: 15390 Sample Source: Permit # NH0100790

Sample Date: 06 Aug-18 07:00

Material: POTW Effluent

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Total Weight-mg	Tare Weight-mg	Pan Count	Notes
0	L	1	2	10		10					10	29.39	23.48	10	Notes
0	L	2	11	10		10				4.5	10	26.97	20.7	10	
0	L	3	12	10		10					10	27.96	21.7	10	
0	L	4	22	10		10					10	28.25	21.7	10	
0	R	1	3	10		10					9	26.97	20.78	9	
0	R	2	15	10		10					10	27.84	21.08	10	
0	R	3	24	10		10					10	27.38	21.01	10	
0	R	4	17	10		10					10	27.5	20.99	10	
12		1	14	10		10					10	27.78	21.23	10	
12		2	16	10		10					10	31.32	24.29	10	
12	12.00	3	13	10		10					10	29.55	23.2	10	
12		4	6	10		10					10	27.68	21.4	10	
24		1	10	10		10					10	31.04	23.53	10	
24		2	8	10		10					10	27.76	21.45	10	
24		3	28	10		10					10	27.68	21.38	10	
24		4	25	10		10					10	29.05	21.88	10	
48		1	18	10		10					10	28.56	21.26	10	
48		2	4	10		10					10	27.67	21.04	10	
48		3	7	10		10					10	28.06	21.01	10	
48		4	1	10		10					10	27.22	21.18	10	
50		1	27	10		10					10	28.12	21.33	10	
50		2	21	10		10				-	10	28.1	20.92	10	
50		3	20	10		10					10	27.33	20.32	10	
50		4	19	10		10					10	27.14	20.55	10	
100		1	26	10		10					10	27.97	21.44	10	
100		2	5	10		10					10	27.61	20.57	10	
100		3	9	10		10					10	29.04	21.73	10	
100		4	23	10		10					10	28.44	21.28	10	

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Pimephales promelas

Reference:

EPA-821-R-02-013

SOP: WET-A-001

Client ID: K	leene/L	ey				- 0	Permit N	o. NH0:	100790	Pipe No. 1
OXICITY	TEST	DATA:								Test ID 8146
% Effluent	Rep.	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	No. Initial Pan Final Pan weighed Weight Weight
0%	Α	10	10	10	10	10	10	10	10	10 2348 29.39
Soft	В	10	10	10	10	10	10	10	10	(0) 20.70 26.9
CTRL	С	10	10	10	10	10	10	10	10	10 21.70 2796
	D	10	10	16	10	10	10	10	10	10 21.70 2825
0 %	A	10	10	IO	10	9	9	9	9	9 20.78 26.95
	В	10	10	10	10	10	10	10	10	10 21 08 27.81
RW	D	10	10	10	10	10	10	10	10	10 21.012738
			10	10	10	10	10		10	
12 %	A B	10)0	10	10	10	10	10	10	10 21.23 27.7
FFF	С	10	10	10	10	10	10	10	10	10 024.92931.33 10 23.2029.5
EFF	D	10	10	10	10	10	10	10	10	10 21.4027.65
2221	Α	10	10	10	10	10	io	10	10	10 23.53 2310
24 %	В	10	10	10	10	10	10	10	10	10 21.45 27.70
EFF	С	10	10	10	10	10	10	10	10	10 21.38 27.6
LI I	D	10	10	10	10	10	10	0	10	10 21.88290
48 %	Α	10	10	10	10	io	io	10	10	10 21.2628.3
40 /0	В	10	10	10	10	10	10	10	10	10 21.04 27.6
EFF	С	10	10	10	10	10	10	10	10	10 21.0128.00
	D	10	10	10	10	10	10	10	10	0,110 21,00
50 %	A	10	10	10	10	10	10	10	10	10 21.33 28 16
	В	10	1090	10	10	10	10	10	10	10 20.92 28.10
EFF	D	10	10	10	10	10	10	18	10	10 20.55 271
V-I-VI-I	Α	10	10		12		10		10	12 101111070
100 %	В	10	10	10	18	10	10	10	10	10 20.5722
ccc	С	10	10	10	10	10	10	10	10	10 2173 2904
EFF	D	10	10	10	10	10	10	10	10	10 21.2828.44
Sampl	e#	51048	51048	51063	51063	51067	51067	51067	Test End	Date/Init (Initial Pan Weights):
Fed AM	/ Init.		,815	800	815	084540	0935 B	8°t0		
Fed PM		1545	1550	1530	1445	16304	1900 EB	1/040	duile	1N (Date/Time/Temp/Init): 8/14/18 15:10 972
Renew	A	1510	1520	1505	31013	8.11.18	1820	1615	314118	OUT (Date/Time/Temp/Init):
(D/T		KN	TEN	4N	IN	1435/49	EIS	EN	W	111132 000 1361
		1 argan	ism oil.	review	8/8/16		Brine Sh	rimp Lot	#: (211132-Brine
0		Dargan Okero 3 Perco	rding er	for kn	8/9/18	T. Alexandra				
P	(3) Peco	rating	errort	N 8/1	5/18				

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

Aquatec Environmental, Inc.
Reviewed by: 58 Date: 8/50/18.

15390

Project

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference:

EPA-821-R-02-013

WET-A-001

lient ID: Keene,					Permit No	. NH010	0790	Pipe No.	
NITIAL CHEMI	STRY DA	TA:						Test ID	8146
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
DW0%	рН	7.3	7.1	7.2	7.2	7.2	7.3	7.0	
SOFT	DO	7.5	8.3	7.6	7.3	8.1	7.3	7.9	
CTRL	Temp.	25.5	25.3	25.1	24.9	25.95		25.6	
	Cond.	187	188	181	182	167	164	177	
0 %	рН	7.3	7.1	7.1	7.2	7.5	7.2	17.1	7
0 70	DO	8.2	8.3	7.7	7.6	'7.7	7.9	7.9	
RW	Temp.	25.5	25.6	25.5	25.3	24.9	25.3	25.3	
11117	Cond.	57	56	79	79	101	97	99	
12 %	рН	34,	7:3	7.5	7.6	7.1	7-6	73	
12 /0	DO	4.8	8.3	7.6	7.4	7.9	7.9	7,9	
EFF	Temp.	25.5	25.3	25.1	251	25,5	25.2	25.5	
-	Cond.	266	270	305	297	271	266	282	
24 %	рН	7.4	7.4	77	7.7	7.2	76	7.3	
24 70	DO	7.8	8,2	7.6	74	8.0	7.6	78	
EFF	Temp.	25.5	25.3	25.0	25.1	25.6	251	25.5	
	Cond.	345	349	409	410	374	368	388	
48 %	рН	7.4	7.4	78	8.0	7.2	7.8	7.3	-
40 /0	DO	7.8	8.2	75	7.4	7.9	7.9	7.7	
EFF	Temp.	25.6	253	24.9	25.1	25.7	25.1	25.4	
517	Cond.	504	500	629	633	575	507	571	
50 %	рН	74	7.5	79	2.0	7.3	7.9	7.4	7.11
30 %	DO	7.8	8.2	7.6	7.4	79	7.9	7.8	
EFF	Temp.	25 le	25.3	249	25:1	25.8	25.1	354	
_ 351.17	Cond.	525	513	648	657	597	583	594	
100.9/	рН	7.3	7.5	8.0	8.	74	8.0	74	
100 %	DO	79	8.2	7.6	7.5	7.7	7.5	7.8	
EFF	Temp.	26.0	25.4	247	25.3	25.9	25,2	25.2	
LIT	Cond.	824	820	1085	1103	1014	973	986	
	Sample #	5,1048	51048	51063	51063	51667	51067	51067	
	Date	8/2/18	8/8/18	81,9/18	8/10/18	8.11.18	8-12-18	8/13/18	
	Initials	KN	141	EN	KN	KP	EB	Va/	

Aquatec Environmental, Ing. Reviewed by: __ p. 46

SDG: Project

15390

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Pimephales promelas Species:

Keene/Ley

Client ID:

Reference:

EPA-821-R-02-013

SOP:

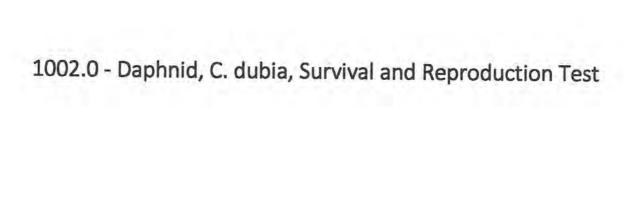
WET-A-001

Permit No. NH0100790 Pipe No. 1 FINAL CHEMISTRY DATA: Test ID 81463

% Effluent	Applysis		D				11-	Test ID
	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
0%	pН	7.2	7.3	7.1	7.1	7.2	6.2	6.9
0% Soft	DO	6.9	6.3	6.0	6.9	6.4	5.7	6.3
CTRL	Temp.	25.4	25.0	25.4	25.5	25.9	25.4	254
O,IAL	Cond.	195	189	189	177	177	174	193
0%	pH	7.4	7.0	7.0	6.8	6.8	le.7	(e.9)
0 70	DO	12.4	61	5.8	6.7	6-4	5.3	le-1"
RW	Temp.	25.2	25.3	25.5	25,5	25.7	25.5	25.4
1177	Cond.	75	73	89	83	10.5	107	117'
12 %	pH	7.2	7.2	7.1	7.1	6.9	6.8	6.9
12 /0	DO	6.8	6.0	5.7	6.8	6.1	5.2	6-2
EFF	Temp.	25.2	25.3	25.4	25.5	25.7	25.5	25.5
	Cond.	240	276	317	307	280	279	297
24 %	рН	7.2	7.3	7.2	7.2	7.0	6.9	7.0
Z-T /0	DO	6.7	5.9	5.8	6.4	6.0	5.3	6.0
EFF	Temp.	25 7	32.3	23 4	25.60	25.7	25.4	25.4
	Cond.	353	354	409	121	382	380	398
48 %	рН	7.3	7.4	74	7.4	7.1	7.0	7.2
40 70	DO	6.8	6-0	5.7	6.2	57	5.5	Ce - 1
EFF	Temp.	25.1	25.4	25.4	25.6	25.7	25.3	25.4
	Cond.	499	505	630	649	589	583	594
50 %	рН	7.3	7.4	7.6	7.5	7.2	7.1	7.2
30 70	DO	6.5	6.1	5.7	6.5	6.1	5.3	6.1
EFF	Temp.	25.1	25.4	25.4	25,5	25,8	25.5	25.4
_600	Cond.	524	519	658	672	606	602	611
100 %	pH	7.3	7.4	7.8	7.9	7.4	7.3	74
200 /0	DO	le+	5.9	5.7	6.3	6.1	5.3	le. I
EFF	Temp.	25.1	25.1	25.3	25,5	25.7	223	25.4
	Cond.	822	829	1024	1107	1007	1003	1010
	Sample #	51048	51048	51063	51063	51067	51067	51067
	Date	8/8/18	8/9/18	51063	8.11.18	8-12-18	51067	51067
	Initials	KN	233	th	K	EB	KN	KN

SDG:

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524


Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

				012/18
DATE:	8/6/20	18		Der Sin
SPECIES:	Pimer	hales promelas		per 8/7/18 00 9:35
AGE:	N/A			
LIFE STAGE:	Embr	/0		Temp! 23 3°C Cond: 384 m. Do: 13.2 mg/L
HATCH DATE:	8/6/20	18		Cond: 384 M.
BEGAN FEEDING:	N/A			Do: 13.2 mg/2
FOOD:	N/A			PH: 7:69H
Water Chemistry Record:		Current	Range	condition! Non Active
TEMPE	RATURE:	25°C		ITCTIVE
SALINITY/CONDUC	CTIVITY:			- A (0 A)
TOTAL HARDNESS (a	s CaCO ₃):	132 mg/l	1-4	Added to
TOTAL ALKALINITY (a	s CaCO ₃):	90 mg/l		5017
	рН:	7.89	140	
Comments:				
×				
			P	
1-		Facility Supervisor		

Aquatic BioSystems, Inc • Quality Research Organisms

0 9/4/18

CETIS Summary Report

Report Date:

29 Aug-18 11:44 (p 1 of 1)

		V. de chill			Test Code: 81464 01-0882-6929							
Ceriodaphnia	7-d Survival	and Rep	roduction To	est					Aquate	c Environn	nental	, Inc
Batch ID: Start Date: Ending Date: Duration:	04-2172-3624 07 Aug-18 13 13 Aug-18 14 6d 2h	3:00	Test Type: Protocol: Species: Source:	Reproduction- EPA/821/R-02 Ceriodaphnia In-House Cult	2-013 (2002) dubia		Di Br	nalyst: luent: ine: je:	Kaitlyn Priest Soft Synthetic \ Not Applicable <24h	Water		
Multiple Com	norioon Cum	6463		77.7.10400.0410			n,	je.	~2411			
Multiple Com		mary	2									
Analysis ID	Endpoint	(440)		parison Metho			NOEL	LOEL	TOEL	TU	PMS	SD
11-0911-9481 08-1206-9633				r Exact/Bonferr			100	> 100	n/a	1	n/a	
19-1279-4998				r Exact/Bonferr		st	100	> 100	n/a	1	n/a	
	and the same of th		VVIIGO.	xon/Bonferroni	Adj Test		100	> 100	n/a	1	10.7	%
Point Estimat												
Analysis ID	Endpoint		Point	Estimate Meth	od		Level	%	95% LCL	95% UCL	TU	- 0
03-0353-5415	2d Survival Ra	ate	Linear	Interpolation (I	CPIN)		EC5	>100	n/a	n/a	<1	-/-
							EC10	>100	n/a	n/a	<1	- 9
							EC15	>100	n/a	n/a	<1	1
							EC20	>100	n/a	n/a	<1	1.5
							EC25	>100	n/a	n/a	<1	
							EC40	>100	n/a	n/a	<1	1.3
/# #### TOO							EC50	>100	n/a	n/a	<1	,
16-7238-8179	Reproduction		Linear	Interpolation (I	CPIN)		IC5	>100	n/a	n/a	<1	
							IC10	>100	n/a	n/a	<1	
							IC15	>100	n/a	n/a	<1	3
							IC20	>100	n/a	n/a	<1	1
							IC25	>100	n/a	n/a	<1	4
							IC40	>100	n/a	n/a	<1	v
				=			IC50	>100	n/a	n/a	<1	V
2d Survival Ra	ate Summary											
Conc-%	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	r Std Dev	CV%	%Eff	fect
0	R	10	1.0000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
0	L	9	1.0000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
50		10	1.0000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
6d Survival Ra	te Summary											
Conc-%	Code	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Eff	ect
0	R	10	1.0000	1	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	%
0	L	9	1.0000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.009	%
12		10	1.0000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	%
24		10	1.0000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
48		10	1.0000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.009	%
50		10	1.0000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.009	%
Reproduction	Summary											
Conc-%	Code	Count		95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Eff	ect
	R	10	29.6	21.98	37.22	11	43	3.367	10.65	35,97%	0.009	16
)	L	9	38.44	34.32	42.57	30	46	1.788	5.364	13.95%	-29.8	8%
12		10	40.5	38.95	42.05	37	44	0.6872	2.173	5.37%	-36.8	2%
24		10	42	40.22	43.78	39	47	0.7888	2.494	5.94%	-41.8	9%
48		10	38.9	34.89	42.91	27	46	1.773	5.607	14.41%	-31.4	2%
50		10	40.6	38.05	43.15	34	46	1.127	3.565	8.78%	-37.1	
100		10	38.5	37 59	39 41	36	40	0.4014	1 260	3 30%	20.0	

3.30%

-30.07%

10

100

36

40

0.4014

1.269

39.41

37.59

38.5

Report Date: Test Code:

29 Aug-18 11:44 (p 1 of 2) 81464 | 01-0882-6929

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

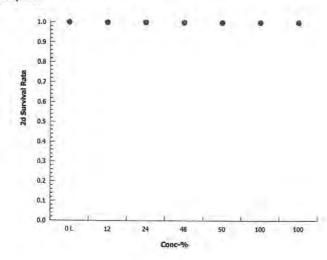
Analysis ID: 11-0911-9481 Endpoint: 2d Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: 29 Aug-18 11:44 Analysis: STP 2xK Contingency Tables Official Results: Yes

Sample ID: 03-3867-3810 15390 Code: Client: Keene WWTP Sample Date: 06 Aug-18 07:00 POTW Effluent Material: Project: Special Studies Receipt Date: 07 Aug-18 10:00 Source: Permit # NH0100790 (KEENE NH)

Sample Age: 30h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C>T	100	> 100	n/a	1

Fisher Exact/Bonferroni-Holm Test


Control vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water	12	1.0000	Exact	1.0000	Non-Significant Effect
	24	1.0000	Exact	1.0000	Non-Significant Effect
	48	1.0000	Exact	1.0000	Non-Significant Effect
	50	1.0000	Exact	1.0000	Non-Significant Effect
	100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	9	0	9	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,5-p 13
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code:

29 Aug-18 11:44 (p 2 of 2) 81464 | 01-0882-6929

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

TU

1

Analysis ID: 08-1206-9633

Endpoint: 6d Survival Rate

15390

CETIS Version:

CETISv1.9.2

Analyzed: Sample ID: 29 Aug-18 11:44

03-3867-3810

Analysis: STP 2xK Contingency Tables Code:

Official Results: Yes

Keene WWTP

Sample Date: 06 Aug-18 07:00

POTW Effluent Material:

Client:

Receipt Date: 07 Aug-18 10:00

Source:

Project:

LOEL

> 100

Special Studies

Sample Age: 30h

Alt Hyp

C>T

Permit # NH0100790 (KEENE NH)

TOEL

n/a

Data Transform

Untransformed

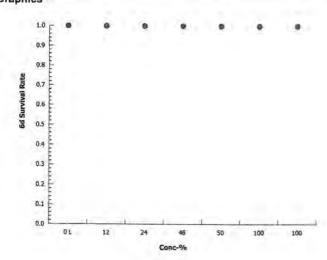
Station:

Keene WWTP

NOEL

100

Fisher	Exact/Bonferroni-Holm Test


Control	vs	Group	Test Stat	P-Type	P-Value	Decision(α:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	1.0000	Exact	1.0000	Non-Significant Effect
		50	1.0000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	9	0	9	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

6d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code:

29 Aug-18 11:44 (p 1 of 2) 81464 | 01-0882-6929

Ceriodaphni	a 7-d Survival and Re	Aquatec Environmental, Inc.			
Analysis ID: Analyzed:	03-0353-5415 29 Aug-18 11:44		2d Survival Rate Linear Interpolation (ICPIN)	CETIS Version: Official Results:	
Sample ID:	03-3867-3810	Code:	15390	Clients Voca	- MAATE

Sample Date: 06 Aug-18 07:00 Receipt Date: 07 Aug-18 10:00 Material: Source: Station: Keene WWTP

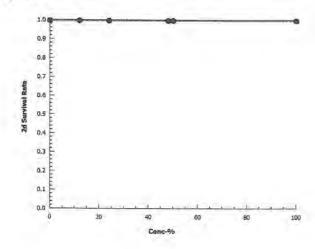
POTW Effluent Permit # NH0100790 (KEENE NH) Client: Keene WWTP Project: Special Studies

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	1295958	200	Yes	Two-Point Interpolation	
_ C. C. C. C. C. C.					The state of the s	

Point Estimates

Sample Age: 30h


Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	n/a	n/a	<1	n/a	n/a
EC10	>100	n/a	n/a	<1	n/a	n/a
EC15	>100	n/a	n/a	<1	n/a	n/a
EC20	>100	n/a	n/a	<1	n/a	n/a
EC25	>100	n/a	n/a	<1	n/a	n/a
EC40	>100	n/a	n/a	<1	n/a	n/a
EC50	>100	n/a	n/a	<1	n/a	n/a
2d Sur	vival Rate	Summary				Calculated Variate(A/B)

2d Survival Rate Summary

are duminion's		-		Outo	ulated valle	acc(AUD)				
Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
L	9	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	9	9
	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
		Code Count L 9 10 10 10 10	Code Count Mean L 9 1.0000 10 1.0000 10 1.0000 10 1.0000 10 1.0000 10 1.0000	Code Count Mean Min L 9 1.0000 1.0000 10 1.0000 1.0000 10 1.0000 1.0000 10 1.0000 1.0000 10 1.0000 1.0000	Code Count Mean Min Max L 9 1.0000 1.0000 1.0000 10 1.0000 1.0000 1.0000 10 1.0000 1.0000 1.0000 10 1.0000 1.0000 1.0000 10 1.0000 1.0000 1.0000	Code Count Mean Min Max Std Err L 9 1.0000 1.0000 1.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000	Code Count Mean Min Max Std Err Std Dev L 9 1.0000 1.0000 0.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000	Code Count Mean Min Max Std Err Std Dev CV% L 9 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000	Code Count Mean Min Max Std Err Std Dev CV% %Effect L 9 1.0000 1.0000 0.0000 0.0000 0.000 0.00% 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10 1.0000 1.0000 0.0000 0.0000 0.0000 0.0% 10 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0%	Code Count Mean Min Max Std Err Std Dev CV% %Effect A L 9 1.0000 1.0000 0.0000 0.0000 0.0000 0.00% 0.0% 9 10 1.0000 1.0000 0.0000 0.0000 0.0000 0.0% 10 10 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10 10 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10 10 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10 10 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 10

2d Survival Rate Detail

Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	Code L	L 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000	L 1.0000	L 1.0000	L 1.0000	L 1.0000	L 1.0000

Report Date: Test Code:

29 Aug-18 11:44 (p 2 of 2) 81464 | 01-0882-6929

Aquatec Environmental, Inc.

Ceriodaphnia 7-d Survival and Reproduction Test

Analysis ID: 16-7238-8179 Endpoint: Re

16-7238-8179 Endpoint: Reproduction CETIS Version: CETISv1.9.2
29 Aug-18 11:44 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Sample ID: 03-3867-3810 Sample Date: 06 Aug-18 07:00 Receipt Date: 07 Aug-18 10:00

Code: 15390

Material: POTW Effluent
Source: Permit # NH010

Keene WWTP

Station:

Permit # NH0100790 (KEENE NH)

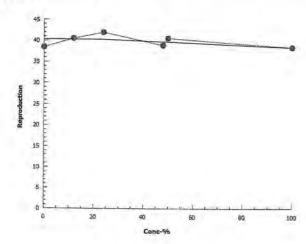
Client: Keene WWTP
Project: Special Studies

Linear Interpolation Options

	Exp 95% CL	Method
Linear 597230 200	Yes	Two-Point Interpolation

Point Estimates

Sample Age: 30h


Analyzed:

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC5	>100	n/a	n/a	<1	n/a	n/a
IC10	>100	n/a	n/a	<1	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	n/a
IC25	>100	n/a	n/a	<1	n/a	n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a
Daniel				_		

Reproduction	Summary					Calculated Va	riate		
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	L	9	38.44	30	46	1.788	5.364	13.95%	0.0%
12		10	40.5	37	44	0.6872	2.173	5.37%	-5.35%
24		10	42	39	47	0.7888	2.494	5.94%	-9.25%
48		10	38.9	27	46	1.773	5.607	14.41%	-1.19%
50		10	40.6	34	46	1.127	3.565	8.78%	-5.61%
100		10	38.5	36	40	0.4014	1.269	3.30%	-0.14%

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	41	42	30	41	46	30	40	39	37	nop 10
12		38	41	44	40	39	41	37	43	40	42
24		41	41	43	45	47	43	40	39	40	41
48		38	36	38	44	46	35	27	45	40	40
50		38	42	38	42	46	43	34	44	41	38
100		38	36	37	39	39	40	40	39	38	39

Report Date: Test Code:

29 Aug-18 11:44 (p 1 of 2)

81464 | 01-0882-6929

Ceriodaphnia	7-d	Survival	and	Reproduction Test	
--------------	-----	----------	-----	-------------------	--

Aquatec Environmental, Inc.

Analysis ID:

19-1279-4998

Endpoint: Reproduction Analysis:

CETIS Version: CETISv1.9.2

Analyzed:

29 Aug-18 11:44

Code:

Nonparametric-Multiple Comparison

Official Results: Yes

Sample ID:

03-3867-3810 Sample Date: 06 Aug-18 07:00

15390

Keene WWTP

Receipt Date: 07 Aug-18 10:00

Material: POTW Effluent Client: Project:

Source:

Alt Hyp

C>T

Permit # NH0100790 (KEENE NH)

Special Studies

Sample Age: 30h

Station:

Data Transform Untransformed

Keene WWTP

NOEL LOEL TOEL TU PMSD 100 > 100 n/a 1 10.72%

Wilcoxon/Bonferroni Adj Test

Control	VS	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(q:5%)
Lab Water		12	108.5	n/a	5	17	Exact	1.0000	Non-Significant Effect
		24	118.5	n/a	3	17	Exact	1.0000	Non-Significant Effect
		48	98.5	n/a	2	17	Exact	1.0000	Non-Significant Effect
		50	111.5	n/a	3	17	Exact	1.0000	Non-Significant Effect
		100	88.5	n/a	3	17	Exact	0.9029	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	101.105	20.221	5	1.447	0.2228	Non-Significant Effect	_
Error	740.522	13.9721	53				
Total	841.627		58				

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance Test	23.23	15.09	3.0E-04	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9504	0.9451	0.0175	Normal Distribution

Reproduction Summary

Сопс-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	9	38.44	34.32	42.57	40	30	46	1.788	13.95%	0.00%
12		10	40.5	38.95	42.05	40.5	37	44	0.6872	5.37%	-5.35%
24		10	42	40.22	43.78	41	39	47	0.7888	5.94%	-9.25%
48		10	38.9	34.89	42.91	39	27	46	1.773	14.41%	-1.18%
50		10	40.6	38.05	43.15	41.5	34	46	1,127	8.78%	-5.61%
100		10	38.5	37.59	39.41	39	36	40	0.4014	3.30%	-0.14%

Reproduction Detail

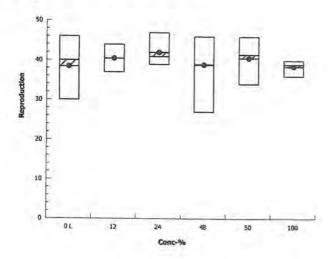
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	41	42	30	41	46	30	40	39	37	
12		38	41	44	40	39	41	37	43	40	42
24		41	41	43	45	47	43	40	39	40	41
48		38	36	38	44	46	35	27	45	40	40
50		38	42	38	42	46	43	34	44	41	38
100		38	36	37	39	39	40	40	39	38	39

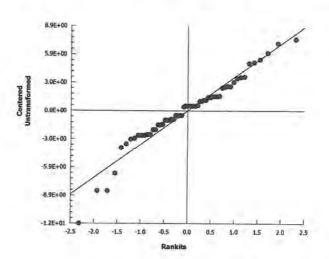
Report Date: Test Code: 29 Aug-18 11:44 (p 2 of 2) 81464 | 01-0882-6929

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Analysis ID: Analyzed: 19-1279-4998 29 Aug-18 11:44


Endpoint: Reproduction


Analysis: Nonparametric-Multiple Comparison

CETIS Version: Official Results:

CETISv1.9.2

Yes

CETIS Test Data Worksheet

Report Date: Test Code/ID: 30 Aug-18 17:04 (p 1 of 2) 01-0882-6929/81464

Ceriodaphnia 7-d Survival and Reproduction Test

13 Aug-18 14:50

Aquatec Environmental, Inc.

Start Date: 07 Aug-18 13:00

Sample Date: 06 Aug-18 07:00

End Date:

Species: Ceriodaphnia dubia

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15390

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Note
0	L	2	65	1		1			12.2	1	11			0	7	14	20	-		0	NOU
0	L	3	19	1		1				1				0	7	16	19	n		0	+
0	L	4	28	1		1				1				0	6	9	15			0	-
0	L	5	60	1		1				1				0	8	14	19			0	-
0	L	6	43	1		1				1				0	8	17	21			0	-
0	L	7	13	1	4 4	1				1				0	8	9	13			0	
0	L	8	42	1		1				1				0	8	14	18			0	1
0	L	9	37	1		1				1				0	7	16	16			0	1
0	L	10	52	1		1				1				6	0	13	18			0	-
0	R	1	9	1		1				1				0	5	12	3			0	
0	R	2	41	1		1				1				0	0	7	4	7		0	-
0	R	3	27	1		1				1				0	7	15	2			0	
0	R	4	50	1		1				1				0	7	12	22			0	-
0	R	5	17	1		1				1				0	5	14	2			0	
0	R	6	26	1		1				1				0	5	16	22			0	-
0	R	7	3	1		1				1				0	6	10	17			0	
0	R	8	8	1		1				1				0	5	15	7			0	
0	R	9	58	1		1				1				0	6	13	17			0	
0	R	10	38	1		1				1				5	0	16	19			0	-
12		1	32	1		1				1				0	6	13	19			0	-
12		2	54	1		1				1				0	7	14	20			0	
12		3	51	1		1				1				0	9	17	18			0	
12		4	47	1		1				1			-	0	7	12	21	-		0	
12		5	2	1		1	-			1				0	8	12	19			0	
12		6	34	1	-	1				1				0	8	14	19			0	
12		7	40	1		1				1				0	7	12	18			0	
12		8	70	1		1				1				0	9	15	19			0	
12		9	66	1		1				1				0	8	15	17			0	
12		10	31	1		1				1				6	0	15	21			0	
24		1	45	1		1				1				0	8	14	19			0	
24		2	57	1		1				1				0	7	16	18			0	
24		3	29	1	-	1				1				0	7	17	19			0	
24		4	20	1		1	1			1			-	0	8	17	20			0	
24		5	7	1		1				1				0	9	16	22			0	
24		6	10	1		1				1	1			0	7	17	19			0	
24		7	15	1		1		-		1				0	6	15	19			0	
24	1	8	22	1		1				1				0	6	14	19		-	0	
24		9	63	1		1			- 1	1				0	7	15	18			0	-
24	1	10	36	1		1				1				6	0	15	20			0	-
48		1	24	1		1				1				0	6	15	17			0	
48		2	6	1		1				1				0	5	13	18			0	
48		3	56	1		1				1				0	6	15	17			0	-
48	1	4	35	1		1				1				0	7	18	19			0	
48		5	33	1		1				1				0	7	18	21			0	
48		6	12	1		1				1				0	7	12	16	-		0	-

CETIS Test Data Worksheet

Report Date:

30 Aug-18 17:04 (p 2 of 2) 01-0882-6929/81464

	-														Code			O Aug.	1-0882		
Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	
48		7	39	1		1			-	1		-	-	0	6	13	8	0	0	0	Note
48		8	59	1	1	1				1				0	9	15	21			0	-
48		9	61	1		1				1				0	7	14	19	-		0	-
48		10	44	1		1				1				6	0	16	18	-	-	0	+-
50		1	5	1		1				1		-		0	8	12	18			0	
50		2	14	1		1				1				0	7	17	18			0	-
50		3	18	1		1				1	-			0	5	14	19			0	-
50		4	21	1		1	-			1	-	-		0	8	16	18		-	0	-
50		5	67	1		1	-			1			-	0	8	17	21		-	1	
50		6	30	1		1	-	-		1	-	_	-	0	7	15		-		0	
50		7	53	1		1				1			-	0	8	13	13			0	-
50		8	11	1		1				1				0	6	16	22		-	- 3	-
50		9	16	1		1				1			-	0	7	14	20	-		0	
50		10	68	1		1				1			-	7	0	14	1	-	_	0	
100		1	1	1	-	1	-			1	-			0	7	13	17			0	
100		2	48	1		1				1		-		0	6	14	18			0	
100		3	62	1		1				1	-	-	-	0	8		16			0	
100		4	4	1		1		-		1				0	7	12 16	17			0	
100		5	46	1		1		-		1				0	7	14	16	-		0	_
100		6	23	1		1	-			1	-		-	0	6	200	18			0	
100		7	25	1		1				1			-	0	7	15	19			0	
100		8	69	1		1				1		-	-	0		15	18			0	
100		9	55	1		1			-	1				0	8		18			0	
100		10	49	1		1		-		1	-	-	-	5	0	14	16			0	

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

lient ID: Ke	ene/Ley					Permit No	. NH010	0790	Pipe No.	1
OXICITY T % Effluent	EST DA Rep.	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8146
	1	0	0	D-00) —	_				
0% Soft CTRL	2	0	0	0	0	7	14	20		
DVV	3	0	Q	0	0	7	16	19		
0 %	4	0	R	()	0	6	9			
SOFT	5	0	X	6	0	9 00 00 00 00 7	14	19		
CTRL	6	0	X	0	8	8	16	21		
0.53545	7 8	0	8	8	X	8		12		
	9	0	8	8	X	7	16	110		
	10	0	0	0	(e	O	13	18		
			0	6	0			3		
	1 2	0	8	~	X	507755	12	मे		
	3	0	X	X	8	77	15	3		
0%	4	0	8	8	8	7	13	33		
0 /0	5	0	0	X	8	.5	14	2	1	
DIA	6	0	Ŏ	8	0	5	16	32		
RW	7	0	8	0	0	5	10	17	7	
	8	0	0	0	0	5	15	7		
	9	0	Q	Q	0	6	13	17		
	10	0	8	0	5	0	16	14		
	1	0	0	0	0	io	13	19		
	2	0	(7)	0	0	7	14	20		
96.55	3	0	0	Q	0	9	17 12 12	18		
12 %	4	0	0	0	0	7	12	21		
	5	0	2	0	0	780079	12	19		
EFF	6	0	8	8	2	8	14 12 15			
347	7	0	8	0	8	4	12	13		
	9	0	8	8	8	8	15	17		
	10	0	0	Ŏ	6	0	15	21		
	-		<u></u>	2	0		14	10		_
	1 2 3 4	0	8	8	0	6	14 14 14 17	10		
	2	0	R	0	0	7	12	10		
2/1 0/	Λ	0	0	0	X	8-	17	15		
24 %		0	O	0	X	9	16	22		
FFF	5 6 7 8 9	0	Ö	0	0	0077000T	16	19		
EFF	7	0	0	0	\sim	6	15	101		
	8	0	0	0	Ö	19	14	10		
		0	Q	Ø	0		15 14 15 13	18		
	10	0	0	Ŏ	6	0	N-	20		

1 Laboratory induced mortality KN 8/9/18

cd

0 = Original organism surviving, No young; D = Original organism dead; # = Number young released; * = Lab-induced mortality

Aquatec Environmental Inc.

SDG:

Aquatec Environmental, Inc.
Reviewed by: B Date: 8-30-18

Project

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

lient ID:	Keene/Ley					Permit No	. NH010	0790	Pipe No.	1
OXICITY % Effluent		TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8146
	1	0	0	0	0	6	15	17		
	2	0	8	0	0	5	13	13		
-125193 -	3	0	2	0	0_	6	15	17		
48 %	4	0	8	Q	2	7	18	29		
	5	0	A	X	8	+		dy.		
EFF	6 7	0	1	8	00	7	12 13	be	-	
	8	0	8	2	0	6	15	27		
	9	0	0	X	8	9		Pa		
	10	0	0	0	6	Ó	14	18		
	1	0	0	0	0	8	B	18		
	2	0		0	Ŏ	7	17	10		
	3	0	Q	0	0	5	14	19		
50 %	4	0	8	Q	0	7 5 8	16	18		
	5	0	0	2	0	8	17	27		
EFF	6	0		X	2	4	15	P2		
	7	0	0	X	8	6	13	73		
	9	0	8	A	8	7	16	33		
	10	0	ð	Ŏ	7	O	14	97		
	1	0	0	0		7	13	TIST		
	2	0	Ö	()	0	10	14	16		
	3	0	O	0	0	8	13	17		
100 %	4	0	Q	0	Q	7	16	16		
	5	0	Q	0	9	7	14	109		
EFF	6	0	8	2	8	9.700	15	195		
	7	0	8	8	8	t d	15	13		
	9	0	3	8	8	8	14	1/3		
	10	0	8	6	5	0	15	19		
	Sample #	51048	51048	5/063	51063	51067	Sido7	51067		
	Fed	V	1/	/	1	1	1			
	Renewal	817/18	8/8/18	301118	8/10/18	8.11.18	8-12-18	8/13/18		
	(D/T/I)	1300	1415	3101 18 13408	1140	1305 KP	1500 EB	1450	-	
	1000		718-1	Pro	M	, our		PN		

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: Keene/Ley Permit No. NH0100790 Pipe No. **INITIAL CHEMISTRY DATA:** Test ID 81464 % Effluent **Analysis** Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 pH DO Temp. Cond. pH 0% DO Temp. RW Cond. pH 12 % DO Temp. **EFF** Cond. pH 24 % DO Temp. EFF Cond. pH 48 % DO Temp. EFF Cond. pH 50 % DO Temp. EFF Cond. pH 100 % DO Temp. **EFF** Cond. Sample # 51663 510k3 51048 51048 Date Initials

Aquatec Environmental, Inc. Reviewed by: Date: 9/4/18. p. 61

SDG: Project

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

ent ID: Keene/					Permit No	o. NH010	0790	Pipe No.	1
NAL CHEMIST	RY DATA	\ :						Test ID	8146
% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
DV 0%	pH	7.2	7.2	7.2	7.2	70	7.2		
0 % SOFT	DO	7.7	7.1	7.2	7,9	7.6	7.5		
CTRL	Temp.	25.8	254	25.7	25.7	25.9	25.9		
CIRL	Cond.	202	207	190	187	176	176		
0.0/	рН	7.2	6.9	7.0	7.2	6.9	6.9		
0 %	DO	7.6	7.2	72	7.9	7.7	7.2		
RW	Temp.	25.8	25.6	25.6	25.8	26.0	26.0		
	Cond.	68	65	92	85	106	190		
12.0/	рН	7.3	73	7.6	7.3	7-1	7.3		
12 %	DO	0.8.	72	73.	7.8	7.7	7.3		
EFF	Temp.	25.8	25.6	25.8	25,8	26.0	26.0		
LIT	Cond.	278	279	319	303	277	233		
24.0/	рН	7.4	7.4	7.7	7.60	7.2	7.5		
24 %	DO	7.7	7.4	7.2	7.8	7.8	7.3		
EFF	Temp.	25.9	257	25.7	25,8	25.9	26.0		
	Cond.	355	357	421	416	381	282		
// 0 0/	рН	7.5	7.4	7.9	7.9	7.5	7.7		
48 %	DO	7.8	7.2	72	7,8	7.7	7.3		
EFF	Temp.	25.8	25.5	25. le	25,8	25.9	26.0		
	Cond.	231	508	638	638	593	0382		
E0.0/	рН	75	7.5	8.0	8.0	7.5	7.8		
50 %	DO	7.9	7.2	7.2	7.8	7.8	73		
EFF	Temp.	25.8	25.5	257	25.7	25.9	26.0		
Lit	Cond.	538	520	658	660	607	26.0		
100.0/	рН	7.6	7.5	8.2	8.3	7.8	8.0		
100 %	DO	78	7.3	7.4	7.8	7.9	7.3		
EFF	Temp.	25.7	25.6	25.7	25,8	25.9	26.0		
LITE	Cond.	824	333	1103	1097	1017	914		
	Sample #	51048	51048	51,063	51063	51067	51067		
	Date	8/8/18	8/9/18	8/10/18	8.11.18		8/13/18		
	Initials	KN	KN	ILA	KP	BB	KN		

Descheck on conductivity = 383 En 8/13/18

cd

Documentation of Collection

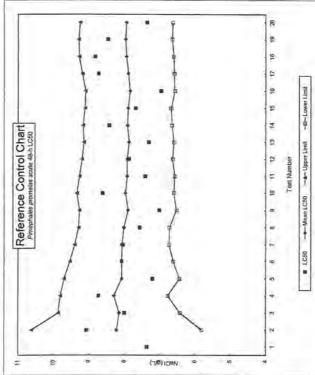
Species:	Ceriodenhain dute	
Source:	Ceriodaphnia dubia In-House Cultures	Client/Project: Keene cd
Agalia		Testing Date: 8 17 1 18

Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold at appropriate testing temperature.

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 671718) and YTC (Lot #: 8 6726 6-1/27) to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.

Culture ID	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fed
073118	8-6-18 11:15 EB	3/6/18/623 KN	O	(1)
72175/20	8-6-18 12:00 EB	8/6/18/1627 KN	d	_
280118	8/6/18/623 FX	8/6/18 23:0300		V
073118	8/6/18 23:03 N	8/6/18 23:070	0	-
080118	8/6/18 23:070	8/1/18 06:50	(58)	~
		1		
		oinht per cup, and he from		

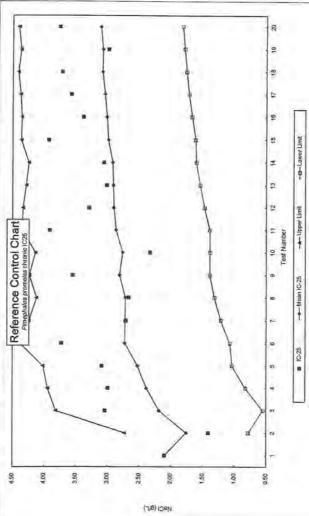
^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female


Aquatec Environmental, Inc. DAPHNID COLLECTION FORM

or 9/4/18

Standard Reference Toxicant Control Chart(s)

Pimephales promeles acute survival LC50 Control Chart Reference toxicant: sodium chloride (g/L)


Test	Test	LC50	Mean	Calculat	Calculated limits	
Number	Date	(a/L)	LC50	Upper	Lower	Source
-	8/12/16-8/14/16	7.36				Aquatic Biosystems
2	9/13/16-9/15/16	90'6	8.21	10.61	5.81	Aquatic Biosystems
0	10/19-21/2016	7.994	8.14	9.86	6.42	Aquatic Biosystems
¥	11/29/16-12/1/16	8.722	8.28	9.80	6.76	Aquatic Biosystems
10	1/10/17-1/12/17	7.204	8.07	9.70	6.44	Aquatic Biosystems
9	217117-2/9/17	8.071	8.07	9.53	6.61	Aquatic Biosystems
1	3/21/17-3/23/17	8.042	8.06	9.40	6.73	Aquatic Biosystems
00	5/2/17-5/4/17	7.561	8.00	9.29	6.72	Aquatic Biosystems
O:	7112/17-7/14/17	7.005	7.89	9.26	6.52	Aquatic Biosystems
10	8/8/17-8/10/17	8.61	7.96	9.34	6.59	Aquatic Biosystems
4	9/12/17-9/14/14	7.403	7.91	9.26	6.57	Aquatic Biosystems
12	10/24/17-10/26/17	7.867	7.91	9.19	6.63	Aquatic Biosystems
13	11/7/17-11/9/17	7.31	7.86	9.13	6.59	Aquatic Biosystems
14	1/25/18-1/27/18	8.42	7.90	9.16	6.64	Aquatic Biosystems
15	2/6/18-2/8/18	7.678	7.89	9.10	6.67	Aquatic Biosystems
16	3/6/18-3/8/18	6.952	7.83	9.09	6.56	Aquatic Biosystems
11	4/3/18-4/5/18	8.722	7.88	9.18	6.58	Aquatic Blosystems
18	6/5/18-6/7/18	8.819	7.93	9.27	6.60	Aquatic Biosystems
19	7/24/18-7/26/18	8.451	7.96	9,28	6.64	Aquatic Biosystems
20	8/14/18-8/16/18	7.35	7.93	9.24	6.62	Aquatic Biosystems

Note: Tests through September of 2016 were as Aquatec Biological Sciences, Inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, Inc.

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

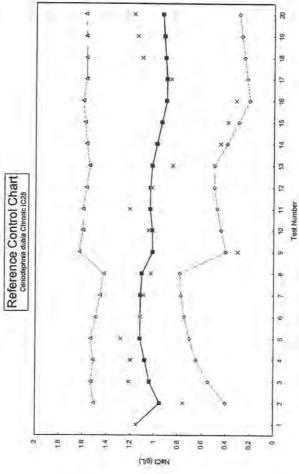
Test	Test	IC-25	Mean	Calculated limits	ed limits	CV of Avg.	Avg.	Growth	Avg.	
Vumber	Date	(g/L)	IC-25	Upper	Lower	IC25	S	PMSD (%)	PMSD (%)	Source
1 -	8/12/16-8/19/16	2.10	2.10		1.7.1	1 3,0 E		11.70	11.70	Aquatic Biosystems
2	9/13/16-9/20/16	141	1.76	2.73	0.78	0.28	0.28		11.70	Aquatic Biosystem.
00	10/19-26/2016	3.04	2.18	3.81	0.55	0.37	0.33	18.00	18.00	Aquatic Biosystem
4	11/29/16-12/6/16	2.99	2,38	3.94	0.82	0.33	0.33	20.40	16.70	Aquatic Blosystem
9	1/10/17-1/17/17	3.09	2.53	4.02	1.03	0.30	0.32	11.20	15.33	Aquatic Biosystem
10	27/17-2/14/17	3,73	2.73	4.38	1.07	0.30	0.32	7.45	13.75	Aquatic Biosystem
1	3/21/17-3/28/17	2.71	2.72	4.24	1.21	0.28	0.31	14.80	13.93	Aquatic Biosystem
60	5/2/14-5/9/17	2,66	2.72	4.12	1.32	0.26	0.30	15,10	14.09	Aquatic Biosystem
6	7/12/17-7/19/17	3.55	2.81	4.23	1.39	0.25	0.30	12.90	13.94	Aquatic Biosystem
9	8/8/17-8/15/17	2.33	2.76	4.14	1.39	0.25	0.29	only 2 reps	12.39	Aquatic Biosystem
1	9/12/17-9/19/17	3.91	2.87	4.34	1.39	0.26	0.29	19.00	13.06	Aquatic Biosystems
12	10/24/17-10/31/17	3.29	2.90	4.33	1.47	0.25	0.28	22.10	13.88	Aquatic Biosystem
13	11/7/17-11/14/17	3.02	2.91	4.28	1.54	0.24	0.28	27.00	14.97	Aquatic Biosystems
14	1/25/18-2/1/18	3.06	2.92	4.24	1.60	0.23	0.28	15.50	15.01	Aquatic Blosystem
15	2/6/18-2/13/18	3.93	2.99	4.36	1.61	0.23	0.27	14.70	14.99	Aquatic Biosystems
16	3/6/18-3/13/18	3,38	3.01	4.35	1,67	0.22	0.27	19.20	15.27	Aquatic Biosystem
17	4/3/18-4/10/18	3.57	3.05	4.37	1.72	0.22	0.27	13.20	15.14	Aquatic Biosystem:
18	6/5/18-6/12/18	3.72	3.08	4.41	1.76	0.22	0.26	12.80	15.21	Aquatic Blosystems
18	7/24/18-7/31/18	2.99	3.08	4.37	1.79	0.21	0.26	20.80	15.33	Aquatic Biosystems
20	8/14/18-8/21/18	3.76	3,11	4.40	1.82	0.21	0.26	9.11	15,00	Aquatic Biosystems

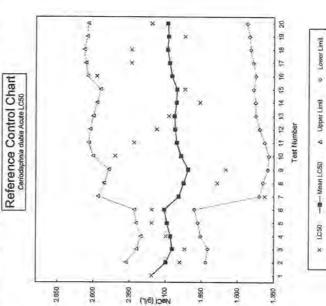
Assessment of test precision and sensitivity: They CV of average IC25 values was within the 25th Percentile (0.21) for fathead minnow growth (Table 3-2, EPA 833-R-00-003) indicating high precision (only 25% of labs reported CVs of not more than 0.21). The per-lest PMSD values were less than the EPA upper limit of 30% indicating low-to moderate variability (moderate to high sensitivity) for this method. The cumulative average PMSD value of 20 tests (15.0) was near the EPA lower boundary (12%), indicating high statistical sensitivity for this test method. Updated 9/2/18

\qqqc\srts\Cd SRT including CV and PMSD

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Avg. PMSD (%)


Avg.


CV of Avg.

13.3 13.4 18.4

0.29 0.24 0.20 0.19 0.14 0.28 0.27 0.26 0.26 0.30 0.34 0.35

Test	Test	LC50	Mean	Calculated limits	d limits	Test	Test	IC-25	Mean	Calculated limits	d limits
Number	Date	(a/L)	LC50	Upper	Lower	Number	Date	(a/L)	IC-25	Upper	Lower
+	10/18/16-10/20/16	2,195	2.20			+	10/18/19-10/25/16	1 149	1.15		
2	11/29/16-12/1/16	2.000	2.10	2.37	1,82	2	11/29/16-12/5/16	0.7583	0.95	1.51	0.40
177	1/10/17-1/12/17	1.966	2.05	2.30	1.81	63	1/10/17-1/16/17	1211	104	1.53	0.55
4	2/14/17-2/16/17	2.098	2.06	2.27	1.86	4	2/14/17-2/22/17	12	1.08	1.51	0.65
S	3/21/17-3/23/17	2,195	2.09	2.30	1.88	G	3/21/17-3/28/17	1.282	1.12	154	0.70
9	5/16/17-5/18/17	2.195	2.11	2.32	1.90	9	5/16/17-5/22/17	1.123	1.12	1.49	0.75
7	7/11/17-7/13/17	1,414	2.01	2.57	1.45	1	7/11/17-7/13/17	1,093	1.12	1.46	0.78
8	8/1/17-8/3/17	1,743	1.98	2.53	1.43	80	8/1/17-8/7/17	1.03	1.11	1.43	0.79
o	9/12/17-9/14/17	1.684	1.94	2.49	1.39	on on	9/12/17-9/18/17	0.2996	1.02	1.63	0.40
10	9/28/17-9/30/17	2.449	1.99	2.60	1.38	10	9/28/17-10/4/17	1.048	1.02	1.60	0.44
11	10/31/17-11/2/17	2.319	2.02	2,63	1.41	11	10/31/17-11/6/17	1,208	1.04	1.60	0.47
12	11/28/17-11/30/17	2.161	2.03	2.62	1.45	12	11/28/17-12/4/17	1.023	1.04	1.57	0.50
13	1/9/18-1/11/18	2.077	2.04	2.60	1.48	13	1/9/18-1/16/18	0.85	1.02	1.54	0.50
14	2/6/18-2/8/18	1.861	2.03	2.57	1,48	14	2/6/18-2/12/18	0.4474	0.98	1.57	0.39
15	3/6/18-3/8/18	1.966	2.02	2.55	1,49	15	3/6/18-3/12/18	0.3857	0.94	1.59	030
16	4/3/18-4/5/18	2.577	2.06	2.64	1.47	16	4/3/18-4/10/18	0.315	0.90	1.60	0.20
17	5/15/18-5/17/18	2.337	2.07	2.65	1,49	17	5/15/18-5/21/18	0.8601	0.90	1.57	0 22
18	6/12/18-6/14/18	2.337	2.09	2.66	1.51	18	6/12/18-6/18/18	1.105	0.91	1.57	0.25
19	7/24/18-7/26/18	1.966	2.08	2.64	1.52	19	7124/18-7/30/19	1,145	0.92	1.58	0.27
20	8/14/18-8/16/18	2,195	2.09	2.64	1.54	20	8/14/18-8/20/18	1174	0 94	1 58	0.00

were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data. The cumulative Assessment of test precision and sensitivity: The cumulative average CV of 0.27 for reproduction was near the 50th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 09/02/18.

٥

Upper Limit

4

-- Mean IC-25

10-13

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

TOXICITY SUMMARY REPORT:

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

9/11/2018 2:40:00 PM

Test End:

9/18/2018 11:25:00 AM

ACUTE

CHRONIC

		9	6	- 9	6
Number	Sample Name	NOEC	LC50	NOEC	LOEC
51115	Keene WWTP (2 Clarifier #2)	100	>100	100	>100

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP:

WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

ACUTE

CHRONIC

		9	6	9	6
Number	Sample Name	NOEC	LC50	NOEC	LOEC
51115	Keene WWTP (2 Clarifier #2)	100	>100	100	>100

SAMPLES RECEIVED:

				_
Number	Sample Name	Date Time and Collected	Туре	
51115	Keene WWTP (2 Clarifier #2)	9/10/2018 7:18:00 AM	Effluent	
51116	Ashuelot River	9/10/2018 8:20:00 AM	Receiving	
51117	091018SOFT	9/11/2018 10:20:00 AM	Lab Water	
51124	Keene WWTP (2 Clarifier #2)	9/12/2018 7:02:00 AM	Effluent	
51125	Ashuelot River	9/12/2018 8:02:00 AM	Receiving	
51130	Keene WWTP (2 Clarifier #2)	9/14/2018 7:01:00 AM	Effluent	
51131	Ashuelot River	9/14/2018 8:35:00 AM	Receiving	

Submitted By:

1 of 1

Aquatec Environmental, Inc. Reviewed by: ____ Date:

Saturday, September 22, 2018

SDG:

15421

Project 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

TOXICITY DETAIL REPORT:

Test Start:

Sample ID: 51115 / Keene WWTP (2 Clarifier #2)

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013

SOP: WET-A-001

9/18/2018 11:25:00 AM

9/11/2018 2:40:00 PM

Response: Survival (%) ---- Concentration % Additional 12 24 48 50 100 Day Control 2 100 100 100 100 100 100 100 7 100 100 100 100 97.5 97.5 97.5

Test End:

Response: Growth per Original Number of Larvae (mean dry weight,mg)

----- Concentration % Additional 12 24 48 50 100 Control 7 0.641 0.609 0.646 0.617 0.609 0.673 0.583

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

Response: Survival (%)

Concentration % Additional 12 100 0 24 48 50 Control Day 2 100 100 100 100 100 100 100 6 100 90 100 100 100 100 100

Response: Reproduction (mean neonates per female)

----- Concentration % Additional 0 12 24 48 50 100 Control 6 29.4 21.8 29 25.3 27.8 30.9 30

Submitted By:

1 of 1

Aquatec Environmental, Inc. Date:

Saturday, September 22, 2018 SDG:

15421

Project

23/

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: *Pimephales promelas* Reference: EPA-821-R-02-013

phales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Test Start: 9/11/2018 2:40:00 PM Test End: 9/18/2018 11:25:00 AM

Response: Survival (%)

 Day
 Sample ID
 Dilution Control
 Additional Control

 2
 51115
 100
 100

 7
 51115
 100
 100

Response: Growth per Original Number of Larvae (mean dry weight, mg)

Day Sample ID Dilution Control Additional Control
7 51115 0.641 0.583

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD: 10.0%

PMSD Criteria Range:

12%-30%

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, there were no special conditions or qualifiers that relate to the samples in this report, with the following exceptions:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as an additional control.

1 of 3

Aquatec Environmental, Inc.
Reviewed by: Date: 9123

SDG: Project 15421 18017

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Lev

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

Response: Survival (%)

Day	Sample ID	Dilution Control	Additional Control
2	51115	100	100
6	51115	90	100

Reproduction (mean neonates per female)

Day	Sample ID	Dilution Control	Additional Control
6	51115	21.8	29.4

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD:

28.4%

PMSD Criteria Range:

The calculated test PMSD was within the acceptable boundary range indicating test data with acceptable variability and statistical sensitivity. The chronic values (C-NOEC, C-LOEC) were reported as calculated by the statistical program.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, there were no special conditions or qualifiers that relate to the samples in this report, with the following exceptions:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as an additional control.

2 of 3

Aquatec Environmental, Inc. Reviewed by: _____ Date: ____9

SDG:

15421

Project 18017

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: September 27, 2018

(Authorized signature)

John Williams Director

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road

Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

9/11/2018 2:40:00 PM

Test End:

9/18/2018 11:25:00 AM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type

Sampling Method

Modified Chronic

Pimephales promelas

Effluent

Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

September 10, 12, & 14, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

September 11-18, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6

Aquatec Environmental, Inc. Reviewed by: A Date:

SDG:

15421

Project 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001

Test Start:

9/11/2018 2:40:00 PM

Test End:

9/18/2018 11:25:00 AM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Growth: 0.641 (mg)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Growth: 0.583 (mg)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Growth (%): 10

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%)

RESULTS (%)

48-Hour LC50:

48-Hour LC50:

> 100

Upper Value:

N/A

Lower Value:

N/A

Data Analysis

Dunnett Multiple Comparison Test,

Method(s):

Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC:

100.0

A-NOEC:

100

C-NOEC:

48.0

C-NOEC:

100

C-LOEC:

> 100

IC25:

IC25:

> 100

2 of 6

Aquatec Environmental, Inc. N Date:

SDG: Project 15421

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Lev

Permit No. NH0100790

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP: WET-A-001

Test Start:

9/11/2018 2:40:00 PM

Test End:

9/18/2018 11:25:00 AM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 12%-30%, indicating test data with low variability and high statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

3 of 6

Aquatec Environmental, Inc. Reviewed by: Date: 9

SDG: Project 15421

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley

Permit No. NH0100790

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method

Modified Chronic Ceriodaphnia dubia Effluent Composite

Dilution Water:

Soft Water

Additional Control:

Ashuelot River

Effluent Sampling Dates:

September 10, 12, & 14, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100*

(%):

* Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

No

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Reference Toxicant Date:

August 14-20, 2018

Reference Toxicant Test

Acceptable?

Yes

Age and Age Range of Test

Organisms:

<24h collected within an 8h period

Source of Organisms:

Aquatec Environmental, Inc. - Williston, VT

4 of 6

Aquatec Environmental, Inc., Reviewed by: Date: 9 23/18

SDG: Project 15421 18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Client ID: Keene/Ley

Permit No. NH0100790

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP: WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 90 %

Mean Control Reproduction: 21.8 (neonates)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Reproduction: 29.4 (neonates)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Reproduction (%): 28.4

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%)

RESULTS (%)

48-Hour LC50:

48-Hour LC50:

> 100

Upper Value:

N/A

Lower Value:

N/A

Data Analysis

Fisher Exact/Bonferroni-Holm Test,

Method(s):

Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC:

100.0

A-NOEC:

100

C-NOEC:

48.0

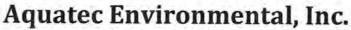
C-NOEC:

100

C-LOEC:

> 100

IC25:


IC25:

> 100

5 of 6

SDG: Project 15421

18017

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Lev

Permit No. NH0100790

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

WET-A-002

Test Start:

9/11/2018 12:40:00 PM

Test End:

9/17/2018 2:30:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was within the boundaries of 13%-47%, indicating test data with normal variability and statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or reproduction were not detected.

6 of 6

Aquatec Environmental, Inc. Reviewed by: Date:

11

Saturday, September 22, 2018

SDG: 15421

Project 18017

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES WORK ORDER: 1809-23171

DATE RECEIVED: September 11, 2018

DATE REPORTED: September 26, 2018

SAMPLER: DC

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

DATE REPORTED: 09/26/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1809-23171
PROJECT: Keene NH NPDES DATE RECEIVED: 09/11/2018

001 Site: 51115 Keene WW	Site: 51115 Keene WWTP Composite Date Sampled: 9/10/18 Time: 7:18									
<u>Parameter</u>	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.			
Total Organic Carbon	7.1	mg/L	SM 5310C (00)	9/19/18	N JGM	A				
Total Hardness, Total as CaCO3	59	mg/L	EPA 200.7	9/21/18	W FAA	A				
Ammonia as N	0.42	mg/L	EPA 350.1, R.2	9/25/18	N JGM	A				
Solids, Total Dissolved	471	mg/L	SM 2540C-97	9/12/18	W JSS	A				
Total Solids	569	mg/l	SM 2540 B97	9/13/18	W JSS	A				
Metals Digestion	Digested		EPA 200.7/200.8	9/12/18	W SJM	A				
Aluminum, Total	0.11	mg/L	EPA 200.8	9/14/18	W SJM	A				
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	9/14/18	W SJM	A				
Calcium, Total	18	mg/L	EPA 200.7	9/21/18	W FAA	A				
Copper, Total	0.0035	mg/L	EPA 200.8	9/14/18	W SJM	A				
Lead, Total	< 0.0010	mg/L	EPA 200.8	9/14/18	W SJM	A				
Magnesium, Total 3.3 mg/L		EPA 200.7	9/21/18	W FAA	A					
Nickel, Total	< 0.0050	mg/L	EPA 200.8	9/14/18	W SJM	A				
Zinc, Total	< 0.020	mg/L	EPA 200.8	9/14/18	W SJM	A				

002	Site: 51116 Ashuelot River Grab Date Sampled: 9/10/18 Time: 8:20										
<u>Parameter</u>	<u>Parameter</u> <u>Result</u> <u>U</u>		<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.			
Total Organ	nic Carbon	3.3	mg/L	SM 5310C (00)	9/19/18	N JGM	A				
Total Hardr	ness, Total as CaCO3	23	mg/L	EPA 200.7	9/21/18	W FAA	A				
Ammonia a	ns N	0.08	mg/L	EPA 350.1, R.2	9/25/18	N JGM	A				
Metals Dig	estion	Digested		EPA 200.7/200.8	9/12/18	W SJM	A				
Aluminum,	Total	0.12	mg/L	EPA 200.8	9/14/18	W SJM	A				
Cadmium,	Total	< 0.0002	mg/L	EPA 200.8	9/14/18	W SJM	A				
Calcium, To	otal	6.7	mg/L	EPA 200.7	9/21/18	W FAA	A				
Copper, Tot	tal	< 0.0020	mg/L	EPA 200.8	9/14/18	W SJM	A				
Lead, Total		< 0.0010	mg/L	EPA 200.8	9/14/18	W SJM	A				
Magnesium	n, Total	1.4	mg/L	EPA 200.7	9/21/18	W FAA	A				
Nickel, Tota	ckel, Total < 0.0050 mg/L E		EPA 200.8	9/14/18	W SJM	A					
Zinc, Total	Zinc, Total < 0.020 mg/L		EPA 200.8	9/14/18	W SJM	A					

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	COMPANY INFORMATION				F	PRO.	IECT	INFO	RMATIO	N
Name:	Aquatec Envir					ct Nam		Keene N		
Address:	273 Commerc	e Street			Proje	ct Num	ber:	18017		
City/State/Zip:	Williston, VT 0	5403			·····	oler Nar		DC		
Telephone:	(802) 860 - 29	60					(/-			
Contact Name:			·	···						
SAMPLE IDEN	ANA (Detection	ALYSIS n Limit, m	ıg/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER			
Keene WWTP (Grab:	N/A	Comp	osite:	Х		THOMBER			
51115		<u>.</u>	500mL	Plastic	H2SO4	1				
Metals: Cd, Pb (0.0005); Cu (0.003); Zn, Ni (0.005); Al (0.02); Mg, Ca (0.05)							250mL	Plastic	НNОЗ	1
		Total Organic	c Carbon ((0.5)	<u></u>	······································	40mL	Glass	H2SO4	2
		Total Solids/	Total Diss	olved Solids	s ·		1/2gal	Plastic	ice (4C)	1
Ashuelot River	(51116) 0	9/10/18 8	:20	Grab:	х	Compo	site: 1	N/A		
		Ammonia (0.	1)				500mL	Plastic	H2SO4	1
		Metals: Cd, P (0.005); Al (0.	b (0.0005 .02); Mg, (); Cu (0.003 Ca (0.05)	3); Zn, Ni		250mL	Plastic	НМОЗ	1
Total Organic Carbon (0.5)						<u>.</u>	40mi	Glass	H25O4	2
Relinquished by (signature) DATE TIME Received by: (signature) PATE TIME Received by: (signature) DATE TIME Received by: (signature)						DATE 9/11/18 DATE	TIME 1458 TIME	Cooler/S Notes To	Sample Temp.: _	-0.2

1809-23171

1809-23171

Aquatec Environmental, Inc Keene NH HPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES WORK ORDER: 1809-23856

DATE RECEIVED: September 17, 2018

DATE REPORTED: September 28, 2018

SAMPLER: DC/BB

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 09

09/28/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1809-23856
PROJECT: Keene NH NPDES DATE RECEIVED: 09/17/2018

001	Site: 51124 Keene NH WWTP	Composite		Date Sampled: 9/12/18 Time: 7:02							
Parameter	<u>R</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qual.					
Ammonia a	s N	0.22 n	ng/L	EPA 350.1, R.2	9/27/18	N JGM	A				

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMF	PANY INFORMATION	PROJECT INFORMATION
Name:	Aquatec Environmental, Inc.	Project Name: Keene NH NPDES
Address:	273 Commerce Street	Project Number: 18017
City/State/Zip:	Williston, VT 05403	Sampler Name(s): DC/BB
Telephone:	(802) 860 - 2960	
Contact Name:	John Williams	
SAMPLE IDEN		.NALYSIS BOTTLE/CONTAINER ion Limit, mg/L) SIZE TYPE PRESERVATIVE NUMBER
Keene WWTP #2) (51124)	(2 Clarifier 09/12/18 7:02 Grab:	N/A Composite: X
	Ammonia (0.1)	500mL Plastic H2SO4 1
Relinquished by	(signature) DATE TIME Received by:	(signature) DATE TIME Cooler/Sample Temp.: 4.7 Notes To Lab:
Relinquished by	(signature) DATE TIME Received by:	(signature) DATE TIME

1809-23856

1809-23856

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES WORK ORDER: 1809-23857

DATE RECEIVED: September 17, 2018

DATE REPORTED: September 28, 2018

SAMPLER: DC/BB

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED:

09/28/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1809-23857
PROJECT: Keene NH NPDES DATE RECEIVED: 09/17/2018

001	Site: 51130 Keenw NF	H WWTP Composite	I	Date Sampled: 9/14/18 Time: 7:01					
Parameter		<u>Result</u>	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	NELAC	Qual.	
Ammonia a	s N	0.13	mg/L	EPA 350.1, R.2	9/27/18	N JGM	A		

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMPANY INFORMATION						PROJ	ECT I	NFO	RMATIC	N
Name:	Aquatec E	nvironme	ental, Inc	÷,	Project Name: Keen			eene Ni	H NPDES	
Address:	273 Comm	273 Commerce Street					er: 1	8017		
City/State/Zip:	City/State/Zip: Williston, VT 05403					oler Nam	e(s): [C/BB		
Telephone:	(802) 860	- 2960								
Contact Name:	John Willia	ıms				•		•		
SAMPLE IDEI	NTIFICATIO	N CO	LLECTIO TI		NALYSIS on Limit, n	ng/L)	SIZE	BOTT TYPE	LE/CONTAINE PRESERVATIVE	:
Keene WWTP #2) (51130)	(2 Clarifier		4/18 7		N/A	Compo	site:	X Plastic	H2SO4	1
Relinquished by Relinquished by	Mul	DATE 9-17-19	TIME	Received by: (3		9/17	TIME /Y58 TIME	<u> </u>	/Sample Temp.	-

1809-23857

1809-23657

Aquatec Environmental, Inc Keene NH NPDE5

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1808-19923

DATE RECEIVED: August 09, 2018

DATE REPORTED: August 29, 2018

SAMPLER: EB

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 08/29/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1808-19923
PROJECT: Tox Lab QC DATE RECEIVED: 08/09/2018

001 Site: (51058) 080518 S	oft		Г	Date Sampled: 8/7/18	Time: 16:20		
,		T I:4-		<u> </u>]
<u>Parameter</u>	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	<u>NELAC</u>	Qι
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	8/16/18	N CAL	A	
Total Hardness, Total as CaCO3	53	mg/L	EPA 200.7	8/27/18	W FAA	A	
Ammonia as N	< 0.05	mg/L	EPA 350.1, R.2	8/21/18	N CAL	A	
Solids, Total Dissolved	111	mg/L	SM 2540C-97	8/10/18	W JSS	A	
Total Solids	94	mg/L	SM 2540 B97	8/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	8/20/18	W SJM	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	8/21/18	W SJM	A	
Calcium, Total	10	mg/L	EPA 200.7	8/27/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	8/21/18	W SJM	A	
Magnesium, Total 6.8		mg/L	EPA 200.7	8/27/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	8/21/18	W SJM	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

СОМ	COMPANY INFORMATION					ECT	INFO	RMATIO	N
Name:	Aquatec Envir	ronmental, Inc.	······	Project Name: Tox Lab QC					
Address:	273 Commerc	ce Street		Projec	t Numb	er: 1	18000		
City/State/Zip: Williston, VT 05403					er Nam	e(s): 8	В		
Telephone:	(802) 860 - 29						•		
Contact Name	: John Williams					•		· • • • • • • • • • • • • • • • • • • •	
SAMPLE IDE	NTIFICATION	COLLECTION DATE TIME	10.4.	NALYSIS on Limit, ma	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER
080518SOFT	(51058)	08/07/18 16:2	0 Grab:	Х	Compo	site: N	N/A		
		Ammonia-Nitrog	gen(0.1)			250mL	Plastic	H2SO4	1
		Metals: Al (0.02) Ni (0.005); Ca, N		5); Cu (0.00	3); Zn,	250mL	Plastic	HNO3	1
		TOC - Total Orga	nic Carbon(0.5)		40mL	Glass	H2SO4	2
		TS/TDS-Total Sol	ids/Total Disso	ived Solids		1/2gal	Plastic	Ice(4C)	1
Relinquished b	## # 11 ' I	1/18 11:35 8	leceived by: (1	v zomey	DATE 8/9 DATE	1]:35		/Sample Temp.: fo Lab:	3.7

1808-19923

1808-19923

Aquatec Environmental, Inc Tex Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Aquatec Environmental, Inc.

25

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	PROJECT INFORMATION					VOL		CON'		ER TY VE	PE/
NAME: Keene, NH	PROJECT:	Keene	NH/Le	y								
Address: 420 Airport Road	(15	t Sample	Ship I	Monde	(VE	υ.	NO3		4°C	12504	4	
Swanzey, NH 03446	PROJECT	PROJECT #: 18017					CH	14°C	stic	tic F	TOC: 40mL Glass H ₂ SO ₄	
TEL: (603) 357 – 9836 [x6502]	SAMPLERS NAME(S): Pturen Candello					Plasti	Plasti	slass	Pla	Plas	lass	
CONTACT: Mary Ley						loo	m =	TRC: 40mL Glass 4°C	TS/TDS: ½ Gallon Plastic 4°C	Jm/C	11 6	
E-MAIL: mley@ci.keene.nh.us	PERMIT P	PERMIT NUMBER: NH0100790					Tox: 1 Gallon Plastic 4°C ETALS: 250mL Plastic HNO			A: 25(. 40m	
	COLLEG		AB	COMPOSITE	SSITE	Tox:	Meraus: 250mL Plastic HNO3	TR.	TS/TDS	Ammonia: 250mL Plastic H ₂ SO ₄	T0C	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMP	MATRIX		Number of Containe					5
Keene WWTP (2° Clarifier #2)	9/10/16	718		X	Effluent	2	1	1	1	1	2	4 1
Ashuelot River	9/10/16	820	X		Receiving	1	1			1	2	
				7		7						
												. Cd 8

ANALYSIS (TEST/DETECTION LIMITS) — Tox: 1000.0 & 1002.0 (*P. promelas* & *C. dubia* chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	Control of	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 2 - 1
Mayor	9/10/18	1000	Priority Express	Notes: Aquatec delivers chemistry sub- samples to a NELAC-Accredited analytical
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 9/11/19		RECEIVED BY: (Signature)	lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Other 'ChemSub' only if ≥50% mortality on renewal samples

Sample Acceptance Policy: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960

ATTN. John Williams

COMPANY INFORMATION	PROJECT INFORMATION						VOL		CON ESER		ER TYI	PE/
NAME: Keene, NH	PROJECT	Keene	NH/L	еу								
ADDRESS: 420 Airport Road	(2 nd	Sample	Ship V	Vedne.	sday)	U	103		4°C	2504		
Swanzey, NH 03446	PROJECT	#: 18	017			4.	H	4°C	tic	CH	1 ₂ SO,	
TEL: (603) 357 – 9836 [x6502]	SAMPLERS NAME(S):					lastic	lastic	ass	Plas	olasti	1 ss	
CONTACT: Mary Ley	parve	Parven(andillo/ Bob Bishop					IL P	1 6	llon	nL I	Gla	
E-MAIL: mley@ci.keene.nh.us		NUMBER:			-	Gallc	250n	TRC: 40mL Glass 4°C	% Ga	250	10mL	
	FIN	1	NB NB	DSITE		Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ½ Gallon Plastic 4°C	AMMONIA: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX							
									ROF		AINERS	
Keene WWTP (2° Clarifier #2)	9/12/18	702		Х	Effluent	2	1*	1		1		
Ashuelot River	9/12/18	802	Х		Receiving	1						

ANALYSIS (Test/Detection LIMITS) — Tox: Renewal (*P. promelas* and *C. dubia* chronic toxicity; %) — Metals: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 1.9 °C
many	9/12/18	900	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Signature or carrier) Priority Express	DATE: 9-13-18	3 3 3 CA VIII	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Metals analysis only if ≥50% mortality.

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

COMPANY INFORMATION	PROJECT INFORMATION VOLUME/CONTAINER TYPE PRESERVATIVE										
NAME: Keene, NH	PROJECT:	Keene	NH/L	ey							
Address: 420 Airport Road	(3	3 rd Samp	ole Ship	Frida	y)	(i	O3		J.	2504	
Swanzey, NH 03446	PROJECT	#: 18	017			140	H	4°C	tic 4	C H;	1 ₂ SO ₄
TEL: (603) 357 – 9836 [x6502]	SAMPLER	s NAME(s):			lastic	lastic	TRC: 40mL Glass 4°C	Plas	Plasti	1 28
CONTACT: Mary Ley	Darrenlandello Bob Bishop					n P	IL P	119	llon	nr	Gla
E-MAIL: mley@ci.keene.nh.us		PERMIT NUMBER: NH0100790					250m	40m	½ Gal	250	10mL
	FINAL COLLECTION		18	DSITE	AX.	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC:	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX					,	
					1		NUMBER OF CONTAINE			AINERS	
Keene WWTP (2° Clarifier #2)	9/14/18	701		Х	Effluent	3	1*	1		1	
Ashuelot River	9/14/13	835	Х		Receiving	2					

ANALYSIS (TEST/DETECTION LIMITS) — Tox: Renewal (*P. promelas* and *C. dubia* chronic toxicity; %) — METALS: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) — TRC: Total Residual Chlorine (0.02mg/L) — TS/TDS: Total Solids / Total Dissolved Solids — AMMONIA: (0.1mg/L) — TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 3.4°C
Maurty	9/14/18	CCCI	Priority Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED By: (Signature or carrier) Priority Express	DATE:	TIME: 8:30	RECEIVED BY: (Signature)	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	*Metals analysis of renewal samples only if ≥50% mortality.

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

	Initial	Sample	Second	Sample	Third:	Sample	
	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	51115	5/11 le	51124	51125	5/130	51131	51117
Filtration	60 Micron	₩ Micron	₩ Micron	60 Micron	60 Micron	60 Micron	N/A
Chlorine (1)	ND	_	ND		ND	_	N/A
Chlorine (2)	==		~	_	-	_	N/A
NaThio Lot No.			-	_		_	N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	, N/A
Date / Initials:	9111119	9/11/18	9-13-18-23	9-13-18/63	9/15/18 Km	9/15/18	9/11/18

⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

Aquatec Environmental, Inc. Reviewed by: _____ Date: ____ 9

SDG: 15421 Project 18017

29

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity: (mg/L)	Hardness:	TRC: (mg/L)	
51115 - Keene WWTP (2 Clarifier #2)	9/11/2018	128.0	68.0	0.07	
51116 - Ashuelot River	9/11/2018	32.0	40.0		
51117 - 091018SOFT	9/11/2018	28.0	46.0		
51124 - Keene WWTP (2 Clarifier #2)	9/13/2018	124.0	64.0	0.04	
51125 - Ashuelot River	9/13/2018	16.0	16.0		
51130 - Keene WWTP (2 Clarifier #2)	9/15/2018	68.0	76.0	0.01	
51131 - Ashuelot River	9/15/2018	24.0	24.0		

INF: Interference. The color endpoint was reached immediately

1 of 1

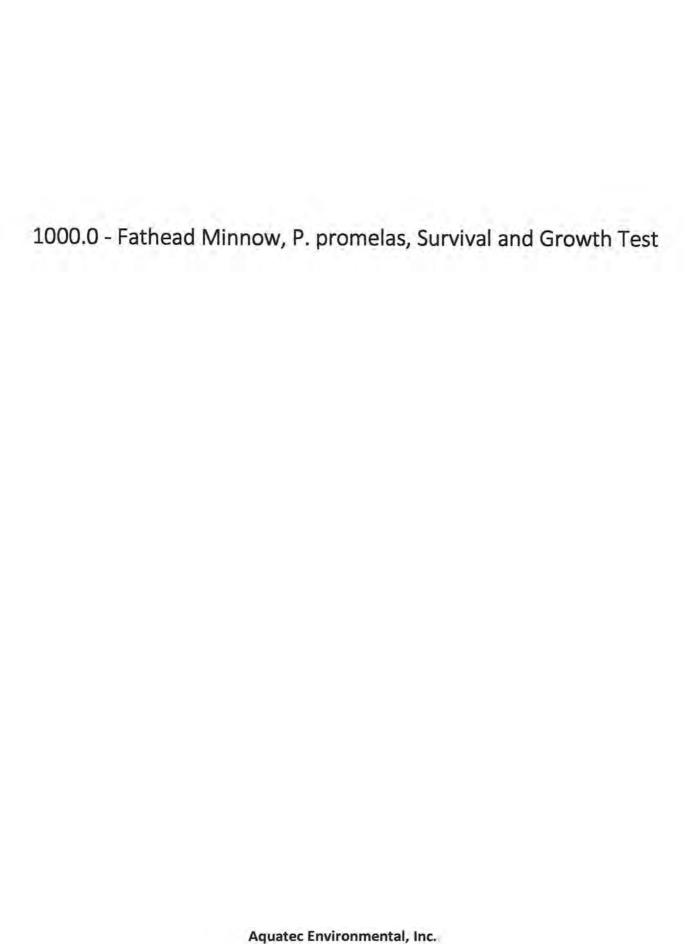
SDG: Project 15421 18017 Toxicity Test Method(s)

Aquatec Environmental, Inc.

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP:

WET-A-001

Projec	t: Keene NH NPDES	
1	Test type:	Static renewal
2	Temperature:	25+/- 1C, Test temperatures must not deviate (i.e., maximum minus minimum temperature) by more than 3C during the test
3	Light quality:	Ambient laboratory illumination
4	Light intensity:	10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)
5	Photoperiod:	16h light/8h dark
6	Test chamber size:	300mL disposable plastic or 600mL glass
7	Test solution volume:	Nominal 250mL
8	Test solution renewal:	Daily
9	Age of test organisms:	Newly hatched larvae less than 24h old. If shipped, not more than 48h old, 24h range in age
10	No. larvae per test chamber:	10
11	No. replicate chambers per concentration:	4
12	No. larvae per concentration:	40
13	Source of food:	Newly hatched Artemia nauplii (< 24h old)
14	Feeding regime:	On days 0-6, feed 0.1g newly hatched (less than 24h old) brine shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to provide an excess.
15	Cleaning:	Siphon daily, immediately before test solution renewal
16	Aeration:	None: unless DO concentration falls below 4.0mg/L.
17	Dilution water:	Soft Water
18	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*
19	Additional control:	Ashuelot River
20	Test duration:	7 days
21	Endpoints:	Survival and growth (weight)
22	Test acceptability criteria:	80% or greater survival in controls; average dry weight per surviving organism in control chambers equals or exceeds 0.25mg
23	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use
24	Sample volume required:	2.5L/day


1002.0

Daphnid, C. dubia, Survival and Reproduction Test
Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013

SOP:

WET-A-002

rojec	t: Keene NH NPDES		
1	Test type:	Static renewal	
2	Temperature:	25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus minimum temperature) by more than 3C during the test	
3	Light quality:	Ambient laboratory illumination	
4	Light intensity:	10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels)	
5	Photoperiod:	16h light, 8h dark	
6	Test chamber size:	30mL	
7	Test solution volume	Nominal 15mL	
8	renewal of test solutions:	Daily	
9	Age of test organisms:	Less than 24h; and all released within a 8h period	
10	No. neonates per test chamber:	1	
11	No. replicate test chambers per concentration:	10	
12	No. neonates per test concentration:	10	
13	Feeding regime:	Feed 0.1mL each of YCT and algal suspension per test chamber daily	
14	Cleaning:	Use new plastic cups daily	
15	Aeration:	None	
16	Dilution water:	Soft Water	
17	Test concentrations (%):	0, 0, 12, 24, 48*, 50, 100*	
18	Additional control:	Ashuelot River	
19	Test duration:	Until 60% or more of surviving control females have three broods (maximum test duration 8 days)	
20	Endpoints:	Survival and reproduction	
21	Test acceptability criteria:	80% or greater survival of all control organisms and an average of 15 or more young per surviving female in the control solutions. 60% of surviving control females must produce three broods	
22	Sampling requirements:	For off-site tests, a minimum of three samples (e.g., collected on days one, three, and five) with a maximum holding time of 36h before first use	
23	Sample volume required:	1L/day	

CETIS Summary Report

Report Date:

22 Sep-18 09:10 (p 1 of 2)

Test Code:

81546 | 19-7443-8667

Fathead Minnow 7-d Larval Survival and Growth Test	Aquatec Environmental, Inc.
STATES CONTROL SOLUTION STATES OF THE STATES	Aquatec Environmental, inc.

Batch ID: 04-4336-3879 Start Date: 11 Sep-18 14:40 Ending Date: 18 Sep-18 11:25

Duration:

Protocol: Species:

Source:

Test Type: Growth-Survival (7d) EPA/821/R-02-013 (2002) Pimephales promelas

Aquatic Biosystems, CO

Analyst: Diluent: Kaitlyn Priest Soft Synthetic Water

Brine: Age:

Not Applicable

1d

6d 21h **Multiple Comparison Summary**

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	TU	PMSD V
09-5244-7472	2d Survival Rate	Steel Many-One Rank Sum Test	100	> 100	n/a	1	n/a
10-9728-4269	7d Survival Rate	Steel Many-One Rank Sum Test	100	> 100	n/a	1	6.45%
15-9198-3712	Mean Dry Biomass-mg	Dunnett Multiple Comparison Test	100	> 100	n/a	1	10.0%

Point Estimate Summary

Analysis ID	Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	1
12-7352-2657	2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	1
			EC10	>100	n/a	n/a	<1	1
			EC15	>100	n/a	n/a	<1	1
			EC20	>100	n/a	n/a	<1	1
			EC25	>100	n/a	n/a	<1	1
			EC40	>100	n/a	n/a	<1	1
			EC50	>100	n/a	n/a	<1	1
21-4552-0765	Mean Dry Biomass-mg	Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	1 <1 1 <1 1 <1 1 <1	1
			IC10	>100	n/a	n/a	<1	1
			IC15	>100	n/a	n/a	<1	1
			IC20	>100	n/a	n/a	<1	1
			IC25	>100	n/a	n/a	<1	1
			IC40	>100	n/a	n/a	<1	1
			IC50	>100	>100 n/a n/a	<1	1	

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	4	1.0000	1.0000	1.0000	1.0000	1,0000	0.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1,0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

7d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	1.0000	1.0000	1.0000	1,0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L.	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
50		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%
100		4	0.9750	0.8954	1.0000	0.9000	1.0000	0.0250	0.0500	5.13%	2.50%

Mean Dry Biomass-mg Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	4	0.5825	0.5216	0.6434	0.529	0.62	0.01914	0.03828	6.57%	0.00%
0	L	4	0.6413	0.6208	0.6617	0.631	0.66	0.006421	0.01284	2.00%	-10.09%
12		4	0.6085	0.5641	0.6529	0.585	0.64	0.01396	0.02791	4.59%	-4.46%
24		4	0.6463	0.5839	0.7086	0.595	0.686	0.0196	0.0392	6.07%	-10.94%
48		4	0.6165	0.575	0.658	0.578	0.636	0.01305	0.0261	4.23%	-5.84%
50		4	0.609	0.5482	0.6698	0.581	0.663	0.0191	0.03819	6.27%	-4.55%
100		4	0.6725	0.5724	0.7726	0.584	0.727	0.03144	0.06288	9.35%	-15.45%

CETIS Summary Report

Report Date: Test Code: 22 Sep-18 09:10 (p 2 of 2) 81546 | 19-7443-8667

ouu.	01010 1101110	000
	Anustra Emiliarum antal	Page 1

	2010 10 70 700	Survival an		Aquatec Environmental, Inc.		
2d Survival Ra	te Detail					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	1.0000	1.0000	1.0000	1.0000	
0	L.	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	1.0000	1.0000	1.0000	1.0000	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	0.9000	1.0000	
50		1.0000	1.0000	0.9000	1.0000	
100		1.0000	1.0000	0.9000	1.0000	

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	0.529	0.62	0.59	0.591	
0	L	0.66	0.631	0.636	0.638	
12		0.624	0.585	0.585	0.64	
24		0.595	0.639	0.665	0.686	
48		0.636	0.578	0.626	0.626	
50		0.583	0.581	0.609	0.663	
100		0.705	0.727	0.674	0.584	

Report Date:

22 Sep-18 09:10 (p 1 of 2) 81546 | 19-7443-8667

Test Code:

Aquatec Environmental, Inc	Aquatec	Environmental, Inc
----------------------------	---------	--------------------

Analysis ID:	12-7352-2657	Endpoint:	2d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	22 Sep-18 9:10	Analysis:	Linear Interpolation (ICPIN)	Official Results:	The same of the sa

 Sample ID:
 19-9179-6712
 Code:
 15421
 Client:
 Keene WWTP

 Sample Date:
 10 Sep-18 07:18
 Material:
 POTW Effluent
 Project:
 Special Studies

 Receipt Date:
 11 Sep-18 10:20
 Source:
 Permit # NH0100790 (KEENE NH)
 NH)

Sample Age: 31h Station: Keene WWTP

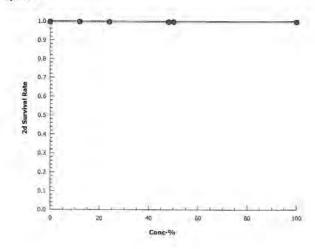
Fathead Minnow 7-d Larval Survival and Growth Test

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	1549503	200	Yes	Two-Point Interpolation	

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	n/a	n/a	<1	n/a	n/a
EC10	>100	n/a	n/a	<1	n/a	n/a
EC15	>100	n/a	n/a	<1	n/a	n/a
EC20	>100	n/a	n/a	<1	n/a	n/a
EC25	>100	n/a	n/a	<1	n/a	n/a
EC40	>100	n/a	n/a	<1	n/a	n/a
EC50	>100	n/a	n/a	<1	n/a	n/a


2d Survival Rate Summary Calculated Variate(A/B)

Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	L	4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
12		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
24		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
48		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40
50		4	1.0000	1.0000	1,0000	0.0000	0.0000	0.00%	0.0%	40	40
100		4	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	L	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000

Graphics

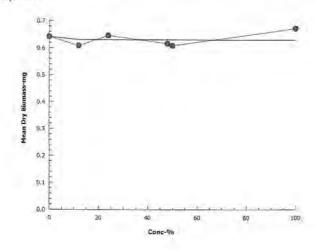
Report Date: Test Code: 22 Sep-18 09:10 (p 2 of 2)

27 823 2 2 7 7 7 7 7 7	1217177	at A time i
est Code:	81546	19-744
		A

Fathead Minn	ow 7-d Larval Surv	ival and Grown	th Test			Aquatec Environmental, Inc.
Analysis ID: Analyzed:	21-4552-0765 22 Sep-18 9:10	Endpoint: Analysis:	Mean Dry Biomass-mg Linear Interpolation (ICPIN)	CETIS Ve		CETISv1.9.2 Yes
Sample ID:	19-9179-6712	Code:	15421	Client:	Keen	e WWTP
Sample Date:	10 Sep-18 07:18	Material:	POTW Effluent	Project:	Spec	ial Studies
Receipt Date:	11 Sep-18 10:20	Source:	Permit # NH0100790 (KEENE NH)		-6	
Sample Age:	31h	Station:	Keene WWTP			

Linear Interpolation Options

A Tran	storm	Y Transform	1 See	d	Resamples	Exp 95% CL	Method	
Linear		Linear	151	5787	200	Yes	Two-Point Interpolation	
Point E	stimates	7						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL		
IC5	>100	n/a	n/a	<1	n/a	n/a		
1010	>100	nla	-1-	-54	-1-	-7-		


revei	70	95% LUL	95% UCL	10	95% LCL	95% UCL
IC5	>100	n/a	n/a	<1	n/a	n/a
IC10	>100	n/a	n/a	<1	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	n/a
IC25	>100	n/a	n/a	<1	n/a	n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a
-						

Mean Dry Bio	mass-mg Sum	mary							
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	L	4	0.6413	0.631	0.66	0.006421	0.01284	2.00%	0.0%
12		4	0.6085	0.585	0.64	0.01396	0.02791	4.59%	5.11%
24		4	0.6463	0.595	0.686	0.0196	0.0392	6.07%	-0.78%
48		4	0.6165	0.578	0.636	0.01305	0.0261	4.23%	3.86%
50		4	0.609	0.581	0.663	0.0191	0.03819	6.27%	5.03%
100		4	0.6725	0.584	0.727	0.03144	0.06288	9.35%	-4 87%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	0.66	0.631	0.636	0.638	
12		0.624	0.585	0.585	0.64	
24		0.595	0.639	0.665	0.686	
48		0.636	0.578	0.626	0.626	
50		0.583	0.581	0.609	0.663	
100		0.705	0.727	0.674	0.584	

Graphics

Report Date: Te

22 Sep-18 09:10 (p 1 of 6)

Aquatec Environmental, Inc.

373.57777	-1010 10110 000
est Code:	81546 19-7443-866

Į,	Fathead Minr	low 7-d Larval Surv	ival and Growl	th Test	
	Analysis ID:	09-5244-7472	Endpoint:	2d Survival Rate	CETIS V
	Analyzed:	22 Sep-18 9:10	Analysis:	Nonparametric-Control vs Treatments	Official

Version: CETISv1.9.2

Sample ID: 19-9179-6712 Code: 15421 Official Results: Yes

Sample Date: 10 Sep-18 07:18 Receipt Date: 11 Sep-18 10:20 Material: Source:

POTW Effluent Permit # NH0100790 (KEENE NH)

Keene WWTP

Client:

Keene WWTP Special Studies

Sample Age: 31h

Station:

Project:

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	
Angular (Corrected)	C > T	100	> 100	n/a	1	

Steel Many-One Rank Sum Test

Control	VS	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Lab Water		12	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		24	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		48	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		50	18	10	1	6	Asymp	0.8333	Non-Significant Effect
		100	18	10	1	6	Asymp	0.8333	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0	0	5	65540	<1.0E-37	Significant Effect
Error	0	0	18			
Total	0		23			

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
12		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
24		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
48		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
50		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
100		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	CL.	1.0000	1.0000	1,0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1,0000	1.0000	
50		1.0000	1.0000	1,0000	1.0000	
100		1.0000	1.0000	1,0000	1.0000	

Report Date:

22 Sep-18 09:10 (p 2 of 6)

Test Code:

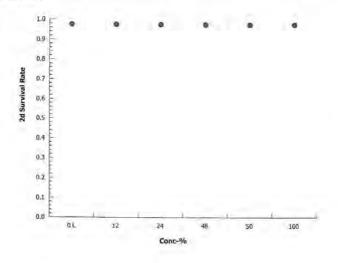
81546 | 19-7443-8667

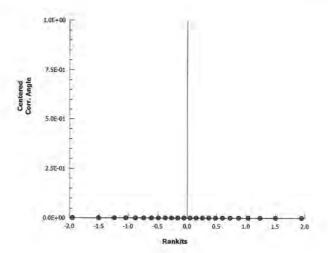
Fathead Minnow	7-d	Larval	Survival	and	Growth	Test
----------------	-----	--------	----------	-----	--------	------

Aquatec	Environmen	tal,	Inc.
---------	------------	------	------

Analysis ID:	09-5244-7472
Analyzed:	22 Sep-18 9:10

Endpoint: 2d Survival Rate
Analysis: Nonparametric-Control vs Treatments


CETIS Version: CET Official Results: Yes


CETISv1.9.2

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1.412	1.412	1.412	1.412	

Graphics

Report Date:

22 Sep-18 09:10 (p 3 of 6)

Test Code:	81546 19-7443-8667
	Aquatec Environmental, Inc.

Analysis ID: 10-9728-4269 Endpoint: 7d Survival Rate CETIS Version: CETISv1.9.2

Analyzed: 22 Sep-18 9:10 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

 Sample ID:
 19-9179-6712
 Code:
 15421
 Client:
 Keene WWTP

 Sample Date:
 10 Sep-18 07:18
 Material:
 POTW Effluent
 Project:
 Special Studies

 Receipt Date:
 11 Sep-18 10:20
 Source:
 Permit # NH0100790 (KEENE NH)

Sample Age: 31h Station: Keene WWTP

Fathead Minnow 7-d Larval Survival and Growth Test

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	C > T	100	> 100	n/a	1	6.45%

Steel Many-One Rank Sum Test Control Conc-% Test Stat Critical Ties DF P-Type P-Value Decision(a:5%) Lab Water 12 18 10 0.8333 6 Asymp Non-Significant Effect 24 18 10 6 0.8333 Non-Significant Effect Asymp 48 16 10 1 6 Asymp 0.6105 Non-Significant Effect 50 16 10 1 6 0.6105 Non-Significant Effect Asymp 100 16 10 0.6105 1 Asymp Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0099598	0.001992	5	0.6	0.7006	Non-Significant Effect
Error	0.0597585	0.0033199	18			A STATE OF THE STA
Total	0.0697182		23			

Distributional 1	Tests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Levene Equality of Variance Test	5.4	4.248	0.0033	Unequal Variances
Variances	Mod Levene Equality of Variance Test	0.6	4.248	0.7006	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.6694	0.884	4.1E-06	Non-Normal Distribution

7d Survival R	ate Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
50		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
100		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5 13%	2 50%

Angular (Corrected) Transformed Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
12		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
24		4	1.412	1.412	1.412	1.412	1.412	1.412	0	0.00%	0.00%
48		4	1.371	1.242	1.501	1,412	1.249	1.412	0.04074	5.94%	2.89%
50		4	1.371	1.242	1.501	1.412	1.249	1.412	0.04074	5.94%	2.89%
100		4	1 371	1 242	1 501	1 412	1 249	1 /112	0.04074	5 04%	2 80%

at the second of				77.00		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1,0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	0.9000	1.0000	
50		1.0000	1.0000	0.9000	1.0000	
100		1.0000	1.0000	0.9000	1.0000	

Report Date:

22 Sep-18 09:10 (p 4 of 6)

Test Code: 81546 | 19-7443-8667

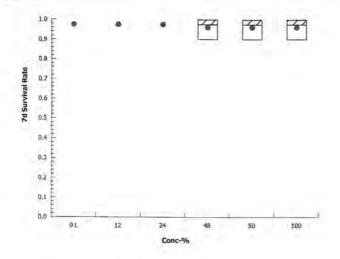
Fathead Minnow	7-d	Larval	Survival	and	Growth	Too
I dulcad Million	r-u	Laivai	Survival	anu	Growin	les

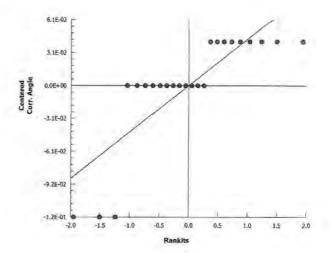
Aquateo	Environmental, Inc.
---------	---------------------

Analysis ID:	10-9728-4269				
Analyzed:	22 Sep-18 9:10				

Endpoint: 7d Survival Rate

Analysis: Nonparametric-Control vs Treatments


CETIS Version: CET Official Results: Yes


CETISv1.9.2

Angular	(Corrected)	Transformed	Detail
Aigulai	Confected	Hanstonneu	Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.412	1.249	1,412	
50		1.412	1.412	1.249	1.412	
100		1.412	1.412	1.249	1.412	

Graphics

Report Date: Test Code: 22 Sep-18 09:10 (p 5 of 6)

81546 | 19-7443-8667

Fathead Minnow 7-d Larval Survival and Grow	wth Test
---	----------

50

100

Aquatec Environmental, Inc.

Analysis ID: 15-9198-3712 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISv1.9.2

Analyzed: 22 Sep-18 9:10 Analysis: Parametric-Control vs Treatments Official Results: Yes

Analyzed: 22 Sep-18 9:10 Analysis: Parametric-Control vs Treatments Official Results: Yes

Sample ID: 19-9179-6712 Code: 15421 Client: Keene WWTP

Sample Date: 10 Sep-18 07:18 Material: POTW Effluent Project: Special Studies

Receipt Date: 11 Sep-18 10:20 Source: Permit # NH0100790 (KEENE NH)

2.407

2.407

1.206

-1.169

Sample Age: 31h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C > T	100	> 100	n/a	1	10.03%

Dunnett Multiple Comparison Test Control Conc-% Test Stat Critical MSD DF P-Type P-Value Decision(a:5%) Lab Water 1.225 2.407 0.064 6 CDF 0.3270 Non-Significant Effect 12 0.064 6 CDF 0.8825 Non-Significant Effect 24 -0.1872.407 CDF 0.4549 Non-Significant Effect 48 0.9259 2.407 0.064 6

0.064 6

0.064 6

CDF

CDF

0.3345

0.9892

Non-Significant Effect

Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0129989	0.0025998	5	1.819	0.1598	Non-Significant Effect
Error	0.0257225	0.0014290	18			
Total	0.0387214		23			

Distributional	Tests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Bartlett Equality of Variance Test	6.364	15.09	0.2724	Equal Variances	
Distribution	Shapiro-Wilk W Normality Test	0.9687	0.884	0.6355	Normal Distribution	

Mean Dry Bio	Mean Dry Biomass-mg Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	4	0.6413	0.6208	0.6617	0.637	0.631	0.66	0.006421	2.00%	0.00%
12		4	0.6085	0.5641	0.6529	0.6045	0.585	0.64	0.01396	4.59%	5.11%
24		4	0.6463	0.5839	0.7086	0.652	0.595	0.686	0.0196	6.07%	-0.78%
48		4	0.6165	0.575	0.658	0.626	0.578	0.636	0.01305	4.23%	3.86%
50		4	0.609	0.5482	0.6698	0.596	0.581	0.663	0.0191	6.27%	5.03%
100		4	0.6725	0.5724	0.7726	0.6895	0.584	0.727	0.03144	9.35%	-4.87%

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	0.66	0.631	0.636	0.638	
12		0.624	0.585	0.585	0.64	
24		0.595	0.639	0.665	0.686	
48		0.636	0.578	0.626	0.626	
50		0.583	0.581	0.609	0.663	
100		0.705	0.727	0.674	0.584	

Report Date:

22 Sep-18 09:10 (p 6 of 6)

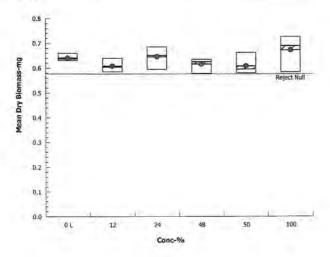
Test Code:

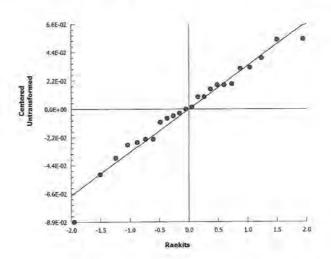
81546 | 19-7443-8667

Fathead Minnow	7-d Larval	Survival and	Growth Test

Aquatec Environmental, Inc.

Analysis ID: Analyzed:


15-9198-3712 22 Sep-18 9:10 Endpoint: Mean Dry Biomass-mg Analysis: Parametric-Control vs Treatments **CETIS Version:**


CETISv1.9.2

Official Results:

Yes

Graphics

Report Date: Test Code/ID: 22 Sep-18 09:09 (p 1 of 1)

19-7443-8667/81546

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: 11 Sep-18 14:40 Species: Pimephales promelas Sample Code: 15421

 End Date:
 18 Sep-18 11:25
 Protocol:
 EPA/821/R-02-013 (2002)
 Sample Source:
 Permit # NH0100790

 Sample Date:
 10 Sep-18 07:18
 Material:
 POTW Effluent
 Sample Station:
 Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Total Weight-mg	Tare Weight-mg	Pan Count	Notes
0	L	1	23	10		10					10	25.54	18.94	10	
0	L	2	2	10		10					10	26.62	20.31	10	
0	L	3	11	10		10					10	26.36	20	10	
0	L	4	15	10		10					10	29.11	22.73	10	
0	R	1	18	10		10					10	24.86	19.57	10	
0	R	2	20	10		10			7		10	26.6	20.4	10	
0	R	3	27	10		10					10	26.01	20.11	10	
0	R	4	16	10		10					10	28.15	22.24	10	
12		1	22	10		10					10	29.77	23.53	10	
12		2	3	10		10					10	24.38	18.53	10	
12		3	10	10		10					10	26.12	20.27	10	
12		4	25	10		10		- 51			10	27.88	21.48	10	
24		1	19	10		10					10	27.19	21.24	10	
24		2	13	10		10		-			10	28.05	21.66	10	
24		3	4	10		10					10	30.39	23.74	10	
24		4	12	10		10					10	28.84	21.98	10	
48		1	28	10		10					10	27.45	21.09	10	
48		2	14	10		10					10	27.83	22.05	10	
48		3	21	10		10					9	28.48	22.22	9	
48		4	7	10		10					10	31.39	25.13	10	
50		1	17	10		10					10	28.22	22.39	10	
50	1	2	26	10		10					10	28.32	22.51	10	
50		3	6	10		10		1	-		9	28.88	22.79	9	
50		4	24	10		10					10	31.18	24.55	10	
100		1	5	10		10					10	27.33	20.28	10	
100		2	1	10		10					10	27.61	20.34	10	
100		3	8	10		10				1	9	28.95	22.21	9	
100		4	9	10		10			1		10	28.03	22.19	10	

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

Client ID: Keene/Lev NH0100790 Permit No. Pipe No. 1 81546 Test ID TOXICITY TEST DATA: Initial Pan **Final Pan** No. weighed Weight Weight % Effluent Rep. Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 10 10 18,94 10 10 10 10 25.54 Α 10 0 10 0% 10 20.31 26.62 B 10 10 10 0 10 10 Sot 20,00 26.36 C 10 0 10 10 10 10 10 29-11 22.73 10 D 10 10 10 () 10 3 iD 19.57 24.86 10 () 0 ĺΰ A 10 0 10 0 % 26.60 B 10 0 10 10 20.40 10 0 10 10 0 0 10 20.11 26.01 10 C 10 0 0 10 10 RW 10 28,15 0 22.24 D 10 10 10 10 0 10 23.53 29.77 7 10 10 10 A 10 10 12 % 10 18.53 24.38 B 0 10 10 0 10 10 0 10 10 20,27 C 0 10 26.12 10 0 0 10 EFF D 10 21.48 27.88 10 10 10 ID 10 0 10 10 27.19 10 0 21.24 A 0 10 24 % 0 10 10 10 28,05 B 10 21.66 C 10 10 23.74 10 10 30.39 C 10 C (0 10 EFF 21.98 28.84 10 10 D 10 10 0 10 10 6 10 27.45 10 10 21.09 10 A 10 48 % 10 10 10 10 В 10 0 22,05 27,83 10 9 9 9 22,22 28,48 C 10 10 0 0 0 EFF 25,13 31.39 10 10 D 10 0 10 0 10 10 10 28,22 22.39 10 A 10 50 % 0 22.51 28.32 В 10 10 10 0 0 10 9 9 9 28.88 C 9 22.79 C 0 10 0 **EFF** 24-55 31.18 10 10 D 10 10 10 10 20.28 27.33 10 A 10 10 10 100 % 0 10 27.601 20.34 В 10 0 0 10 10 10 9 9 9 9 22.21 28.95 C 10 10 0 0 **EFF** 28.03 22.19 10 10 10 10 51130 5/124 51130 5/130 Date/Init (Initial Pan Weights): 51124 Test End 51115 Sample # 51115 9-14-18 /EB 825 830 80 0850 00 Fed AM / Init. IN (Date/Time/Temp/Init): 1605 es 1630 6:05 163 1450 1630 ES Fed PM / Init. 9-18-18/1130/105c/EB 4115/18 91318 3/12/18 9-17-18 9-18-18 9-11-18 9:16:18 OUT (Date/Time/Temp/Init): Renewal 1430 11:25 14.40 9-19-18 11:00 1052 (D/T/I) 1355 KP EB 211132-01455 Brine Shrimp Lot #:

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

SDG:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

Client ID: Keene/Ley Permit No. NH0100790 Pipe No. 1
INITIAL CHEMISTRY DATA: Test ID 81546

'IAL CHEMISTRY DATA:										
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6		
0.0/	рН	8.2	7.6	8.0	7.7	8.0	7.4	7.4		
SOFT	DO	7.2	7.3	7,1	7.3	7.5	7.6	7.4		
	Temp.	25.3	25.0	25.5	25.5	25.8	25.6	26.0		
CTRL	Cond.	181	183	194	798	799	195	195	_	
0.0/	рН	7.4	7.4	7-1	7.90		7.3	7.2		
0 %	DO	7.9	7.7	7.8	8.0	8:1	7.8	7.7		
RW	Temp.	25,6	25.6	25.5	25. 7	25.8	25.7	25.5		
NVV	Cond.	263	200	113	113	110	110	109	_	
130/	pH	7.8	7.7	7.6	7.7	7.8	7.3	7.2		
12 %	DO	7.8	7.5	7.3	7.3	7.6	7.6	7.8		
CCC	Temp.	25.2	25.4	25.4	25.5	25.5	25.8	25.4		
EFF	Cond.	276	275	277	283	284	281	201		
24.07	pH	7.8	7.7	7.7	チチ	7.7	7.4	7.2	T	
24 %	DO	7.3	7.5	7.2	7.3	7.4	7.6	7.7		
EFF	Temp.	25.4	25.6	25.4	25.5	25.5	25.8	25.5		
EFF	Cond.	362	368	362	367	368	367	25.5		
40.0/	рН	7.7	7.8	7.6	7.9	7.6	7.5	7.1		
48 %	DO	76	7.5	7.5	7.4	8.0	7.5	7.8		
EFF	Temp.	25.3	25.7	25.4	25.5	25.6	25.9	25.6		
EFF	Cond.	548	551	523	526	528	531	482	_	
FO 0/	рН	7.6	7.8	7-6	7.9	7.6	7.60	72		
50 %	DO	7.6	7.4	7.5	7.5	8.0	7.5	t-8		
EFF	Temp.	32.5	25,7	25.4	25.5	25.5	25.9	25, 5		
LIT	Cond.	564	569	541	541	543	551	509		
1000/	рН	7.6	7.8	7.5	7.8	7,5	7.7	7.3		
100 %	DO	8.0	7.5	78	7.6	8.6	75	7.8		
EFF	Temp.	25,4	26.0	25,4	25.6	256	25.9	25.6		
LFF	Cond.	920	938	865	860	8+4	887	863		
	Sample #	51115	51115	51124	51124	5/130	51130			
	Date	9-11-18	9-12-18	9-13-18	9/14/13	19/15/18	9.16.18	9/17/18		
	Initials	EB	EB	EB	KN	KN	KP	KN		

O Recheck of PH = 7.91pH kno 9/14/13

Re

SDG: Project 15421 18017

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Temp.

Cond.

Sample #

Date

Initials

5,1115

9/12/18

51115 9/13/18

EFF

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

Client ID: Keene/Ley Permit No. NH0100790 Pipe No. 1 FINAL CHEMISTRY DATA: Test ID 81546 % Effluent Analysis Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 7.4 pH 7.1 0% 5.6 DO 6.2 50++ 254 Temp. 25.8 CTRL 208 Cond. 213 202 рН 7.1 7.1 0% 6.0 5.7 DO 5.9 25,4 25.2 Temp. 25.8 RW Cond. 140 123 116 7-1 7,0 7.1 pH 12 % 5.8 5.9 DO 5,6 25-1 25,4 Temp. 25,8 EFF 296 234 Cond. 301 7,0 рН 7.2 24 % 5.8 5,8 DO 25.4 25-1 Temp. 25.9 EFF 378 314 Cond. 389 7-4 7,2 7.4 pH 48 % 54 5.7 DO 600 251 25,3 Temp. 25.6 **EFF** 509 Cond. 541 554 7.5 pH 7.2 50 % 58 DO 5.8 5.5 25.2 25,8 2513 Temp. **EFF** 557 Cond. 5660 7.5 7.6 pH 100 % 5.8 DO 5.8

SDG:

25.4

884

51130

9-18-18

CB

25,8

898

51130

9.16.18

KP

51130

9/7/8

15421 18017

25-1

92

51124

EB

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	9/10/	2018		
SPECIES:	Pime	phales promelas		Received 9/11/18 EB
AGE:	N/A			C 10,20
LIFE STAGE:	Embr	yo		Temp: 20.3
HATCH DATE:	9/10/2	2018		Do: 12.3
BEGAN FEEDING:	N/A			pH = 75
FOOD:	N/A			Cardotivity: 360
Water Chemistry Record:		Current	Range	Conditions Normal
TEMPERA	TURE:	25°C		
SALINITY/CONDUCTI	VITY:	-		
TOTAL HARDNESS (as Ca	aCO ₃):	130 mg/l		Add to SOFT water
TOTAL ALKALINITY (as Ca	aCO ₃);	90 mg/l	1944	and fed ortenia
	pH:	7.93	-	Add to Softwater out fed ortenia 10:50 ES
Comments:				
		-/11		
-		Motalle		
		Facility Supervisor		

Aquatic BioSystems, Inc • Quality Research Organisms

N9/23/18

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

CETIS Summary Report

Report Date: Test Code:

19 Sep-18 08:52 (p 1 of 1) 81547 | 06-9861-0493

Ceriodaphnia 7	-d Survival and	Reproduction	Test

Aquatec Environmental, Inc.

Batch ID: 04-8292-7172 Start Date: 11 Sep-18 12:40 Ending Date: 17 Sep-18 14:30

Protocol:

Test Type: Reproduction-Survival (2-8d) EPA/821/R-02-013 (2002)

Analyst: Diluent:

Kaitlyn Priest

<24h

Species: Ceriodaphnia dubia

Soft Synthetic Water

Brine:

Duration: 6d 2h Source: In-House Culture Age:

Multiple Comparison Summary

Analysis ID	Endpoint	Comparison Method	NOEL	LOEL	TOEL	711	Ditton /
04-5604-7256	2d Survival Rate		NOLL	LULL	IUEL	TU	PMSD √
		Fisher Exact/Bonferroni-Holm Test	100	> 100	n/a	1	n/a
03-0208-9387	6d Survival Rate	Fisher Exact/Bonferroni-Holm Test	100	. 400	No. 45	- 63	
			100	> 100	n/a	1	n/a
10-92/5-8188	Reproduction	Steel Many-One Rank Sum Test	100	> 100	n/a	1	28.4%

Point Estimate Summary

Analysis ID Endpoint	Point Estimate Method	Level	%	95% LCL	95% UCL	TU	.1
07-1817-1368 2d Survival Rate	Linear Interpolation (ICPIN)	EC5	>100	n/a	n/a	<1	-1
		EC10	>100	n/a	n/a	<1	1
		EC15	>100	n/a	n/a	<1	1
		EC20	>100	n/a	n/a	<1	1
		EC25	>100	n/a	n/a	<1	1
		EC40	>100	n/a	n/a	<1	1
15 55 15 5 15 5		EC50	>100	n/a	n/a	<1	1
15-0249-6485 Reproduction	Linear Interpolation (ICPIN)	IC5	>100	n/a	n/a	<1	1
		IC10	>100	n/a	n/a	<1	1
		IC15	>100	n/a	n/a	<1	1
		IC20	>100	n/a	n/a	<1	1
		IC25	>100	n/a	n/a	<1	1
		IC40	>100	n/a	n/a	<1	1
		IC50	>100	n/a	n/a	<1	V

2d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	
0	L	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

6d Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
0	L	10	0.9000	0.6738	1.0000	0.0000	1.0000	0.1000	0.3162	35.14%	10.00%
12		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
24		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
48		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
50		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%
100		10	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%

Reproduction Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	R	10	29.4	25.12	33.68	17	37	1.893	5.985	20.36%	0.00%
0	L	10	21.8	13.81	29.79	0	32	3.533	11.17	51.25%	25.85%
12		10	29	27	31	23	33	0.8819	2.789	9.62%	1.36%
24		10	25.3	20.88	29.72	16	32	1.955	6.183	24.44%	13.95%
48		10	27.8	23.71	31.89	21	36	1.806	5.712	20.55%	5.44%
50		10	30.9	29.3	32.5	28	35	0.7063	2.234	7.23%	-5.10%
100		10	30	27.57	32.43	21	33	1.075	3.399	11.33%	-2.04%

Report Date:

19 Sep-18 08:52 (p 1 of 2)

Test Code:

81547 | 06-9861-0493

Ceriodaphnia 7-d Survival and	Reproduction Test
-------------------------------	-------------------

Aquatec Environmental, Inc.

04-5604-7256 Analysis ID:

Endpoint: 2d Survival Rate

CETIS Version: CETISv1.9.2

Analyzed: 19 Sep-18 8:51

Analysis: STP 2xK Contingency Tables

Sample ID:

19-9179-6712

15421

Official Results: Yes

Sample Date: 10 Sep-18 07:18

Code: Material:

POTW Effluent

Client:

Keene WWTP

Receipt Date: 11 Sep-18 10:20

Source:

Permit # NH0100790 (KEENE NH)

Project:

Special Studies

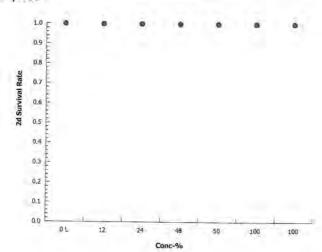
Sample Age: 29h

Station:

Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	
Untransformed	C > T	100	> 100	n/a	1	-

Fisher Exact/Bonferroni-Holm Test


Control v	/S	Group	Test Stat	P-Type	P-Value	Decision(q:5%)	
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect	_
		24	1.0000	Exact	1.0000	Non-Significant Effect	
		48	1.0000	Exact	1.0000	Non-Significant Effect	
		50	1.0000	Exact	1.0000	Non-Significant Effect	
		100	1.0000	Exact	1.0000	Non-Significant Effect	

Data Summary

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect
0	1	10	0	10	4	0	0.0%
12		10	0	10	1	0	0.0%
24		10	0	10	1	0	0.0%
48		10	0	10	1	0	0.0%
50		10	0	10	1	0	0.0%
100		10	0	10	1	0	0.0%

2d Survival Rate Detail

Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Ren 8	Ren 9	Rep 10
L	1.0000	1,0000	1.0000	1.0000	1.0000					1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10000		1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,124,42		1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	Code L	L 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	L 1.0000	L 1.0000	L 1.00000	L 1.0000	L 1.0000	L 1.0000

Report Date:

19 Sep-18 08:52 (p 2 of 2)

Test Code:

81547 | 06-9861-0493

Ceriodaphnia 7-d Survival and	Reproduction Test
-------------------------------	-------------------

Aquatec Environmental, Inc.

Analysis ID: 03-0208-9387 Analyzed:

Endpoint: 6d Survival Rate Analysis:

15421

CETIS Version: Official Results: Yes

CETISv1.9.2

Sample ID:

19 Sep-18 8:51

STP 2xK Contingency Tables

Client:

19-9179-6712 Sample Date: 10 Sep-18 07:18

Code: Material:

POTW Effluent

Keene WWTP

Receipt Date: 11 Sep-18 10:20

Source:

Alt Hyp

Permit # NH0100790 (KEENE NH)

Project: Special Studies

Sample Age: 29h

Data Transform

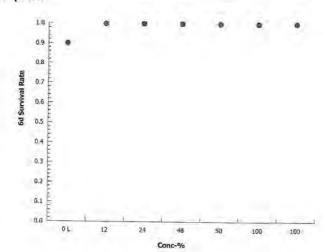
Untransformed

Station:

Keene WWTP

C>T Fisher Exact/Bonferroni-Holm Test

NOEL	LOEL	TOEL	TU	
100	> 100	n/a	1	_


Control	vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)	
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect	_
		24	1.0000	Exact	1.0000	Non-Significant Effect	
		48	1.0000	Exact	1.0000	Non-Significant Effect	
		50	1.0000	Exact	1.0000	Non-Significant Effect	
		100	1.0000	Exact	1.0000	Non-Significant Effect	

Data Summary

Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	L	9	1	10	0.9	0.1	0.0%
12		10	0	10	1	0	-11.11%
24		10	0	10	1	0	-11.11%
48		10	0	10	1	0	-11.11%
50		10	0	10	1	0	-11.11%
100		10	0	10	1	0	-11.11%

6d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		10000		1,0000
24		1.0000	1.0000	1.0000		W. 16 14 15 15 15 15 15 15 15 15 15 15 15 15 15		1.0000	1.0000	1.0000	1.0000
48				100000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code:

19 Sep-18 08:51 (p 1 of 2) 81547 | 06-9861-0493

Aquatec Environmental, Inc.

Ceriodaphnia /-	d Survival	and	Reproduction Test	

Analysis ID: 07-1817-1368 Analyzed: 19 Sep-18 8:51

Endpoint: 2d Survival Rate Linear Interpolation (ICPIN) Analysis:

CETIS Version: Official Results: Yes

CETISv1.9.2

Sample ID: 19-9179-6712 Sample Date: 10 Sep-18 07:18

Code: 15421 Client:

Keene WWTP

Receipt Date: 11 Sep-18 10:20

Material: Source:

POTW Effluent Permit # NH0100790 (KEENE NH) Project: Special Studies

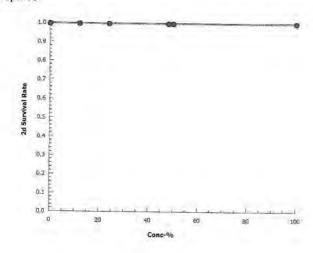
Sample Age: 29h

Station: Keene WWTP

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	1321618	200	Yes	Two-Point Interpolation	
A destruction of					100 c. A. 110 . Vine Lenderson Treatment	

Point Estimates


Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
EC5	>100	n/a	n/a	<1	n/a	n/a
EC10	>100	n/a	n/a	<1	n/a	n/a
EC15	>100	n/a	n/a	<1	n/a	n/a
EC20	>100	n/a	n/a	<1	n/a	n/a
EC25	>100	n/a	n/a	<1	n/a	n/a
EC40	>100	n/a	n/a	<1	n/a	n/a
EC50	>100	n/a	n/a	<1	n/a	n/a
24 6	dival Data	O. market				

2d Survival Rate Summary

				Calculated Variate(A/B)							
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Δ.	D.
0	L	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
12		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
24		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
48		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
50		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
100		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code: 19 Sep-18 08:51 (p 2 of 2) 81547 | 06-9861-0493

Aquatec Environmental, Inc.

Ceriodaphnia 7-d Survival and Reproduction Test

15-0249-6485 Endpoint: Reproduction 19 Sep-18 8:51 Analysis: Linear Interpo

Linear Interpolation (ICPIN)

CETIS Version: CETISv1.9.2

Official Results: Yes

15421

Client: Keene WWTP

Material: POTW Effluent
Source: Permit # NH0100790 (KEENE NH)

.

Project: Special Studies

Receipt Date: 11 Sep-18 10:20 Sample Age: 29h

Sample Date: 10 Sep-18 07:18

19-9179-6712

Source:

Code:

Station: Keene WWTP

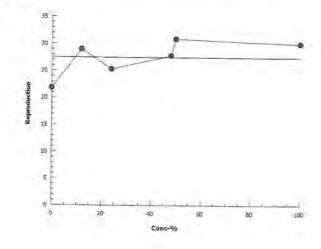
Linear Interpolation Options

Linear Linear 344720 200 Yes Two-Point Interpolation	X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
	Linear	Linear	344720	200	Yes	Two-Point Interpolation	_

Point Estimates

Analysis ID:

Analyzed:


Sample ID:

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
IC5	>100	n/a	n/a	<1	n/a	n/a	-
IC10	>100	n/a	n/a	<1	n/a	n/a	
IC15	>100	n/a	n/a	<1	n/a	n/a	
IC20	>100	n/a	n/a	<1	n/a	n/a	
IC25	>100	n/a	n/a	<1	n/a	n/a	
IC40	>100	n/a	n/a	<1	n/a	n/a	
IC50	>100	n/a	n/a	<1	n/a	n/a	
0.5.00		rice.	IIIa	-1	n/a	n/a	

Reproduction	Summary					Calculated Va	riate			
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Ľ	10	21.8	0	32	3.533	11.17	51.25%	0.0%	
12		10	29	23	33	0.8819	2.789	9.62%	-33.03%	
24		10	25.3	16	32	1.955	6.183	24.44%	-16.06%	
48		10	27.8	21	36	1.806	5.712	20.55%	-27.52%	
50		10	30.9	28	35	0.7063	2.234	7.23%	-41.74%	
100		10	30	21	33	1.075	3.399	11.33%	-37.61%	

Reproduction Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L.	27	0	26	3	22	23	32	30	25	30
12		28	23	28	30	33	30	32	27	30	29
24		22	19	31	17	32	30	30	16	29	27
48		22	31	32	30	35	21	36	21	25	25
50		30	29	30	35	34	28	32	31	31	29
100		29	32	31	32	33	21	31	29	31	31

Report Date: Test Code:

19 Sep-18 08:51 (p 1 of 2) 81547 | 06-9861-0493

Ceriodaphnia	7-d Survival and R	eproduction T	est		Aquatec Environmental, Inc.
Analysis ID: Analyzed:	18-9275-8188 19 Sep-18 8:51	Endpoint: Analysis:	Reproduction Nonparametric-Control vs Treatments	CETIS Ve	 CETISv1.9.2 Yes
Sample Date:	19-9179-6712 10 Sep-18 07:18 11 Sep-18 10:20	Code: Material: Source:	15421 POTW Effluent Permit # NH0100790 (KEENE NH)	Client: Project:	e WWTP ial Studies
Sample Age:	The Contract of the Contract o	Station:	Keene WWTP		

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C>T	100	> 100		1	
	277.7	100	- 100	n/a	1	28.44%

Steel Many-One Rank Sum Test Control Conc-% Test Stat Critical Ties DF P-Type P-Value Decision(a:5%) Lab Water 12 129.5 75 18 Asymp 0.9993 Non-Significant Effect 24 111.5 75 18 Asymp 0.9403 Non-Significant Effect 48 117 75 Non-Significant Effect 18 Asymp 0.9803 50 139.5 75 18 Asymp 1.0000 Non-Significant Effect 100

18 Asymp

0.9999

Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	574.733	114.947	5	3.135	0.0148	Significant Effect
Error	1980.2	36.6704	54	0.100	0.0140	Significant Effect
Total	2554.93		59			

136

Distributional 7	Tests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance Test	30.63	15.09	1.1E-05	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.8982	0.9459	1.1E-04	Non-Normal Distribution

Reproduction	Cullinary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	L	10	21.8	13,81	29.79	25.5	0	32	3.533	51.25%	0.00%
12		10	29	27	31	29.5	23	33	0.8819	9.62%	-33.03%
24		10	25.3	20.88	29.72	28	16	32	1.955	24.44%	-16.06%
48		10	27.8	23.71	31.89	27.5	21	36	1.806	20.55%	-27.52%
50		10	30.9	29.3	32.5	30.5	28	35	0.7063	7.23%	-41.74%
100		10	30	27.57	32.43	31	21	33	1.075	11.33%	-37.61%

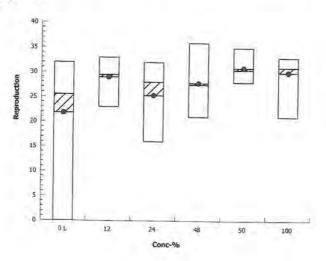
Reproduction	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	27	0	26	3	22	23	32	30	25	30
12		28	23	28	30	33	30	32	27	30	29
24		22	19	31	17	32	30	30	16	29	27
48		22	31	32	30	35	21	36	21	25	25
50		30	29	30	35	34	28	32	31	31	29
100		29	32	31	32	33	21	31	29	31	31

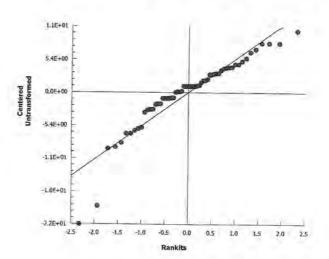
Report Date: Test Code: 19 Sep-18 08:51 (p 2 of 2) 81547 | 06-9861-0493

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Analysis ID: Analyzed: 18-9275-8188 19 Sep-18 8:51


Endpoint: Reproduction
Analysis: Nonparametri


Nonparametric-Control vs Treatments

CETIS Version: Official Results:

CETISv1.9.2

Yes

CETIS Test Data Worksheet

Report Date: Test Code/ID: 19 Sep-18 08:51 (p 1 of 2) 06-9861-0493/81547

Ceriodaphnia 7-d Survival and Reproduction Test

17 Sep-18 14:30

Aquatec Environmental, Inc.

Start Date: End Date:

11 Sep-18 12:40

Sample Date: 10 Sep-18 07:18

Species: Ceriodaphnia dubia

Material: POTW Effluent

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15421

Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	
0	L	1	43	1		1				1	-	-	-	-	5	12	10	0	0	0	Notes
0	L	2	25	1		1				0				-	0	0	0			0	-
0	L	3	6	1		1				1					6	10	10			0	-
0	L	4	7	1		1				1					3	0	0			0	-
0	L	5	22	1		1				1					0	10	12			0	-
0	L	6	65	1		1				1					4	12	7	-		0	-
0	L	7	67	1		1				1					4	11	17	_		0	-
0	L	8	17	1		1				1				-	5	12	13			0	-
0	L	9	10	1		1				1					5	10	10			0	-
0	L	10	47	1		1				1					6	12	12			0	
0	R	1	19	1		1		-		1					7	12	15			0	-
0	R	2	42	1		1				1			-		7	10	12		-	0	
0	R	3	32	1		1			-	1					8	12	17		-	0	-
0	R	4	35	1		1			-	1					0	5	16			0	-
0	R	5	55	1		1			-	1			-		4	10	18			0	-
0	R	6	8	1		1	-			1		-	-		5	12	0		-	0	
0	R	7	9	1		1			-	1					5	11	14			0	-
0	R	8	5	1		1	-			1			-		7	11	14			0	-
0	R	9	70	1		1				1					6	12	13		-	0	
0	R	10	69	1		1				1					6	12	13			0	-
12		1	27	1		1			-	1				-	3	12	13		-	0	
12		2	51	1		1				1			-	-	5	10	8	-	-	0	-
12		3	38	1		1				1					4	11	13			0	
12		4	31	1		1				1					6	10	14			0	
12		5	1	1		1				1					7	12	14		-	0	
12		6	56	1		1				1	-				6	12	12	-		0	-
12		7	62	1		1				1					7	10	15			0	
12		8	63	1		1				1					6	10	11			0	-
12		9	23	1		1				1					6	11	13			0	
12		10	52	1		1				1					6	12	11	-	-	0	
24		1	60	1		1				1	-				0	11	11		-	0	
24		2	26	1		1				1					0	10	9		-	0	-
24		3	48	1		1				1					6	13	12		-	0	-
24		4	2	1		1				1			-		5	12	0			0	
24		5	29	1		1				1					6	12	14	-		0	-
24		6	24	1		1				1			-		7	12	11		-	0	
24		7	61	1		1				1		-		-	7	11	12			0	-
24		8	41	1		1				1					3	13	0	-	-	0	
24		9	36	1	E 1	1		-		1					6	11	12	-	-	0	
24		10	54	1		1				1		1	-		3	10	14			0	-
48		1	44	1		1				1					7	0	15		+	0	-
48		2	14	1		1				1	-	-			7	10	14		-	0	-
48			11	1		1			-	1		-	-	+	7	12	13			0	
48		-	16	1		1				1			-	+	6	14	10		-	0	_
48	-	_	57	1	-	1		-	-	1	-		-		7	12	16			0	

008-615-283-3

CETIS™ v1.9.2.4

Analyst:_

CETIS Test Data Worksheet

Report Date:

19 Sep-18 08:51 (p 2 of 2)

	1			#					1					lest	Code	/ID:		0	6-9861	1-0493	3/81547
Conc-%	Code	Rep	Pos	Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	
48		6	3	1		1				1		-	0	0	3	10	8	0	ō	-	Notes
48		7	68	1		1				1					7	14	15		-	0	
48		8	18	1		1				1		-			6	0	15			0	-
48		9	46	1		1				1					6	7	12			0	-
48		10	58	1		1				1				-	0	13	12			0	-
50		1	37	1		1				1					6	13	-			0	
50		2	12	1		1				1					5	12	11			0	-
50		3	30	1		1				1		-	-		6	-	12			0	
50		4	50	1		1		-		1			_	-	7	13	11			0	
50		5	33	1		1				1		-				12	16			0	
50		6	20	1		1	-	-		1		-		-	7	11	16			0	
50		7	53	1		1	-	-		1					6	12	10			0	
50		8	28	1		1			-	1	-	-		-	6	12	14	-		0	
50		9	4	1		1		-		1	-				-	10	15			0	
50		10	40	1		1	-	-		1	-	-		-	5	12	14			0	
100		1	13	1	-	1		-	-	1	-		-		6	11	12			0	
100		2	49	1		1		-		1	- +	-	-	-	6	10	13	_		0	
100		3	64	1		1	-	-	-	1	-		-	-	6	12	14			0	
100		4	21	1		1	-	-	-	1		-	-	-	3	12	16			0	
100		5	15	1		1	-			1		-			6	12	14	_		0	
100		6	39	1	-	1	-			1	-	-		-	6	12	15			0	
100		7	66	1	-	1		-	-	1	-			-	5	3	13			0	
100		8	45	1	-	1				1	-			-	6	11	14			0	
100		9	34	1		1		-	-+	1	-		-	-	7	10	12			0	
100	-	10	59	1	-	1		-	-	1					6	11	14			0	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID:	Keene/Ley				- 13	Permit No.	NH010	0790	Pipe No.	1
TOXICIT	Y TEST DA'	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	8154
	1	0	00	0	0	5	12	10		
1	2	0		2	0-0	7	_	-	-	
Dr	3	0	Q	8	8	900	10	10		
0%	4	0	Q	2	_Q_	2	0	0		
Sott	- 5	0	0	8	8	4	10	12		
CTRL	6 7	0	0	X	8	4	12	古		
	8	0	8	0	8	5	12	13		
	9	0	8	8		5	10	18		
	10	0	Ö	Ŏ	0	6	12	12		
	1	0	0	0	0	4	12	15		
	2	0	O	0	0	7	10	12		
	3	0	Ö	O	8	8	12	11-		
0 %	4	0	0	Q	O	0	12 5	18		
	5	0	0	8	2	4	10	12		
RW	6	0	Q	8	2	5	12			
1111	7	0	8	8	2	7	11	14		
	8	0	X	8	8		11	13		
	9 10	0	8	Ö	X	10	12	13		
	1	0		0	0	3	12			
	2	0	8	8	8	2	10	13		
	3	0	0	O	X	H	11	13		
12 %	4	0	Ö	Õ	8	10	10	111		
12 /0	5	0	0	0	0	7	12	14		
EFF	6	0	ð	0	0	la	12	12		
EFF	7	0	0	0	Q	7	10	15		
	8	0	2	2	8	(0	10	11		
	9	0	2	2	2	6	11	13		
	10	0		0		(0	12			
	1	0	8	8	2	Q	11			
	2	0	0	8	2	0	10	9		
240/	3	0	8	8	8	Le	13	12		
24 %	4	0	-	8	X	Po	12	14		
	5 6	0	8	8	8	7	12	1		
EFF	7	0		0	Ŏ	7	11	12		
	8	0	8	0	0	3	13	0		
	9	0	0	0	Ö	To	11	12		
	10	0	0		0	7	10	14		

cd

0 = Original organism surviving, No young; D = Original organism dead; # = Number young released; * = Lab-induced mortality

Project

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002

Client ID:	Keene/Ley					Permit No	. NH010	0790	Pipe No.	. 1
TOXICITY % Effluent	TEST DA	TA: Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Test ID Day 7	81547
	1	0	0	0		7	0	15		
	2	0	2	0	0	7	10	19		
1447.00	3 4	0	0	0	O	7	12	13		
48 %		0	2	0	0	Co	14	10		
	5	0	2	Q	Q	A	12	16		
EFF	6	0		2	2	2	10	8		
2, ,		0	8	0	(2)	7	14	10		
	8	0	8	8		le	0 7	15		
	10	0	1	X	-	Ce	12	15		
	10	0					13	10		
	1	0	0	0	0	Le	13			
	2	0	2	0	()	-	12	12		
	3	0	0	Q	Q	#	13			
50 %	4	0	2	2	0	7	12	16		
	5	0	0	8	-8	1		16		
EFF	6	0	2	8		10	12	1,0		
	7	0	X	2	8	60	12	1,4		
	8	0	2	8	X	9	10	13		
	10	0	8	8	8	5	12	17		
						a		100		
	1	0	0	Q	0	le	10 12 12 12 12	13		
	2	0	2	8	Q	le	12	19		
40001	3	0	8	0	(2)	,5	12	16		
100 %	4	0	8	8	2	le	12	19		
	5 6	0	Ö	3	1	I.	16	13		
EFF	7	0	0	8	X	5	3	13		
	8	0	8	Õ	8	9	10	17		
	9	0	0	0	X	On the	11	12	-	
	10	0	0	0	0	le	12	13		
	Sample #	51115	51115	51124	51124		5/130	51130	2)130	
	Fed			1	1	5100	1130	31100	37130	
	_	9/11/18	Chale	9/13/18	aluha	diste	0 11 10	Glielle		
	Renewal	1240	13/10	1100	14/8	1323	9.16.18	911718		
	(D/T/I)	KN	7509	1100	KN	PN	1310 40	1/EN		
VCT	ot Number:	00	1018		Ç.	lenastrum L		Ac	2718	

Documentation of Collection

Species: Source:	Ceriodaphnia dubia In-House Cultures	Client/Project: Rene Col
Acclimation	/Holding Dunger	

Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold at appropriate testing

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 082718) and YTC (Lot #: 19 090718) to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.

Culture ID	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fe (v
290418-B	9/10/18/1:45/AN	9/10/15/640km	7	V
90418-A	7/10/18/16:40/4	7/10/18 16:35 EB	14	~
09041B-A	9/10/18 (635/	9/10/18 18:40 EB	1	V
090418-B	9/10/18 18:40 5	9/10/18 23:060	4	1
090418-B	9/10/18 23:065	9/11/18 06:55 7	(26)	~
* Neonates colle	ected must number at least e		-	

^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female

Daphnid, C. dubia, Survival and Reproduction Test Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 1002.0

SOP:

WET-A-002

ID: Keene					Permit N	No. NH01	00790	Pipe No	
AL CHEM			11-2-3					Test ID	8
% Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	
0 %	рН								
0 /0	DO								
CTRL	Temp.								
30.112	Cond.								
0.0/	рН					1		10	_
0 %	DO						1	180	
RW	Temp.						M	1	
11.00	Cond.					()	10/ 10/		
13.0/	рН					chee	1		_
12 %	DO				-	0	(0)		
EFF	Temp.					2/			
LFF	Cond.				ini in	Course	3		
24.0/	рН				00	an an			-
24 %	DO				123	10,	-		
EFF	Temp.			0	No /	C	1		
CEF	Cond.			0.6,	J2S/				
40.0/	рН			0. /	0				-
48 %	DO			se /					
EFF	Temp.			1	15				
EFF	Cond.			10	8				
FO 0/	рН		1						-
50 %	DO		/						
EFF	Temp.		/						
LIT	Cond.								
4000/	рН								-
100 %	DO	/					1		
EEE	Temp.								
EFF	Cond.								
	Sample #	51115	51115	51124	51124	5/12/1	51130	CUZN	-
	Date "	94419	31113	21129	31124	3(130	21120	51130	
	Initials					-			

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference:

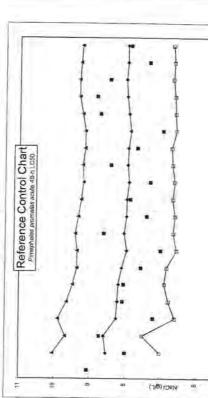
EPA-821-R-02-013

SOP:

WET-A-002

nt ID: Keene	Ley				Permit No	. NH010	0790	Pipe No.	1
AL CHEMIST	TRY DATA	Λ:						Test ID	8154
% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
DVOO	рН	7.4	73	7.5	7.3	7.4	7.2		
50 ft	DO	7.3	7:3	7.5	7.4	7.3	7.2		
CTRL	Temp.	24.9	25.5	252	208	25.2	25.8		
(E.K.)	Cond.	190	197	199	208	213	209	1.0	
0 %	рН	7.2	7.3	7.6	7.3	7.2	7.2		
0 70	DO	7.0	4.3	7.5	7.9	7.3	7.2		
RW	Temp.	24.9	25.4	25.1	25,1	25.3	25.8		
	Cond.	217	213	121	121	116	150		37
12 %	рН	7.4	7.6	7.5	7.5	7.4	7.3		
12 /0	DO	7.3	73	7.5	7.4	7.3	7.2		
EFF	Temp.	24.9	25.4	25.1	25.1	25,3	25.8		
1-170	Cond.	983	241	281	291	290	302		_
24 %	рН	76	7.6	7.6	1+	7.5	7.4		
-170	DO	7.3	7.3	7.5	7.4	7.3	7.2		
EFF	Temp.	249	25.4	363	250	25.4	a5.9		
-	Cond.	3+3	38	363	310	379	376		
48 %	рН	7.8	7.9	7.8	77	7.7	7.5		
10 70	DO	7.3	7.3	7.5	7.4	7.3	7.2		
EFF	Temp.	24.7	25.7	25.2	25.0	25.4	25.8		
_	Cond.	552	55 le	D&C	DX (c)	536	575		
50 %	рН	7.9	4.9	7.4	7.8	7.7	7.6		
30 70	DO	7.3	7.2	7.5	1.5	7.3	7.2		
EFF	Temp.	24.9	25.4	20.1	25.0	25.4	25.8		
_	Cond.	567	578	737	247	SSI	558		_
100 %	рН	8.	3.2	8.0	8.0	7.9	7.8		
100 /0	DO	7.3	7.2	74	7.5	7.4	7.2		
EFF	Temp.	24.9	25.9	23.1	25.0	25.3	25.8		
	Cond.	730	947	866	869	881	400		
	Sample #	51115	51115	51124	5/124	5/130	5/130	5/130	
	Date	9/12/18	9/13/18	1111110	9115/18	9-16-18	9/17/18		
	Initials	KN	EN	KN	FN	KP	Cal		

Col


Aquatec Environmental, Inc., Reviewed by: Date: 9/23/18

SDG: Project

Standard Reference Toxicant Control Chart(s)

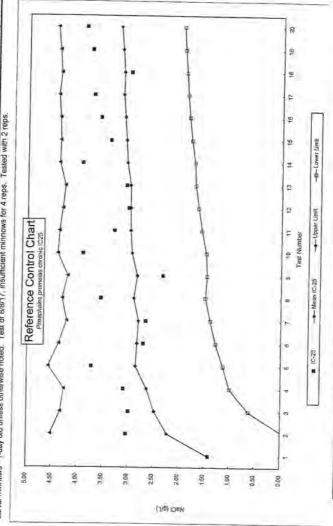
Pimephales promelas acute survival LC50 Control Charl Reference toxicant: sodium chloride (g/L)

Test	Test	LC50	Mean	Calculat	Calculated limits	
Number	Date	(a/L)	LC50	Upper	Lower	Source
	9/13/16-9/15/16	90.6				Amiatic Riceletome
2	10/19-21/2016	7.994	8.53	10.03	7.00	Activitie Diopinatour
P	11/29/16-12/1/18	R.733	04.0	0000	200	Addit Blosysteris
, ,	211212	0.122	0.03	8,03	00.7	Aquatic Biosystems
4	71/21/1-71/01/1	7.204	8.25	9.89	6.60	Aquatic Biosystems
5	2/7/17-2/9/17	8.071	8.21	9.66	6.77	Aquatic Ricevsterne
9	3/21/17-3/23/17	8.042	8.18	9.47	689	Anualic Binevelome
1	5/2/17-5/4/17	7.561	8.09	936	6.82	Annalic Biosystems
60	7/12/17-7/14/17	7.005	7.96	98.6	6.55	Aniaho Diosirelomo
6	8/8/17-8/10/17	8.61	8.03	9.41	8 8 8	Agricatio Dipensione
10	9/12/17-9/14/14	7.403	7.07	20	000	Aquatic Dissystems
11	THISCIAL-THISCIAL	7 067	200	200	0 0	Addanc prosystems
	10000	100.7	00.7	3,53	800	Aquatic Biosystems
7	11/1/17-11/9/17	7.31	7.90	9.19	6.61	Aquatic Biosystems
3	1/25/18-1/27/18	8.42	7.94	9.21	6.68	Aquatic Riosystems
14	2/6/18-2/8/18	7,678	7.92	9.15	6.70	Anialic Binevelome
5	3/6/18-3/8/18	6.952	7.86	9.14	82.8	Actiatic Binevelorne
16	4/3/18-4/5/18	8 722	7.91	0 22	00.0	Aguarda Discussions
47	6/5/19 6/7/10	0 0 0	100	200	3	Aduatic Blosysiems
	010000000000000000000000000000000000000	000	16.1	50.00	6.62	Aquatic Biosystems
B	1724/18-7/26/18	B.451	7.99	9.32	6.67	Aquatic Biosystems
5	8/14/18-8/16/18	7.35	7.96	9.28	664	Aguatic Bioevelome
20	9/11/18-9/13/18	7.87	7 96	0 24	198	Agustic Diagrams

Note: Tests through September of 2016 were as Aquatec Biological Sciences, Inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, Inc.

16

45 14


13 12 Test Number

ŧ 9

63 2 · LCEO

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

Number	l est Date	(g/L)	Mean IC-25	Calculate	Calculated limits Upper Lower	CV of Avg.	Avg.	Growth	Avg.	
Į.	9/13/16-9/20/16	1.41	1.41				;	lov l com .	(A) CISINIA	Source
2	10/19-26/2016	3.04	200	4 50	900				#DINIO#	Aquatic Biosystems
5	44730/46 45/6/46	200	27.0	4.02	0.00	0.52	0.52	18.00	18.00	Aquatic Biosystems
,	11/28/10-12/0/10	7.88	2,48	4.33	0.63	0.37	0.45	20.40	19.90	Agricatic Discussions
4	1/10/17-1/17/17	3,09	2.63	4.26	1.00	0.31	0 40	14 20	200	Added Diosystems
9	27/17-2/14/17	3.73	2.85	4.57	1 13	02.0	0000	7.45	10.00	Aquatic Biosystems
10	3/21/17-3/28/17	2.71	2 83	4 37	000	00.0	0000	CW./	14.26	Aquatic Biosystems
7	FIDIA BIONS	2000	000	000	07	0.6/	0.35	14.80	14.37	Aquatic Biosystems
. 0	The state of the s	2.00	2.90	4.77	1.39	0.25	0.34	15.10	14.49	Adulatic Rinevetame
0 (11/81/-/11/21/	3.55	2.90	4.31	1.49	0.24	0.32	12.90	14 26	Actualic Giographics
on.	8/8/17-8/15/17	2.33	2.83	4.21	1.46	0.54	0.34	only of second	17.50	Aduatic plosystems
10	9/12/17-9/19/17	301	200	440	40	200	000	out & Lebs	12.48	Aquatic Biosystems
44	THE THE THE THE	000	1000	2	06-	0.25	0.31	19.00	13.21	Aquatic Biosystems
5	11/19/01-11/19/11	3.29	787	4.38	1.67	0.24	0.30	22.10	14.10	Advertic Blocketome
×	11//17/-11/14/17	3,02	2.98	4.32	1.64	0.22	000	27.00	46.97	Agentic Dioayatellia
13	1/25/18-2/1/18	3.06	900	127	4 20		000	20.72	13,51	Aquatic Biosystems
1.4	2/8/18 2/19/19	000	100	100	27.7	0.4	0.78	15,50	15.29	Aquatic Biosystems
	50 50 50 50	0,00	3,03	4.30	1.72	0.22	0.28	14.70	15.24	Anualic Bioevetomo
13	3/6/18-3/13/18	3.38	3.07	4.37	1.78	0.21	860	10.20	15.63	Aguada Diografia
16	4/3/18-4/10/18	3.57	3.10	4 38	1.87	100	200	000	20.00	Adulatic biosystems
17	8/5/18-6/12/18	272	2 44	444	3 6	17:0	0.27	13.20	15.37	Aquatic Biosystems
2	CHACL CHACLE	3 00	5 1	7	1.87	0.50	0.27	12.80	15.21	Aquatic Biosystems
2 (91/16/1-01/15/	5.88	3.13	4.37	1.90	0.20	0.26	20.80	15.54	Anitalic Biocretome
19	8/14/18-8/21/18	3,76	3.17	4.40	1 93	0.10	96.0	0 44	207	Audill Diosystems
20	9/11/18-9/18/18	3.88	3.20	444	1 06	0 0	200		01.0	Aduatic Biosystems

Assessment of test precision and sensitivity: Thev CV of average IC25 values was within the 25th Percentile (0.21) for fathead minnow growth (Table 3.2, EPA 833-R-00-003) indicating high precision (only 25% of last more than 0.21). The per-lest PMSD values were less than the EPA upper limit of 30% indicating low-to moderate variability (moderate to high sensitivity) for this method. The cumulative average PMSD value of 20 tests (15.0) was near the EPA lower boundary (12%), indicating high statistical sensitivity for this lest method. Updated 9/25/18

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Avg. PMSD (%)

Repro.

Avg.

CV of Avg.

10.7 15.8 13.7 33.2

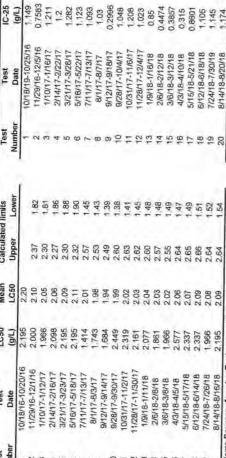
34.9

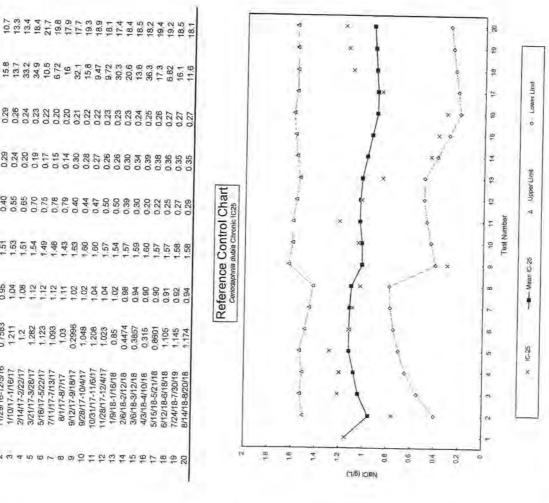
19.8 17.9 17.7 19.3 18.1

32.1

16

9.47 9.72


0.29 0.24 0.15 0.15 0.15 0.15 0.26 0.26 0.30 0.35 0.35


Reference Control Chart

18.4

30.3

					The second secon						
Test	Test Date	(a/L)	Mean LC50	Calculated limits Upper	d limits	Test	Test	IC-25	Mean	Calculated limits	d limits
-	10/18/16-10/20/16	2 195	230			in i	Date	(g/L)	IC-25	Upper	Lower
2	11/29/16-12/1/16	2000	2 40	100	. 00		10/18/19-10/25/16	1,149	1.15		
. 00	1/10/17-1/10/17	4 000	2.10	200	1.82	rv.	11/29/16-12/5/16	0.7583	0.95	1.51	0.40
9 5	214 A147 7146147	996.	2.05	2.30	1.81	e	1/10/17-1/16/17	1.211	1.04	1,53	0.55
r 16	11/01/2-11/41/2	2.098	2.06	2.27	1.86	4	2/14/17-2/22/17	12	1.08	151	DAG
2 (3/21/1/3/23/1/	2,195	2.09	2.30	1.88	10	3/21/17-3/28/17	1 282	1 13	200	200
o i	5/16/17-5/18/17	2,195	2,11	2.32	1.90	9	5/16/17-5/22/17	1 193	1 12	40.4	0.70
1	7/11/17-7/13/17	1.414	2.01	2.57	1,45	7	7/11/17/7/19/17	2000	7	D 4	0/10
00	8/1/17-8/3/17	1.743	1.98	2.53	1.43	α	0/4/47 0/7/4/	000	7.12	1.46	0.78
O	9/12/17-9/14/17	1 684	1 04	0 40	00.4	0 (111/18-11/10	1.03	1.11	1.43	0.79
10	71/08/17-9/30/17	0440		2 0	80.	37	9/12/17-9/18/17	0,2996	1.02	1.63	0.40
4.4	40/24/47 44/0/47	2.450	68.0	7.90	1.38	0	9/28/17-10/4/17	1.048	1.02	1.60	0.44
	11211-111201	2.313	2.02	2.63	1.41	11	10/31/17-11/6/17	1 208	104	00	0.47
7	11/28/17-11/30/17	2,161	2.03	2.62	1.45	42	THAIGH THROTH	000		3	0.47
13	1/9/18-1/11/18	2.077	2.04	260	1 48	4 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.023	1 04	1.57	0.50
14	2/6/18-2/8/18	1.861	2.03	2 57	0.4	2 ;	81/01/1-01/18/1	0.85	1.02	1.54	0.50
15	3/6/18-3/8/18	1 066	200	2 5	0, 1	7 1	2/0/18-2/12/18	0.4474	0.98	1.57	0.39
18	47/18 4/5/18	250	2.02	200	20	15	3/6/18-3/12/18	0.3857	0.94	1.59	0.30
1	BI WHO ENTRY	110.7	8	7.64	1.47	16	4/3/18-4/10/18	0.315	0.90	160	0.20
- 07	BL//1/0-01/01/0	2.33/	2.07	2.65	1.49	17	5/15/18-5/21/18	0.8601	06.0	1 57	000
0	6/12/18-6/14/18	2.337	2.09	2.66	1.51	18	6/12/18-6/18/18	1 105	000	* 12	770
16	7/24/18-7/26/18	1.966	2.08	2.64	1.52	19	7/74/18-7/90/19	2445	000	10.	070
20 8/14/18-8/16/18 2,195 2.09 2.64	8/14/18-8/16/18	2,195	2.09	2.64	1 54	30	0144440 04040	2	28.0	1.58	0.27

were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data . The cumulative Assessment of test precision and sensitivity: The cumulative average CV of 0.27 for reproduction was near the 50th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 09/02/18.

5

8 17 9

5

Test Number ◁

Lower Limit

o.

Upper Limit

-- Mean LOSO

CSO ×

Agaqcisrts/Cd SRT Including CV and PMSD

2,800

(J/6) (J/6) 2,350

1.850

1.600

1,350

2.850

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

TOXICITY SUMMARY REPORT:

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

SOP:

WET-A-001

Test Start:

Number

10/23/2018 4:45:00 PM

Test End:

10/30/2018 12:10:00 PM

ACUTE

CHRONIC

NOEC

% LC50 NOEC

100

LOEC

51157 Keene WWTP (2° Clarifier #2)

Sample Name

100 >100 >100

1002.0

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

SOP:

WET-A-002

Test Start:

10/23/2018 10:55:00 AM

Test End:

10/31/2018 4:50:00 PM

ACUTE

CHRONIC

		9	6	9	6
Number	Sample Name	NOEC	LC50	NOEC	LOEC
51157	Keene WWTP (2° Clarifier #2)	100	>100	100	>100

SAMPLES RECEIVED:

Number	Sample Name	Date Time and Collected	Туре
51157	Keene WWTP (2° Clarifier #2)	10/22/2018 7:08:00 AM	Effluent
51158	Ashuelot River	10/22/2018 9:20:00 AM	Receiving
51159	Soft Water 102218	10/22/2018	Lab Water
51167	Keene WWTP (2° Clarifier #2)	10/24/2018 7:00:00 AM	Effluent
51168	Ashuelot River	10/24/2018 9:25:00 AM	Receiving
51171	Keene WWTP (2° Clarifier #2)	10/26/2018 9:15:00 AM	Effluent
51172	Ashuelot River	10/26/2018 2:30:00 PM	Receiving

Submitted By:

1 of 1

Aguatec Environmental, Inc. Reviewed by: Date:

Monday, November 12, 2018 SDG: 15440

Project

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Swanzey, NH 03446

Keene/Ley TOXICITY DETAIL REPORT: Permit No. NH0100790

Sample ID: 51157 / Keene WWTP (2° Clarifier #2)

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001

10/23/2018 4:45:00 PM

Test End:

10/30/2018 12:10:00 PM

Response: Survival (%)

	Additional			Concent	ration %		1	
Day	Control	0	12	24	48	50	100	
2	100	100	100	100	100	100	100	
7	100	100	100	97.5	100	100	100	

Response: Growth per Original Number of Larvae (mean dry weight,mg)

	Additional		(oncent	ration %	6		
	Control	0	12	24	48	50	100	
7	0.503	0.536	0.571	0.515	0.562	0.560	0.586	

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference: EPA-821-R-02-013

WET-A-002

Test Start:

10/23/2018 10:55:00 AM

Test End:

10/30/2018 4:50:00 PM

Response: Survival (%)

	Additional	1	C	oncent	ration %			
Day	Control	0	12	24	48	50	100	
2	100	100	100	100	100	100	100	
8	100	100	100	100	100	90	100	

Response: Reproduction (mean neonates per female)

	Additional	1		Concent	ration %	*****	
7	Control	0	12	24	48	50	100
8	16.2	12.7	13.3	22.4	31.5	28	35.5

Submitted By:

1 of 1

Aguatec Environmental, Inc.

Wednesday, November 7, 2018 SDG: 15440

Project

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001 SOP:

Test Start:

10/23/2018 4:45:00 PM

Test End:

10/30/2018 12:10:00 PM

Response: Survival (%)

Day	Sample ID	Dilution Control	Additional Control
2	51157	100	100
7	51157	100	100

Response: Growth per Original Number of Larvae (mean dry weight, mg)

Day	Sample ID	Dilution Control	Additional Control		
7	51157	0.536	0.503		

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

PMSD Comparison:

PMSD:

9.5%

PMSD Criteria Range:

12%-30%

The calculated test PMSD was less than the lower bound indicating test data with low variability and high statistical sensitivity. In determining the C-NOEC, C-LOEC, test concentrations were not considered toxic if the relative difference from the control was less than the lower PMSD bounds.

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, there were no special conditions or qualifiers that relate to the samples in this report, with the following exceptions:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as an additional control.

SDG: Project

City of Keene NH 420 Airport Road

Route 32

Client ID:

Swanzey, NH 03446

Keene/Ley

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

TOXICITY QUALITY ASSURANCE REPORT:

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

> Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 WET-A-002

Test Start: 10/23/2018 10:55:00 AM Test End: 10/31/2018 4:50:00 PM

Response: Survival (%)

Day Sample ID Dilution Control Additional Control 100 2 51157 100 8 51157 100 100

Reproduction (mean neonates per female)

Sample ID Dilution Control Additional Control Day 16.2 8 51157 12.7

Percent Minimum Significant Difference (PMSD) Sensitivity Determination:

SPECIAL CONDITIONS AND QUALIFIERS:

To the best our knowledge, the following special conditions or qualifiers relate to the samples in this report for this test method:

Reconstituted soft water was the dilution water and statistical control. Receiving water (Ashuelot River) was included in the test array as an additional control.

The laboratory control (soft water used as dilution water) did not met acceptance criteria for average number of neonates per surviving female (<15) when the test was ended on Day 8. Neonate production was high in the effluent concentrations of 24%, 48%, 50%, and 100% effluent with many producing fourth broods. The client was notified that the Lab Control did not meet acceptance criteria and that due to the high reproduction in upper effluent concentrations, the test could provide useful information reflecting no toxicity. The client approved reporting of the test results for informational purposes.

Some neonates were judged to be split broods (neonates from the same brood produced before and after a daily renewal). These are indicated on a copy of the bench sheet with circles around those viewed as split broods. Neonates judged to a fourth brood on Day 7 or Day 8 (also indicated on a copy of the bench sheet) were excluded from the data tabulations and analysis.

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION:

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:

November 19,2018

Date)

(Authorized signature)

John Williams Director

Aquatec Environmental, Inc.

Client ID:

1000.0

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road

Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

WET-A-001

Keene/Ley Permit No. NH0100790

Fathead Minnow, P. promelas, Survival and Growth Test Species: Pimephales promelas Reference: EPA-821-R-02-013

Test Start: 10/23/2018 4:45:00 PM Test End: 10/30/2018 12:10:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Species Sample Type Sampling Method **Test Type Modified Chronic** Effluent Composite Pimephales promelas

Dilution Water: Soft Water

Additional Control: Ashuelot River

Effluent Sampling Dates: October 22, 24, & 26, 2018

Effluent Concentrations Tested

0, 0, 12, 24, 48*, 50, 100* * Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted?

If yes, to what value? No

With Sea Salts?

(%):

Hypersaline Brine Solution?

Reference Toxicant Date:

October 23-30, 2018

Reference Toxicant Test

Yes

Acceptable?

Age and Age Range of Test

Organisms:

1-day old

Source of Organisms:

Aquatic BioSystems - Fort Collins, CO

1 of 6 Aquatec Environmental, Inc. O bate: Reviewed by:

SDG: 15440 Project 18017

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001

Test Start:

10/23/2018 4:45:00 PM

Test End:

10/30/2018 12:10:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control:

Soft Water

Mean Control Survival: 100 %

Mean Control Growth: 0.536 (mg)

B. Additional Control:

Ashuelot River

Mean Control Survival: 100 %

Mean Control Growth: 0.503 (mg)

C. Lab Control:

See A. Above

D. Thiosulfate Control:

N/A

Test Variability

Test PMSD:

Growth (%): 9.49

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%)

RESULTS (%)

48-Hour LC50:

48-Hour LC50:

> 100

Upper Value:

N/A

Lower Value:

Data Analysis

N/A

Dunnett Multiple Comparison Test,

Method(s):

Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC:

100.0

A-NOEC:

100

C-NOEC:

48.0

C-NOEC:

100

C-LOEC:

> 100

IC25:

IC25:

> 100

2 of 6

Aquatec Environmental, Inc. Reviewed by: Date: 11/12/18. SDG: Project 15440

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley Permit No. NH0100790

1000.0

Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference: EPA-821-R-02-013

WET-A-001 SOP:

Test Start:

10/23/2018 4:45:00 PM

Test End:

10/30/2018 12:10:00 PM

CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

The laboratory control (soft water used as dilution water and statistical control) met test acceptance criteria. The additional control (receiving water) also met test acceptance criteria.

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was below the boundaries of 12%-30%, indicating test data with low variability and high statistical sensitivity. Chronic values were reported as calculated by the statistical program.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or growth were not detected.

3 of 6

Aquatec Environmental, Inc. 2 Date: _

SDG: Project 15440

Client ID:

1002.0

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road

Route 32 Swanzey, NH 03446

Keene/Ley

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia Reference: EPA-821-R-02-013 SOP: WET-A-002

Test Start: 10/23/2018 10:55:00 AM Test End: 10/31/2018 4:50:00 PM

TOXICITY TEST SUMMARY SHEET:

Test Type Test Species Sample Type Sampling Method

Modified Chronic Ceriodaphnia dubia Effluent Composite

Dilution Water: Soft Water

Additional Control: Ashuelot River

Effluent Sampling Dates: October 22, 24, & 26, 2018

Effluent Concentrations Tested 0, 0, 12, 24, 48*, 50, 100*

(%): * Permit Limit: 100% (acute); 48% (chronic)

Effluent Salinity Adjusted? No If yes, to what value?

With Sea Salts? Hypersaline Brine Solution?

Reference Toxicant Date: October 2-8, 2018

Reference Toxicant Test No Acceptable?

Age and Age Range of Test <24h collected within an 8h period

Organisms:

Source of Organisms: Aquatec Environmental, Inc. - Williston, VT

Client ID:

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Keene/Ley

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Permit No. NH0100790

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Reference: EPA-821-R-02-013 Species: Ceriodaphnia dubia WET-A-002 SOP:

Test Start: 10/23/2018 10:55:00 AM Test End: 10/31/2018 4:50:00 PM

CONTROL RESPONSES:

Test Acceptability Criteria

A. Dilution Water Control: Soft Water

Mean Control Survival: 100 % Mean Control Reproduction: 12.7 (neonates)

B. Additional Control: Ashuelot River

Mean Control Survival: 100 % Mean Control Reproduction: 16.2 (neonates)

C. Lab Control: See A. Above D. Thiosulfate Control: N/A

Test Variability

Test PMSD: Reproduction (%): 66.3

PERMIT LIMITS AND TEST RESULTS:

LIMITS (%) RESULTS (%)

> 100 48-Hour LC50: 48-Hour LC50: **Upper Value:** N/A

Lower Value: N/A

Data Analysis Fisher Exact/Bonferroni-Holm Test, Method(s): Linear Interpolation (ICPIN), Steel

Many-One Rank Sum Test

A-NOEC: 100.0 A-NOEC: 100 C-NOEC: 100 C-NOEC: 48.0

C-LOEC: > 100

IC25: IC25: > 100

5 of 6

Aquatec Environmental, Inc. Date: 11/12/18 SDG: Project 15440

Aquatec Environmental, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32

Swanzey, NH 03446

Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID: Keene/Ley

Permit No. NH0100790

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia Reference:

10/31/2018 4:50:00 PM

WET-A-002

10/23/2018 10:55:00 AM CONTROL ACCEPTANCE AND RESPONSE COMPARISONS:

Control Results:

Test Start:

The laboratory control (soft water used as dilution water and statistical control) did not meet test acceptance criteria. The additional control (receiving water) also did not meet test acceptance criteria.

Test End:

PMSD Comparison:

The Percent Minimum Significant Difference (PMSD) is a measure of statistical sensitivity. The PMSD was above the boundaries of 13%-47%, indicating test data with high variability and low statistical sensitivity. Although the controls did not meet acceptability criteria, reproduction rates in the upper effluent concentrations, including the 100% effluent were high. The client requested that the data be reported for informational purposes.

Concentration-Response Comparison:

The concentration-response pattern reflected a pattern where significant reductions in survival or reproduction were not detected.

6 of 6

Monday, November 12, 2018 SDG: 15440

Aguatec Environmental, Inc. Date:

Project

Aquatec Environmental, Inc

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES WORK ORDER: **1810-27611**

DATE RECEIVED: October 23, 2018

DATE REPORTED: November 05, 2018

SAMPLER: Not Indicated

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 11/05/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1810-27611
PROJECT: Keene NH NPDES DATE RECEIVED: 10/23/2018

001 Site: (51157) Keen	ne WWTP (2nd Clarifier #	2) Composite	Γ	Date Sampled: 10/22/18	3 Time: 7	7:08	
<u>Parameter</u>	Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organic Carbon	4.5	mg/L	SM 5310C (00)	11/1/18	N JGM	A	
Total Hardness, Total as CaCO3	64	mg/L	EPA 200.7	11/5/18	W FAA	A	
Ammonia as N	0.25	mg/L	EPA 350.1, R.2	11/1/18	N JGM	A	
Solids, Total Dissolved	479	mg/L	SM 2540C-97	10/26/18	W JSS	A	
Total Solids	486	mg/l	SM 2540 B97	11/1/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	10/30/18	W SJM	A	
Aluminum, Total	0.18	mg/L	EPA 200.8	10/31/18	W SJM	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	10/31/18	W SJM	A	
Calcium, Total	20	mg/L	EPA 200.7	11/5/18	W FAA	A	
Copper, Total	0.0032	mg/L	EPA 200.8	EPA 200.8 10/31/18		A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	10/31/18	W SJM	A	
Magnesium, Total	3.5	mg/L	EPA 200.7	11/5/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	10/31/18	W SJM	A	
Zinc, Total	0.022	mg/L	EPA 200.8	10/31/18	W SJM	A	

002	Site: (51158) Ashuelot 1	River Grab		Ε	Date Sampled: 10/22/18	Time: 9	0:20	
<u>Parameter</u>		Result	<u>Units</u>	Method	Analysis Date/Time	Lab/Tech	NELAC	Qual.
Total Organ	nic Carbon	4.9	mg/L	SM 5310C (00)	11/1/18	N JGM	A	
Total Hardr	ness, Total as CaCO3	8	mg/L	EPA 200.7	11/5/18	W FAA	A	
Ammonia a	ns N	0.15	mg/L	EPA 350.1, R.2	11/1/18	N JGM	A	
Metals Dig	estion	Digested		EPA 200.7/200.8	10/30/18	W SJM	A	
Aluminum,	Total	0.14	mg/L	EPA 200.8	10/31/18	W SJM	A	
Cadmium,	Total	< 0.0002	mg/L	EPA 200.8	10/31/18	W SJM	A	
Calcium, To	otal	2.2	mg/L	EPA 200.7	11/5/18	W FAA	A	
Copper, Tot	tal	< 0.0020	mg/L	EPA 200.8	10/31/18	W SJM	A	
Lead, Total		< 0.0010	mg/L	EPA 200.8	10/31/18	W SJM	A	
Magnesium	n, Total	0.60	mg/L	EPA 200.7	11/5/18	W FAA	A	
Nickel, Tota	al	< 0.0050	mg/L	EPA 200.8	10/31/18	W SJM	A	
Zinc, Total		< 0.020	mg/L	EPA 200.8	10/31/18	W SJM	A	

Aquatec Environmental, Inc.

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COMP	ANY I	NFO	RMA	TION	J	P	ROJ	ECT	INFO	RMATIO	N
Name:	Aquatec Environmental, Inc.					Proje	ct Name	::	Keene NI	H NPDES	
Address:	273 Comm		Proje	ct Numb	er:	18017					
City/State/Zip: \	Williston, V	T 05403				Samp	ler Nam	e(s):			
Telephone: ((802) 860 -	2960						•	•		
Contact Name: J	Iohn Willia	ms									***
SAMPLE IDENT	TIFICATION	N COL	LECTIO		ANA (Detection	ALYSIS Limit, m	g/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	R NUMBER
Keene WWTP (2 Clarifier #2) (51		10/22	2/18 7	:08	Grab: N	N/A	Compo	site:	Х		
		Amn	nonia (0.:	1)				500mL	Plastic	H2SO4	1
			Metals: Cd, Pb (0.0005); Cu (0.003); Zn, Ni (0.005); Al (0.02); Mg, Ca (0.05)					250mL	Plastic	HNO3	1
		Tota	l Organic	Carbon (0	0.5)			40mL	Glass	H2SO4	2
		Total	l Solids/T	otal Disso	olved Solids			1/2gal	Plastic	Ice (4C)	1
Ashuelot River	(51158)	10/22	/18 9	:20 (Grab:	х	Compo	site: I	N/A		.i
		Amm	nonia (0.1	1)				500ml.	Plastic	H2SO4	1
			-	b (0.0005) 02); Mg, C); Cu (0.003 Ca (0.05)	3); Zn, Ni		250mL	Plastic	НИОЗ	1
		Total	Organic	Carbon (0	0.5)	•••		40mL	Glass	H2SO4	2
Relinquished by (signature) DATE TIME Received by: (s. 14:30 %. Million Relinquished by (signature) DATE TIME Received by: (s.				Whote		DATE	14:3	O Notes 7	/Sample Temp.: o Lab:	<u>S.4</u>	

1810-27611

1810-27511

Aquatec Environmental, Inc Keene NH NPDES

Aquatec Environmental, Inc

273 Commerce St

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES

WORK ORDER: 1811-28463

DATE RECEIVED: November 02, 2018

DATE REPORTED: November 16, 2018

SAMPLER: BB, MM

Laboratory Report

101170

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 11/16/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1811-28463
PROJECT: Keene NH NPDES DATE RECEIVED: 11/02/2018

001 Site: 51167 Keene WWTP 2nd Clarifier #2 Date Sampled: 10/24/18 Time: 7:00 Parameter Result Units Method Analysis Date/Time Lab/Tech **NELAC** Qual. N JGM Ammonia as N 0.09 mg/L EPA 350.1, R.2 11/15/18 A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

СОМРА	NY IN	NFO	RMA	TIC	NC		PROJ	ECT	INFO	RMATIO	N
Name: Aqu	uatec Env	rironme	ental, Inc	3.		Proje	ect Name	2:	Keene N	H NPDES	
Address: 273	3 Comme	rce Stre	eet			Proje	ect Num	ber:	18017		
City/State/Zip: Wil	liston, VI	05403	}			Samı	oler Nam	ne(s):	BB, MM		-
Telephone: (80	2) 860 - 2	2960									
Contact Name: Joh	n William	15									· · · · · · · · · · · · · · · · · · ·
SAMPLE IDENTIFI	ICATION	COL	LECTIO	N ME		NALYSIS on Limit, n	ng/L)	SIZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	NUMBER
Keene WWTP (2nd		10/24	1/18 7	:00	Grab:	N/A	Compo		X	, , , , , , , , , , , , , , , , , , , ,	TROMOZA
	- "	Amn	nonia (0.:	1)	, , , , , , , , , , , , , , , , , , ,			500mL	Plastic	H2SO4	1
Relinquished by (sign		DAJE	TIME , 17.12		ceived by: (s	- •	DATE	TIME	- COOLE	/Sample Temp.: To Lab:	6.8
Relinquished by (sigr		DATE	TIME	Rec	ceived by: (s			i	7		i

1811-28463

1811-28463

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Keene NH NPDES WORK ORDER: 1811-28462

DATE RECEIVED: November 02, 2018

DATE REPORTED: November 16, 2018

SAMPLER: Not Indicated

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Page 2 of 2

Laboratory Report

DATE REPORTED: 11/16/2018

CLIENT: Aquatec Environmental, Inc WORK ORDER: 1811-28462
PROJECT: Keene NH NPDES DATE RECEIVED: 11/02/2018

001 Date Sampled: 10/26/18 Site: 51171 Keene WWTP 2'Clarifier #2 Composite Time: 9:15 Parameter Result Method Analysis Date/Time Lab/Tech **NELAC** Units Qual. Ammonia as N 0.14 mg/L EPA 350.1, R.2 11/15/18 N JGM A

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY II	NFORM	ITAI	ON	1	PROJ	ECT	INFO	RMATIO	N
Name:	Aquatec Env	vironmental	, Inc.		Proje	ct Name	: 1	Keene NI	H NPDES	
Address:	273 Comme	erce Street			Proje	ct Numb	er:	18017		
City/State/Zip:	Williston, V	T 05403			Sami	oler Nam	e(s):			•
Telephone:	(802) 860 - 3	2960		· · · · · · · · · · · · · · · · · · ·	•••				201 1 0 002 WELDOON 2 2 1 22 0 2	
Contact Name:	John Willian	ns								
SAMPLE IDEN	ITIFICATION	COLLEC DATE	TION TIME		NALYSIS on Limit, n	ng/L)	SłZE	BOTT TYPE	LE/CONTAINER PRESERVATIVE	R : NUMBER
Keene WWTP #2) (51171)	(2° Clarifier	10/26/18	9:15	Grab:	N/A	Compo	site:	х		-
		Ammonia	(0.1)				500mL	Plastic	H2SO4	1
Relinquished by		DATE TIN		eceived by: (s Hooman	signature)	DATE	TIME	Cooler Notes 7	/Sample Temp.: To Lab:	4.8
Relinquished by		DATE TIN	. 7	eceived by: (s	signature)	i	TIME			

1811-28462

1811-**2**8462

Aquatec Environmental, Inc Keene NH NPDES

273 Commerce St

101170

Williston, VT 05495

Atten: John Williams

PROJECT: Tox Lab QC

WORK ORDER: 1808-19923

DATE RECEIVED: August 09, 2018

DATE REPORTED: August 29, 2018

SAMPLER: EB

Laboratory Report

Enclosed please find the results of the analyses performed for the samples referenced on the attached chain of custody. All required method quality control elements including instrument calibration were performed in accordance with method requirements and determined to be acceptable unless otherwise noted.

The column labeled Lab/Tech in the accompanying report denotes the laboratory facility where the testing was performed and the technician who conducted the assay. A "W" designates the Williston, VT lab under NELAC certification ELAP 11263; "R" designates the Lebanon, NH facility under certification NH 2037 and "N" the Plattsburgh, NY lab under certification ELAP 11892. "Sub" indicates the testing was performed by a subcontracted laboratory. The accreditation status of the subcontracted lab is referenced in the corresponding NELAC and Qual fields.

The NELAC column also denotes the accreditation status of each laboratory for each reported parameter. "A" indicates the referenced laboratory is NELAC accredited for the parameter reported. "N" indicates the laboratory is not accredited. "U" indicates that NELAC does not offer accreditation for that parameter in that specific matrix. Test results denoted with an "A" meet all National Environmental Laboratory Accreditation Program requirements except where denoted by pertinent data qualifiers. Test results are representative of the samples as they were received at the laboratory

Endyne, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose.

Reviewed by:

Harry B. Locker, Ph.D. Laboratory Director

Laboratory Report

DATE REPORTED: 08/29/2018

CLIENT: Aquatec Environmer PROJECT: Tox Lab QC	ntal, Inc		· · ·	ORDER: 1808-1 RECEIVED: 08/09	9923 0/2018		_
001 Site: (51058) 080518 Soc	ft		Ι	Date Sampled: 8/7/18	Time: 1	6:20	
<u>Parameter</u>	Result	<u>Units</u>	<u>Method</u>	Analysis Date/Time	Lab/Tech	<u>NELAC</u>	Qual.
Total Organic Carbon	< 0.5	mg/L	SM 5310C (00)	8/16/18	N CAL	A	
Total Hardness, Total as CaCO3	53	mg/L	EPA 200.7	8/27/18	W FAA	A	
Ammonia as N	< 0.05	mg/L	EPA 350.1, R.2	8/21/18	N CAL	A	
Solids, Total Dissolved	111	mg/L	SM 2540C-97	8/10/18	W JSS	A	
Total Solids	94	mg/L	SM 2540 B97	8/10/18	W JSS	A	
Metals Digestion	Digested		EPA 200.7/200.8	8/20/18	W SJM	A	
Aluminum, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Cadmium, Total	< 0.0002	mg/L	EPA 200.8	8/21/18	W SJM	A	
Calcium, Total	10	mg/L	EPA 200.7	8/27/18	W FAA	A	
Copper, Total	< 0.0020	mg/L	EPA 200.8	8/21/18	W SJM	A	
Lead, Total	< 0.0010	mg/L	EPA 200.8	8/21/18	W SJM	A	
Magnesium, Total	6.8	mg/L	EPA 200.7	8/27/18	W FAA	A	
Nickel, Total	< 0.0050	mg/L	EPA 200.8	8/21/18	W SJM	A	
Zinc, Total	< 0.020	mg/L	EPA 200.8	8/21/18	W SJM	A	

Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860 - 2960 Attn. John Williams

COM	PANY I	NC	P	ROJ	ECT	INFO	RMATIO	N		
Name:	Aquatec En	vironmenta	, Inc.		Proje	ct Name	2:	Tox Lab (QC .	
Address:	273 Comm	erce Street			Proje	ct Numb	er:	18000		
City/State/Zip	: Williston, V	T 05403			Sampler Name(s): EB					
Telephone:	(802) 860 -	2960								
Contact Name	: John Willia	ms					•		· • • • • • • • • • • • • • • • • • • •	
SAMPLE IDE	NTIFICATION	COLLEC	TION		NALYSIS on Limit, m	g/l)	SIZE	BOTT TYPE	LE/CONTAINEF PRESERVATIVE	l NUMBER
080518SOFT	(51058)	08/07/18	16:20	Grab:	Х	Compo	site: !	N/A		
		Ammoni	a-Nitrogei	n(0.1)			250mL	Plastic	H2SO4	1
			Al (0.02); (); Ca, Mg	d, Pb (0.000 (0.05)	5); Cu (0.00)3); Zn,	250mL	Plastic	HNO3	1
		TOC - To	tal Organi	c Carbon(0.5)		40mL	Glass	H2SO4	2
		TS/TDS-T	otal Solid	s/Total Disso	lved Solids	- · · · · · · · · · · · · · · · · · · ·	1/2gal	Plastic	Ice(4C)	1
Relinquished by Relinquished by	suffeel	8/9/18 112	35 E	ceived by: (i	o comey	DATE 8/9 DATE	11:35	Notes	/Sample Temp.: Fo Lab:	3.7

1808-19923

1888-19923

Aquatec Environmental, Inc Tex Lab QC

Supportive Documentation

Chain-Of-Custody
Toxicity Test Methods

1000.0 - Fathead Minnow, P. promelas, Survival and Growth Test

1002.0 - Daphnid, C. dubia, Survival and Reproduction Test

Standard Reference Toxicant Control Charts

Chain-Of-Custody(s)

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 Tel: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATI	ON	PRO	JECT II	NFOR	MAT	ION		VOL			TAIN VATI		PE/	
Name: Keene, NH	PF	ROJECT:	Keene	NH/Le	ey									
Address: 420 Airport Road		(1s	t Sample	Ship	Mondo	ay)	U	NO3		4°C	2504	4		
Swanzey, NH 03446	PF	ROJECT	#: 180	017			c 4°	H	4°C	stic	ic H	H ₂ S0		
TEL: (603) 357 – 9836 [x65	502] SA	AMPLER	S NAME(S	s): Par	renco	ndélla	lasti	lasti	lass	Pla	Plast	ass		
CONTACT: Mary Ley			Mike	e Mai	tell		on	nLIF	n l G	allon	mr i	1		
E-MAIL: mley@ci.keene.nh.us	Pi	ERMIT N	UMBER:	NH01	00790		Gall	250r	TRC: 40mL Glass 4°C	% 6	: 250	40m		
			230	AB	OSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ½ Gallon Plastic 4°C	AMMONIA: 250mL Plastic H ₂ SO ₄	TOC: 40mL Glass H ₂ SO ₄		
SAMPLE IDENTIFICATION		DATE	TIME	GR	COMP	MAT			Іимв	ER OF	CONT	AINER	s	
Keene WWTP (2° Clarifier #2)	10	laska	TIME		Х	Effluent	2	1	1	1	1	2		
Ashuelot River				X		Receiving	1	1			1	2		
	16	410	,											
	-	-												
		-												
	-													
	-	-		-			-							
	-+			-										
											-			
	-													
(0.0005mg/L); Cu (0.003mg/L) (0.02mg/L) – TS/TDS : Total Sol	; Zn, & Ni (i ids / Total D	TIME: RECEIVED BY: (Signature or carrier)					(0.0) - TO	5mg/l DC: To	.) – TF tal Or	RC: To	Carbo	esidua on (0.	l Chlo	orine -)
RELINQUISHED BY: (Signature) May 2	10/22/18	1000	X	riority	Expre	ss	VOTES	: Aqua	atec d	eliver	s cher	mistry		
REUNQUISHED BY: (Signature or carcier) Periority Express	1 1	Dissolved Solids — Ammonia: (0.1mg Time: Received By: (Signature or carrier) Priority Express Time: Received By: (Signature) At 136 AT Agos TO				ab (E requir	ndyne red on	, Inc.) each	; Amr	nonia efflue	and T nt sar	RC are	е	
REUNQUISHED BY: (Signature)	DATE:	TIME:	RECEIVE	D BY: (S	ignature)			r 'Che val sar			if ≥50)% m	ortality	y on

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: ____ of ___ 273 Commerce Street Williston, VT 05495 TEL: (802) 860 – 2960 ATTN. John Williams

COMPANY INFORMATION	PRO	DJECT I	NFOR	MAT	ION		VOL		CON ESER		ER TYP	E/
NAME: Keene, NH	PROJECT	: Keene	NH/Le	ey								
Address: 420 Airport Road	(2 nd	Sample .	Ship W	/ednes	sday)	U	NO3		4°C	2504	4	
Swanzey, NH 03446	PROJECT	#: 18	017			c 4°	표	4°C	stic	ic H	H ₂ SO	
TEL: (603) 357 – 9836 [x6502]	SAMPLER	RS NAME(s): Bo	6 Bish	go	lasti	lasti	lass	Pla	Plast	ass	
CONTACT: Mary Ley			Mik	e Mai	rtell	- Inc	니	116	llon	mr	19	
E-MAIL: mley@ci.keene.nh.us	PERMIT I	NUMBER:	NH010	00790		Gall	250r	TRC: 40mL Glass 4°C	1 G	: 250	40m	
	FIN		48	DSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO ₃	TRC	TS/TDS: ⅓ Gallon Plastic 4°C	Ammonia: 250mL Plastic H2SO4	TOC: 40mL Glass H ₂ SO ₄	
SAMPLE IDENTIFICATION	DATE	TIME	GRAB	COMPOSITE	MATRIX						AINERS	
Keene WWTP (2° Clarifier #2)	1924	700)		х	Effluent	2	1*	1	KUF	1	AINERS	
		700		Λ.			-			-		-
Ashuelot River	1924/18	925	X		Receiving	1						
		H										
					11							
		1111										

ANALYSIS (Test/Detection Limits) – Tox: Renewal (*P. promelas* and *C. dubia* chronic toxicity; %) – Metals: Cd & Pb (0.0005mg/L); Cu (0.003mg/L); Zn, & Ni (0.005mg/L); Al (0.02mg/L); Mg & Ca (0.05mg/L) – TRC: Total Residual Chlorine (0.02mg/L) – TS/TDS: Total Solids / Total Dissolved Solids – AMMONIA: (0.1mg/L) – TOC: Total Organic Carbon (0.5mg/L)

RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature or carrier)	TEMPERATURE ON DELIVERY (°C): 5.0°C
may In	192418	1000	Charity Express	Notes: Aquatec delivers chemistry sub-
RELINQUISHED BY: (Stenature of garrié))	DATE: 10-24-18	TIME:	RECEIVED BY: (Signature) AGUSTRC EN MYONLOGI)	samples to a NELAC-Accredited analytical lab (Endyne, Inc.); Ammonia and TRC are required on each new effluent sample;
RELINQUISHED BY: (Signature)	DATE:	TIME:	RECEIVED BY: (Signature)	[*] Metals analysis only if ≥50% mortality.

SAMPLE ACCEPTANCE POLICY: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

Chain-of-Custody

Page: of	_
273 Commerce Stree	t
Williston, VT 05495	5
TEL: (802) 860 - 2960)
ATTN John William	S

COMPANY INFORMATION	OMPANY INFORMATION PROJECT INFORMATION							VOL	9000 DOCT	CON'		ER TY VE	PE/	
NAME: Keene, NH	PF	ROJECT:	Keene	NH/Le	ey.									
Address: 420 Airport Road		(3	3 rd Samp	le Ship	Frida	y)	U	SO ₃	IJ	4°C	12504	4		
Swanzey, NH 03446	Pr	ROJECT	#: 18	017			c 4°	C H	14°C	stic	cic H	H ₂ SO		
TEL: (603) 357 – 9836 [x6502	2] SA	AMPLER	s NAME(s):			plasti	Plasti	TRC: 40mL Glass 4°C	Pla	Plast	TOC: 40mL Glass H ₂ SO ₄		
CONTACT: Mary Ley							on	mL i	nL G	allon	Jmr	1 6		
E-MAIL: mley@ci.keene.nh.us	Pi	ERMIT N	NUMBER:	NH01	00790		Gall	250	:: 40r	9 %:	1: 250	40m		
		FIN		84	OSITE	RIX	Tox: 1 Gallon Plastic 4°C	METALS: 250mL Plastic HNO3	TRC	TS/TDS: ½ Gallon Plastic 4°C	Ammonia: 250mL Plastic H ₂ SO ₄	TOC:		
SAMPLE IDENTIFICATION		ДАТЕ	TIME		COMPOSITE	MATRIX			lime	FR OF	CONT	AINER	s	
Keene WWTP (2° Clarifier #2)	19	20118	700		X	Effluent	3	1.	1		1			
Ashuelot River				Х		Receiving	2							
Ashuelot River	192	16/18	890	- ~		1123-111-0	7							
			-					-						
				-			-	-		-	-			
												-		-
			- 1											
								112						
													110	
ANALYSIS (TEST/DETECTION LIMITS (0.0005mg/L); Cu (0.003mg/L); Zu (0.02mg/L) – TS/TDS: Total Solid	n & Ni (0.005	mg/L): A	1 (0.02	2mg/L)	; Mg & Ca	a(0.0)	5mg/l	_) — TI	RC: IC	otal Re	esiaua	il Chio	rine
1		TIME:		_	_	ss	NOTE	eratur s: Aqu	atec d	leliver	s che	mistry		al
	DATE:	E: TIME: RECEIVED BY: (Signature)			tab (E	ndyne red or	e, Inc. n each); Amr	monia efflue	and 1 ent sar	RC are	e		
RELINQUISHED BY: (Signature)	DATE:	TIME: RECEIVED BY: (Signature)					als and mort		of ren	ewal	samp	es onl	y if	

Sample Acceptance Policy: Chain-of-Custody completed. Sample bottle labels should be completed and covered with waterproof tape. Sample should be received at 0-6°C and/or within 6-hours of collection. Samples should be received within specified holding times based on controlling regulations (e.g., <36-hours for effluent samples under NPDES regulation). Samples NOT meeting the above conditions (per applicable regulatory protocols) will be qualified in the report.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

Pipe No. 1

SAMPLE PREPARATION:

	Initial Sample		Second	Sample	Third S	ample	
- 1	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	EFFLUENT	RECEIVING	LAB CONTROL
Sample No.	51157	51158	51167	51168	51171	51172	57159
Filtration	60 Micron	60 Micron	60 Micron	60 Micron	60 Micron	60 Micron	N/A
Chlorine (1)	ND	-	ND		M	/	N/A
Chlorine (2)	,		/	~	/		N/A
NaThio Lot No.		~	/	_	/		N/A
Original / Final Salinity:	N/A	N/A	N/A	N/A	N/A	N/A	N/A
FF Lot No.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Date / Initials:	ou 10/2	2/18	ES 10/24/1	8—1	10.26.18	-1	

⁽¹⁾ Record vol. 0.025 N sodium thiosulfate to dechlorinate 100mL sample or record "ND" (Not Detected)

 SDG: Project 15440 18017

⁽²⁾ Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 2960

City of Keene NH 420 Airport Road Route 32 Swanzey, NH 03446 Tel: (603) 357-9836

E-Mail: mley@ci.keene.nh.us

Client ID:

Keene/Ley

Permit No. NH0100790

ALKALINITY, HARDNESS, AND TRC REPORT:

Sample ID:	Analysis Date:	Alkalinity: (mg/L)	Hardness: (mg/L)	TRC: (mg/L)
51157 - Keene WWTP (2° Clarifier #2)	10/22/2018	68.0	68.0	0.00
51158 - Ashuelot River	10/22/2018	12.0	14.0	
51159 - Soft Water 102218	10/24/2018	36.0	52.0	
51167 - Keene WWTP (2° Clarifier #2)	10/24/2018	84.0	72.0	0.02
51168 - Ashuelot River	10/24/2018	12.0	16.0	
51171 - Keene WWTP (2° Clarifier #2)	10/26/2018	60.0	76.0	0.01
51172 - Ashuelot River	10/26/2018	8.0	12.0	144

INF: Interference. The color endpoint was reached immediately

1 01 1

SDG: Project 15440 18017 Toxicity Test Method(s)

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

SOP: WET-A-002 EPA-821-R-02-013 Reference: Species: Ceriodaphnia dubia

Project: Keene NH NPDES

Static renewal 1 Test type: 25 +/- 1C; Test temperatures must not deviate (i.e. maximum minus 2 Temperature:

minimum temperature) by more than 3C during the test

Ambient laboratory illumination 3 Light quality:

10-20uE/m^2/s or 50-100ft-c (ambient laboratory levels) 4 Light intensity:

5 Photoperiod: 16h light, 8h dark

30mL 6 Test chamber size:

Nominal 15mL 7 Test solution volume

8 renewal of test solutions: Daily

Less than 24h; and all released within a 8h period 9 Age of test organisms:

10

1 10 No. neonates per test chamber:

10 11 No. replicate test chambers per

concentration:

12 No. neonates per test concentration:

Feed 0.1mL each of YCT and algal suspension per test chamber daily 13 Feeding regime:

Use new plastic cups daily Cleaning:

None 15 Aeration:

Soft Water 16 Dilution water:

0, 0, 12, 24, 48*, 50, 100* 17 Test concentrations (%):

Ashuelot River 18 Additional control:

Until 60% or more of surviving control females have three broods 19 Test duration:

(maximum test duration 8 days)

Survival and reproduction Endpoints: 20

80% or greater survival of all control organisms and an average of 15 Test acceptability criteria:

or more young per surviving female in the control solutions. 60% of

surviving control females must produce three broods

For off-site tests, a minimum of three samples (e.g., collected on Sampling requirements:

days one, three, and five) with a maximum holding time of 36h

before first use

1L/day Sample volume required:

> SDG: Project

15440 18017

Aquatec Environmental, Inc.

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: WET-A-001

1 Test type: Static renewal

Keene NH NPDES

Project:

2 Temperature: 25+/- 1C, Test temperatures must not deviate (i.e., maximum minus

minimum temperature) by more than 3C during the test

3 Light quality: Ambient laboratory illumination

4 Light intensity: 10-20uE/m^2/s (50-100ft-c) (ambient laboratory levels)

5 Photoperiod: 16h light/8h dark

6 Test chamber size: 300mL disposable plastic or 600mL glass

7 Test solution volume: Nominal 250mL

8 Test solution renewal: Daily

Age of test organisms: Newly hatched larvae less than 24h old. If shipped, not more than

48h old, 24h range in age

10 No. larvae per test chamber: 10

11 No. replicate chambers per 4 concentration:

12 No. larvae per concentration: 40

13 Source of food: Newly hatched Artemia nauplii (< 24h old)

14 Feeding regime: On days 0-6, feed 0.1g newly hatched (less than 24h old) brine

shrimp nauplii three times daily at 4h intervals or, as a minimum, 0.15g twice daily at 6h intervals. Sufficient nauplii are added to

provide an excess.

15 Cleaning: Siphon daily, immediately before test solution renewal

None: unless DO concentration falls below 4.0mg/L.

17 Dilution water: Soft Water

18 Test concentrations (%): 0, 0, 12, 24, 48*, 50, 100*

19 Additional control: Ashuelot River

20 Test duration: 7 days

21 Endpoints: Survival and growth (weight)

22 Test acceptability criteria: 80% or greater survival in controls; average dry weight per surviving

organism in control chambers equals or exceeds 0.25mg

23 Sampling requirements: For off-site tests, a minimum of three samples (e.g., collected on

days one, three, and five) with a maximum holding time of 36h

before first use


24 Sample volume required: 2.5L/day

Aquatec Environmental, Inc.
Reviewed by: Date: 1/15/18

SDG:

Project

15440 18017

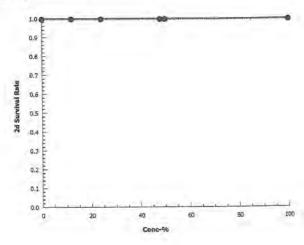
CETIS Summary Report

Report Date: Test Code: 07 Nov-18 15:10 (p 1 of 2) 81605 | 14-7271-6203

Fathead Minn	low 7-d Larval S	Survival	and Growt	h Test					Aquatec	Environm	ental,	inc.
Batch ID:	19-8492-9331	1	est Type:	Growth-Survival	(7d)		Ana		yn Priest			
Start Date:	23 Oct-18 16:4		Protocol:	EPA/821/R-02-0			Dil	uent: Soft	Synthetic W	ater		
Ending Date:	30 Oct-18 12:1	0 5	Species:	Pimephales pro	melas		Bri	ne: Not	Applicable			
Duration:	6d 19h		Source:	Aquatic Biosyste	ems, CO		Age	e: 1d				
Multiple Com	parison Summ	ary										
Analysis ID	Endpoint		Comp	parison Method			NOEL	LOEL	TOEL	TU	PMS	D /
01-7452-1656	2d Survival Rat	le		Many-One Rank			100	> 100	n/a	1	n/a	7.
02-2980-9698	7d Survival Rat	ie	Steel	Many-One Rank	Sum Test		100	> 100	n/a	1	4.57	
07-1655-0701	Mean Dry Biom	nass-mg	Dunn	ett Multiple Comp	parison Test		100	> 100	n/a	1	9.49	%
Point Estimat	te Summary								17,072 4 52	5.00 4.00	Z.:	
Analysis ID	Endpoint		Point	Estimate Metho	d		Level	%	95% LCL	95% UCL		1
08-3563-4331	2d Survival Rat	te	Linea	r Interpolation (IC	PIN)		EC5	>100	n/a	n/a	<1	1
							EC10	>100	n/a	n/a	<1	1
							EC15	>100	n/a	n/a	<1	1
							EC20	>100	n/a	n/a	<1	1
							EC25	>100	n/a	n/a	<1	1
							EC40	>100	n/a	n/a	<1	1
					-		EC50	>100	n/a	n/a	<1	V
17-1377-0398	Mean Dry Bion	nass-mg	Linea	r Interpolation (IC	CPIN)		IC5	>100	n/a	n/a	<1	
							IC10	>100	n/a	n/a	<1	~
							IC15	>100	n/a	n/a	<1	~
							IC20	>100	n/a	n/a	<1	~
							IC25	>100	n/a	n/a	<1	~
							IC40	>100	n/a	n/a	<1	~
							IC50	>100	n/a	n/a	<1	1
	Rate Summary	1,511.5		نك و يتناك			88.50	CAJ E	Std Dev	CV%	%Ef	fort
Conc-%	Code	Coun			95% UCL	Min	Max	Std Err		0.00%	0.00	
0	R	4	1.000		1.0000	1,0000	1.0000	0.0000	0.0000		0.00	
0	L	4	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	
12		4	1.000		1.0000	1,0000	1.0000	0.0000	0.0000	770	0.00	
24		4	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	
48		4	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%		
50		4	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	
100		4	1.000	00 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	70
	Rate Summary			Ullinger				544 Fan	Ctd Day	CV%	9/ E(fect
Conc-%	Code	Coun					Max	Std Err	Std Dev		0.00	
0	R	4	1.00		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	
0	L	4	1.00		1.0000	1.0000	1.0000		0.0000			
12		4	1.00		1.0000	1.0000	1.0000		0.0000	0.00%	2.50	
24		4	0.97		1.0000	0.9000	1.0000		0.0500	5.13%		
48		4	1.00		1.0000	1.0000	1.0000		0.0000	0.00%	0.00	
50		4	1.00		1.0000	1.0000	1.0000		0.0000	0.00%	0.00	
100		4	1.00	00 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00	70
Mean Dry Bi	omass-mg Sun			July 15	224 242			P44 F	Ctd Davi	CV9/	9/ 5	ffect
Conc-%	Code	Coun					Max	Std Err	Std Dev	CV%	0.00	_
0	R	4	0.50		0.5433	0.471	0.533	0.01282	0.02565	5.10%	-6.6	
0	L	4	0.53		0.5488	0.528	0.547	0.004021				
12		4	0.57		0.6039	0.541	0.586	0.01025	0.0205	3.59%	-13.	
24		4	0.51		0.5791	0.464	0.555	0.0202	0.04041	7.85%	-2.4	
48		4	0.56		0.6467	0.507	0.61	0.02669	0.05338	9.50%		79%
50		4	0.56		0.5868	0.543	0.579	0.008426		3.01%		44%
100		4	0.58	55 0.569	0.602	0.573	0.594	0.005172	0.01034	1.77%	-16.	52%

Report Date: Test Code: 07 Nov-18 15:10 (p 2 of 2) 81605 | 14-7271-6203

Fathead Minn	ow 7-d Larval	Survival an	d Growth To	est		Aquatec Environmental, Inc
2d Survival Ra	ate Detail					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	1.0000	1.0000	1.0000	1.0000	
0	L.	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	
7d Survival R	ate Detail					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	1.0000	1.0000	1.0000	1.0000	
0	L	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	0.9000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	
Mean Dry Bio	mass-mg Deta	all				
Conc-%	*Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	R	0.508	0.471	0.533	0.498	
0	L	0.547	0.528	0.536	0.533	
12		0.577	0.541	0.581	0.586	
24		0.555	0.502	0.464	0.538	
48		0.61	0.605	0.525	0.507	
50		0.543	0.579	0.549	0.569	
100		0.594	0.573	0.581	0.594	

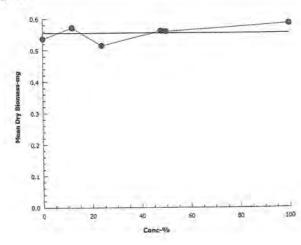

Report Date: Test Code: 07 Nov-18 15:10 (p 1 of 2) 81605 | 14-7271-6203

Fathead Minnow 7-d Larval Survival and Growth Test										Aqu	atec Envi	ronmental, Inc
Analysi		08-3563-4331		ndpoint:							Sv1.9.2	
Analyze	ea:	07 Nov-18 15:0	9 A	nalysis:	Linear Interpolation (ICPIN)						-	
Sample		10-7643-0565		ode:	15440					Keene WW7		
Sample	Date:	22 Oct-18 07:08	M	laterial:	POTW Effluent			Pro	oject:	Special Stud	ies	
Receip	t Date:	22 Oct-18 14:30	S	ource:	Permit # NH010	00790 (KEENE	NH)					
Sample	Age:	34h	S	tation:	Keene WWTP							
inear	Interpo	lation Options										
(Trans	sform	Y Transform	S	eed	Resamples	Exp 95% C	L Meth	od				
Linear		Linear	5	4262	200	Yes		Point Inte	rpolation			
Point E	stimat	es										
Level	%	95% LCL	95% UC	CL TU	95% LCL	95% UCL						
EC5	>100	n/a	n/a	<1	n/a	n/a						
EC10	>100	n/a	n/a	<1	n/a	n/a						
EC15	>100	n/a	n/a	<1	n/a	n/a						
EC20	>100	n/a	n/a	<1	n/a	n/a						
EC25	>100	n/a	n/a	<1	n/a	n/a						
EC40	>100	n/a	n/a	<1	n/a	n/a						
EC50	>100	n/a	n/a	<1	n/a	n/a						
2d Sur	vival R	ate Summary				Calcula	ted Varia	te(A/B)				
Conc-9	%	Code	Count	Mean	Min	Max	Std Err	Std De	CV%	%Effe	ct A	В
0		L	4	1.000	00 1.0000	1.0000	0.0000	0.0000	0.00%	-7070	40	40
12			4	1.000	00 1.0000	1.0000	0.0000	0.0000	0.00%		40	40
24			4	1.000	00 1.0000	114244	0.0000	0.0000	0.00%		40	40
48			4	1.000	1.0000	117777	0.0000	0.0000	0.00%		40	40
50			4	1.000	1.0000		0.0000	0.0000	0.00%		40	40
100			4	1.000	00 1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	40	40

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	1	1.0000	1.0000	1.0000	1.0000	
12		1.0000	1.0000	1.0000	1.0000	
24		1.0000	1.0000	1.0000	1.0000	
48		1.0000	1.0000	1.0000	1.0000	
50		1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	

Graphics


Report Date: Test Code: 07 Nov-18 15:10 (p 2 of 2) 81605 | 14-7271-6203

								lest	roge:	0.11	005 14-727 1-020
Fathea	d Minn	ow 7-d Larval Si	urvival a	and Grow	th Test					Aquatec Er	vironmental, Inc.
Analysi		17-1377-0398 07 Nov-18 15:0		indpoint: inalysis:	Mean Dry Bion Linear Interpol				S Version: al Results:	CETISv1.9.2 Yes	
Receipt Date: 22 Oct-18 14:30 Source:		15440 POTW Effluen Permit # NH01 Keene WWTP	00790 (KEE	NE NH)	Clien Proje	2	ne WWTP cial Studies				
		olation Options									
X Trans		Y Transform		Seed	Resamples	Exp 95%	CL Meth	od			
Linear	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		200	Yes		Point Interpo	t Interpolation				
Point E	Stimat	es									
Level	%	95% LCL	95% U	CL TU	95% LCL	95% UCL					
IC5	>100	n/a	n/a	<1	n/a	n/a					
C10	>100	n/a	n/a	<1	n/a	n/a					
IC15	>100	n/a	n/a	<1	n/a	n/a					
IC20	>100	n/a	n/a	<1	n/a	n/a					
IC25	>100	n/a	n/a	<1	n/a	n/a					
IC40	>100	n/a	n/a	<1	n/a	n/a					
IC50	>100	n/a	n/a	<1	n/a	n/a					
Mean I	Dry Bio	mass-mg Sumn	nary			Cal	culated Va	riate			
Conc-	%	Code	Count	Mea	n Min	Max	Std Err	Std Dev	CV%	%Effect	
0		L	4	0.53	6 0.528	0.547	0.004021	0.008042	1.50%	0.0%	
12			4	0.57	13 0.541	0.586	0.01025	0.0205	3.59%	-6.58%	
24			4	0.5	0.464	0.555	0.0202	0.04041	7.85%	3.97%	
48			4	0.56		0.61	0.02669	0.05338	9.50%	-4.8%	
50			4	0.56		0.579	0.008426	0.01685	3.01%	-4.48%	
100			4	0.58	355 0.573	0.594	0.005172	0.01034	1.77%	-9.24%	
Mean	Dry Bio	mass-mg Detail	C								
Conc-	%	Code	Rep 1	Rep	2 Rep 3	Rep 4					
0		L	0.547	0.52	28 0.536	0.533					
12			0.577	0.54	11 0.581	0.586					
24			0.555	0.50	0.464	0.538					
48			0.61	0.6		0.507					
				0.5		0.550					

Graphics

50

100

0.543

0.594

0.579

0.573

0.549

0.581

0.569

0.594

Report Date: Test Code: 07 Nov-18 15:10 (p 1 of 6) 81605 | 14-7271-6203

Fathead Mir	now 7	-d Larval Si	urvival an	d Growth Te	est						Aquatec	Environn	nental, Inc
Analysis ID: Analyzed:		7452-1656 Nov-18 15:0			Survival Rate		vs T	reatments	1 2 41 7 5	S Version: ial Results:	CETISv1.	9.2	
Sample ID: Sample Date Receipt Date Sample Age	e: 22 C		Co Ma So	de: 15- terial: PC urce: Pe	440 TW Effluent rmit # NH010 ene WWTP				Clien Proje		ne WWTP cial Studies		
Data Transf	orm		Alt Hyp						NOEL	LOEL	TOEL	TU	
Angular (Co	rrected)		C > T						100	> 100	n/a	1	
Steel Many-	One R	ank Sum Te	est										
Control	vs	Conc-%		Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)		
Lab Water		12		18	10	1	6	Asymp	0.8333	Non-Signif	icant Effect		
AND MARKET		24		18	10	1	6	Asymp	0.8333	Non-Signif	icant Effect		
		48		18	10	1.	6	Asymp	0.8333	Non-Signif	icant Effect		
		50		18	10	1	6	Asymp	0.8333	Non-Signif	icant Effect		
		100		18	10	4	6	Asymp	0.8333	Non-Signif	icant Effect		
ANOVA Tab	ole												
Source		Sum Squ	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision(a:5%)		
Between	_	0		0		5		65540	<1.0E-37	Significant	Effect		
Error		0		0		18							
Total		0				23							
2d Survival	Rate S	Summary											
Conc-%	.,,	Code	Count	Mean	95% LCL	95%	UCL	Median	Min	Max	Std Err	CV%	%Effect
0		L.	4	1.0000	1.0000	1.000	00	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
12			4	1.0000	1.0000	1.000	00	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
24			4	1.0000	1.0000	1.000	00	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
48			4	1.0000	1.0000	1.000	00	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
50			4	1.0000	1.0000	1.000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
100			4	1.0000	1.0000	1.000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
Angular (C	orrecte	ed) Transfor	med Sum	mary									
Conc-%		Code	Count	Mean	95% LCL	95%	UCL	Median	Min	Max	Std Err	CV%	%Effec
0		L	4	1.412	1.412	1.412	2	1.412	1.412	1.412	0	0.00%	0.00%
12			4	1.412	1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%
24			4	1.412	1.412	1.412	2	1.412	1.412	1.412	0	0.00%	0.00%
48			4	1.412	1.412	1.412	2	1.412	1.412	1.412	0	0.00%	0.00%
50			4	1.412	1.412	1.41	2	1.412	1.412	1.412	0	0.00%	0.00%
100			4	1.412	1.412	1.41	2	1.412	1.412	1.412	0	0.00%	0.00%
2d Surviva	Rate	Detail											
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep	_						
0		L	1.0000	1.0000	1.0000	1.00	00						
12			1.0000	1.0000	1.0000	1.00	00						
24			1.0000	1.0000	1.0000	1.00	00						
48			1.0000	1.0000	1.0000	1.00							
			1.0000	1.0000	1.0000	1.00							
50						1.00							
100			1.0000	1.0000	1.0000	1.00	00						

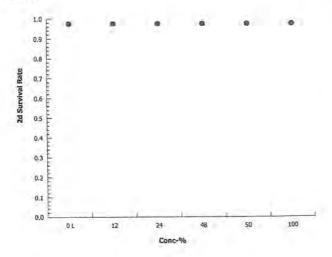
Report Date: Test Code:

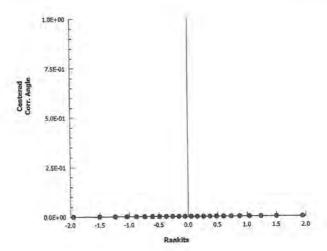
07 Nov-18 15:10 (p 2 of 6)

81605 | 14-7271-6203

Addated Lily II Olillicition, 171		Aquatec	Environmental,	Inc
-----------------------------------	--	---------	----------------	-----

Analysis ID:	01-7452-1656	Endpoint:	2d
Analyzed:	07 Nov-18 15:09	Analysis:	No


d Survival Rate onparametric-Control vs Treatments **CETIS Version:** Official Results: Yes


CETISv1.9.2

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	L	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.412	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1.412	
100		1,412	1.412	1.412	1.412	

Graphics

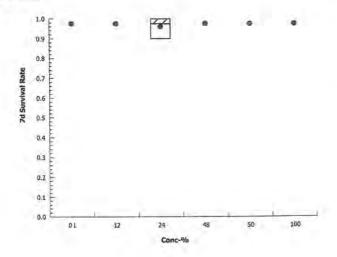
Report Date: Test Code: 07 Nov-18 15:10 (p 3 of 6) 81605 | 14-7271-6203

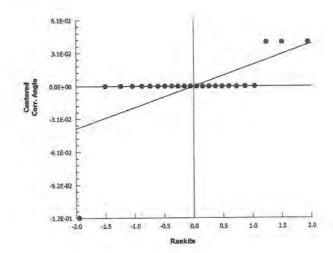
Analyzed: 07 Sample ID: 10-7 Sample Date: 22 0 Receipt Date: 22 0	2980-9698 Nov-18 15: 7643-0565		Endpoint:	7d S					CET	S Version:	Aquatec CETISv1.	Environn	nental, Inc
Analyzed: 07 Sample ID: 10-7 Sample Date: 22 0 Receipt Date: 22 0	Nov-18 15: 7643-0565				Survival Rate	1			CET	S Version:	CETISv1.	9.2	
Sample Date: 22 (Receipt Date: 22 (02-2980-9698 Endpoint: 7d Survival Rate 07 Nov-18 15:09 Analysis: Nonparametric-			Control vs	Treati	ments		ial Results:				
	Sample ID: 10-7643-0565 Sample Date: 22 Oct-18 07:08 Receipt Date: 22 Oct-18 14:30 Sample Age: 34h		Code: 15440 Material: POTW Effluent Source: Permit # NH010079 Station: Keene WWTP			0790 (KEENE NH)			Client: Keene WWTP Project: Special Studies				
Data Transform		Alt Hy	'n						NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)	C>T	F	-					100	> 100	n/a	1	4.57%
Steel Many-One R	ank Sum T	est											
Control vs	Conc-%		Test :	Stat	Critical	Ties D	F P-T	уре	P-Value	Decision(a:5%)		
Lab Water	12		18		10	1 6	Asy	/mp	0.8333	Non-Signif	icant Effect		
	24		16		10	1 6	Asy	mp	0.6105	Non-Signif	icant Effect		
	48		18		10	1 6	Asy	ymp	0.8333	Non-Signif	icant Effect		
	50		18		10	1 6	Asy	ymp	0.8333	Non-Signif	icant Effect		
	100		18		10	1 6	As	ymp	0.8333	Non-Signif	icant Effect		
ANOVA Table									-7-				
Source	Sum Squ	uares	Mean	Squ	are	DF	FS	tat	P-Value	Decision(
Between	0.005533		0.001	1066		5	-1.		0.4457	Non-Signif	icant Effect		
Error	0.019919	15	0.001	1066		18							
Total	0.025452	.7				23							
Distributional Tes	its												
Attribute	Test					Test Star	Cri	tical	P-Value	Decision(a:1%)		
Variances	Levene E	quality o	f Variance	Test		9	4.2	48	2.0E-04	Unequal V			
Variances	Mod Leve	ene Equa	lity of Varia	ance '	Test	1	4.2	48	0.4457	Equal Vari	ances		
Distribution			ormality Te			0.4634	0.8	84	2.5E-08	Non-Norm	al Distribution	on	
7d Survival Rate	Summary												
Conc-%	Code	Count	t Mear	1	95% LCL	95% UCI	. Me	edian	Min	Max	Std Err	CV%	%Effect
0	1 (L)	4	1.000	00	1.0000	1.0000	1.0	0000	1.0000	1.0000	0.0000	0.00%	0.00%
12		4	1.000	00	1.0000	1.0000	1.0	0000	1.0000	1.0000	0.0000	0.00%	0.00%
24		4	0.975	50	0.8954	1.0000	1.0	0000	0.9000	1.0000	0.0250	5.13%	2.50%
48		4	1.000	00	1.0000	1.0000	1.0	0000	1.0000	1.0000	0.0000	0.00%	0.00%
50		4	1.000	00	1.0000	1.0000		0000	1.0000	1.0000	0.0000	0.00%	0.00%
100		4	1.000	00	1.0000	1.0000	1.0	0000	1.0000	1.0000	0.0000	0.00%	0.00%
Angular (Correcte	ed) Transfo	rmed Su	ımmary										
Conc-%	Code	Coun	t Mean	n	95% LCL	95% UC		edian	Min	Max	Std Err	CV%	%Effec
0	L	4	1.412	2	1.412	1,412		112	1.412	1.412	0	0.00%	0.00%
12	-	4	1.412	2	1.412	1.412		112	1.412	1.412	0	0.00%	0.00%
24		4	1.37	1	1.242	1.501		112	1.249	1.412	0.04074	5.94%	2.89%
48		4	1.41	2	1.412	1.412		412	1.412	1.412	0	0.00%	0.00%
50		4	1.41	2	1.412	1.412		412	1.412	1.412	0	0.00%	0.00%
100		4	1.41	2	1.412	1.412	1.4	412	1.412	1.412	0	0.00%	0.00%
7d Survival Rate	Detail												
Conc-%	Code	Rep 1		_	Rep 3	Rep 4							
0	L	1.000			1.0000	1.0000							
12		1.000	0 1.00	00	1.0000	1.0000							
24		1.000	0.90	00	1.0000	1.0000							
47		1.000			1.0000	1.0000							
48 50		1.000	0 1.00	00	1.0000	1.0000							

Report Date: Test Code: 07 Nov-18 15:10 (p 4 of 6) 81605 | 14-7271-6203

lest

Fathead Minnow 7-d Larval Survival and Growth Test


Aquatec Environmental, Inc.


Analysis ID:	02-2980-9698	Endpoint:	7d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	07 Nov-18 15:09	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Angular (Corrected	Transformed Detail
--------------------	--------------------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	- 7/L- 5-	1.412	1.412	1.412	1.412	
12		1.412	1.412	1.412	1.412	
24		1.412	1.249	1.412	1.412	
48		1.412	1.412	1.412	1.412	
50		1.412	1.412	1.412	1,412	
100		1.412	1.412	1.412	1.412	

Graphics

Report Date: Test Code: 07 Nov-18 15:10 (p 5 of 6) 81605 | 14-7271-6203

Aquatec Environmental, Inc. Fathead Minnow 7-d Larval Survival and Growth Test CETISv1.9.2 **CETIS Version:** Mean Dry Biomass-mg Analysis ID: 07-1655-0701 **Endpoint:** Official Results: Yes Parametric-Control vs Treatments Analyzed: 07 Nov-18 15:09 Analysis: Keene WWTP Client: Sample ID: 10-7643-0565 Code: 15440 **POTW Effluent** Project: Special Studies Material: Sample Date: 22 Oct-18 07:08 Permit # NH0100790 (KEENE NH) Receipt Date: 22 Oct-18 14:30 Source: Station: Keene WWTP Sample Age: 34h NOEL LOEL TOEL TU PMSD Alt Hyp **Data Transform** 9.49% 100 > 100 1 n/a C>T Untransformed **Dunnett Multiple Comparison Test** Decision(a:5%) P-Value Test Stat Critical MSD DF P-Type Control Conc-% Non-Significant Effect 0.9975 CDF Lab Water -1.6682,407 0.051 6 12 Non-Significant Effect 6 CDF 0.4194 24 1.006 2.407 0.051 0.9906 Non-Significant Effect CDF -1.2192.407 0.051 6 48 0.9881 Non-Significant Effect 0.051 6 CDF 50 -1.1362.407 Non-Significant Effect 2.407 0.051 6 CDF 0.9997 100 -2.343**ANOVA Table** DF F Stat P-Value Decision(a:5%) Mean Square Sum Squares Source 5 2.908 0.0427 Significant Effect 0.0129834 0.0025967 Between 18 0.0160733 0.000893 Error 23 0.0290567 Total **Distributional Tests** Test Stat Critical P-Value Decision(a:1%) Attribute 0.0237 **Equal Variances** 12.97 15.09 Variances Bartlett Equality of Variance Test Normal Distribution 0.9675 0.884 0.6057 Shapiro-Wilk W Normality Test Distribution Mean Dry Biomass-mg Summary CV% %Effect Min Max Std Err 95% UCL Median 95% LCL Conc-% Code Count Mean 1.50% 0.00% 0.547 0.004021 0.5345 0.528 0 4 0.536 0.5232 0.5488 -6.58% 3.59% 0.586 0.01025 0.6039 0.579 0.541 0.5386 4 0.5713 12 3.96% 7.85% 0.464 0.555 0.0202 0.52 0.4504 0.5791 4 0.5147 24 -4.80% 9.50% 0.507 0.61 0.02669 0.565 0.5617 0.4768 0.6467 48 4 -4.48% 3.01% 0.579 0.008426 0.543 0.56 0.5332 0.5868 0.559 50 4 1.77% -9.24% 0.005172 0.594 0.602 0.5875 0.573 0.5855 0.569 100 Mean Dry Biomass-mg Detail Rep 4 Code Rep 3 Rep 2 Conc-% Rep 1 0.533 0.528 0.536 0 0.547 0.581 0.586 12 0.577 0.541 0.555 0.502 0.464 0.538 24 0.525 0.507 0.605 48 0.61

50

100

0.549

0.581

0.543

0.594

0.579

0.573

0.569

0.594

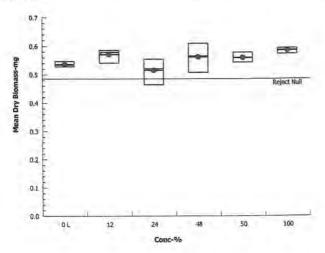
Report Date:

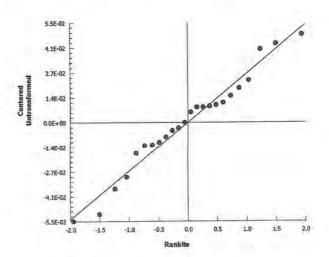
07 Nov-18 15:10 (p 6 of 6) 81605 | 14-7271-6203

Test Code:

81605 | 14-72/1-6203

Fathead Minnow 7-d Larval Survival and Growth


Aquatec Environmental, Inc.


Analysis ID: Analyzed: 07-1655-0701 07 Nov-18 15:09 Endpoint: Me Analysis: Pa

Mean Dry Biomass-mg Parametric-Control vs Treatments CETIS Version: CET Official Results: Yes

CETISv1.9.2

Graphics

Report Date: Test Code/ID: 07 Nov-18 15:08 (p 1 of 1) 14-7271-6203/81605

Fathead Minnow 7-d Larval Survival and Growth Test

Aquatec Environmental, Inc.

Start Date: End Date:

23 Oct-18 16:45 30 Oct-18 12:10 Species: Pimephales promelas

Protocol: EPA/821/R-02-013 (2002)

Sample Code: 15440

Sample Source: Permit # NH0100790

ipie Date:	220	Oct-18 07:08 Material: POTW Effluent						Sample Station: Keene WWTP							
Conc-%	Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Total Weight-mg	Tare Weight-mg	Pan Count	Notes
0	L	1	9	10		10				-	10	26.33	20.86	10	
0	L	2	7	10		10					10	27.73	22.45	10	
0	L	3	2	10		10					10	26.92	21.56	10	
0	L	4	6	10		10					10	26.99	21.66	10	
0	R	1	3	10		10					10	26.73	21.65	10	
0	R	2	23	10		10					10	26.31	21.6	10	
0	R	3	13	10		10					10	26.72	21.39	10	
0	R	4	8	10		10					10	26.1	21.12	10	
12		1	17	10		10					10	28	22.23	10	
12		2	20	10		10					10	26.17	20.76	10	
12		3	21	10		10					10	27.6	21.79	10	
12		4	16	10		10					10	27.69	21.83	10	
24		1	22	10		10		-			10	27.22	21.67	10	
24		2	25	10		10					9	27.3	22.28	9	
24		3	15	10		10				1	10	26.66	22.02	10	
24		4	5	10		10					10	26.34	20.96	10	
48		1	12	10		10					10	27.21	21.11	10	
48		2	27	10		10					10	27.65	21.6	10	
48	1	3	18	10		10					10	26.46	21.21	10	
48		4	10	10		10					10	26.57	21.5	10	
50		1	11	10		10					10	27.13	21.7	10	
50		2	28	10		10					10	27.29	21.5	10	
50		3	26	10		10			1		10	26.56	21.07	10	
50		4	4	10		10					10	26.84	21.15	10	
100	1	1	14	10		10					10	26.16	20.22	10	
100		2	1	10		10					10	27.95	22.22	10	
100		3	24	10		10					10	27.23	21.42	10	
100	1	4	19	10		10					10	27.65	21.71	10	

1000.0 Fathead Minnow, P. promelas, Survival and Growth Test

Species: Pimephales promelas

Reference:

EPA-821-R-02-013

SOP:

WET-A-001

1 The number weighed = the number actually weighed. For statistical purposes, the number weighed = original number of organisms on Day 0.

SDG: 15440

Aquatec Environmental, Inc.,

Project

Reviewed by: _______Date: ____

Fathead Minnow, P. promelas, Survival and Growth Test
Species: Pimephales promelas Reference: EPA-821-R-02-013 SOP: 1000.0

WET-A-001

ent ID:	Keene/L	.ey				Permit No.	NH0100	790	Pipe No.	
ITIAL	CHEMIS	TRY DAT	A:						Test ID	81605
%	Effluent	Analysis	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	_
	0.07	рН	7.5	7.5	7.6	7.60	7.5	7.6	7.5	
	0 %	DO	7.7	8.1	7.9	7.7	7.6	8.1	7.2	
	CTRL	Temp.	25.0	24.7	24.7	24.6	25,8	24.7	25.9	
	CINL	Cond.	178	189	186	188	186	177	18/	_
	0.0/	рН	6.9	7.5	6.8	7.3	7.6	7-1	7.1	
	0 %	DO	7.7	8.1	9.3	8.1	7.8	8.0	7.3	
	RW	Temp.	25.7	25.9	25.3	25,5	24.5	24.9	25.3	
	IXVV	Cond.	46	73	73	73	68	68	67	
	13.0/	рН	7.5	7.5	76	7.60	7.5	7.5	7.6	
	12 %	DO	7.7	7.9	8,0	7.7	7,5	7.9	7.2	
	EFF	Temp.	247	24.60	24,4	24.7	25.6	24.7	25.7	
	FILE	Cond.	256	276	273	277	281	268	274	_
	24.0/	рН	7-6	7.5	7.7	7.6	7.6	7.6	77	
	24 %	DO	7.6	8.1	7.9	7.60	7.60	7.8	7.2	
	EFF	Temp.	34.8	24.7	24,4	24.7	25,5	24.7	25.6	
	LIT	Cond.	337	361	360	365	378	360	370	
	40.0/	рН	7.6	7.4	7.8	7.60	7.60	7.7	7.8	
	48 %	DO	7.6	8.4	7.8	7.8	7.60	7.9	7.2	
	EFF	Temp.	247	24.8	24.6	24.8	25.4	24.8	25.6	
	EFF	Cond.	487	522	529	535	555	538	551	_
	E0.0/	рН	7.6	7.4	7.9	7.60	7.60	7.7	7.8	
	50 %	DO	7.7	8.5	7524	7.7	7.6	7.9	7.3	
	EFF	Temp.	24.7	24.9	of The	24.9	25.3	24.3	25.5	
	CFF	Cond.	502	537	547		569	558	568	
		рН	7.6	7.3	7.9	7.5	7,5	7.8	7.9	
3	L00 %	DO	7.6	9.0	7.7	7.9	7.8	8.0	7.3	
	EFF	Temp.		25.1	25.2	25.2	25.0	25,4	25.9	
	EFF	Cond.	812	869	878	898	924	923	923	
-		Sample #	51157	51157	51167	51167	51171	51171	51171	
		Date	10-23-18	10.24.18	10-25-18	10.26.18	10.27.18	1 1		
		Initials	63	KP	EB	RP	KP	a	EB	

@ Recording error BB 10-25-18

Aquatec Environmental, Inc.
Reviewed by: 47 Date: 11/15/13

SDG: Project 15440 18017

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	10/22/	2018		
SPECIES:	Pimep	hales promelas		
AGE:	N/A			Aleroivel 16-23-18
LIFE STAGE:	Embry	70		RECEIVED 10-23-18 10:00 AM
HATCH DATE:	10/22/	2018		220
BEGAN FEEDING:	N/A			Temp 23.8
FOOD:	N/A			Cond 411
Water Chemistry Record:		Current	Range	PH 7-6
TEMPER	ATURE:	25°C		Conciden Normal Reduce
SALINITY/CONDUC	TIVITY:	44.	- mark	
TOTAL HARDNESS (as	CaCO3):	124 mg/l	, where	Addell Soft water
TOTAL ALKALINITY (as	CaCO3):	90 mg/l		Soft water
	pH:	8.35	ű,	
Comments:				
		-5	2.002	
		541	1	
-		Facility Supervisor		

Aquatic BioSystems, Inc • Quality Research Organisms

Fathead Minnow, P. promelas, Survival and Growth Test 1000.0

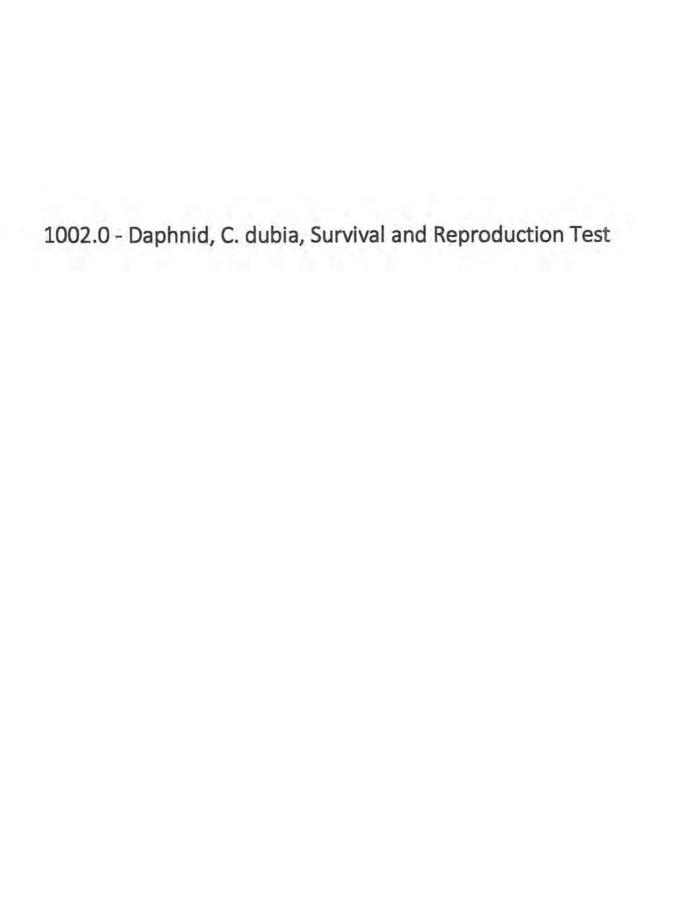
Pimephales promelas Species:

Reference:

EPA-821-R-02-013

SOP:

WET-A-001


Pipe No. 1 Permit No. NH0100790 Client ID: Keene/Ley Test ID 81605

CHEMIST	RY DATA							Test
% Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
2.65	рН	7.4	7.3	7.5	7.3	7.3	7.2	7-2
0 %	DO	7.0	7.3	6.7		M786.	7.2	6.4
SOFT	Temp.	24.9	25.7	24.8	24.8	24.0	25.9	25.8
CTRL	Cond.	192	196	197	197	185	189	179
0.0/	рН	7.0	6.8	6.8	6,8	7.2	6.7	6.7
0 %	DO	6.9	6.7	6.6	6.2	6.3	25.9	63
RW	Temp.	24.7	25.9	25.3	25.0	24.1	25.9	25.8
LVV	Cond.	78	74	760	710	73	73	70
12 0/	рН	7.4	7.2	7.5	7.3	7.2	7-2	7.2
12 %	DO	69	6.7	6,5	6,2	6.3	6.0	66
EFF	Temp.	24.6	22.8	25,4	25.0	23.9	26.0	25.6
EFF	Cond.	274	282	284	287	267	282	268
24.0/	рН	7.4	7.4	7.5	7.3	7.2	7.4	7.3
24 %	DO	6.8	6.4	6.5	6.2	6.3	5.8	6.7
EFF	Temp.	24.7	25.0	25.5	25.0	24.0	25.7	25.7
EFF	Cond.	351	372	370	374	363	378	358
10 0/	рН	7,5	7.5	7.60	7.4	7.3	7.5	7.4
48 %	DO	6,6	7.1	6,4	5.9	6.3	5.8	Gile
EFF	Temp.	24.5	25,3	25,4	25,0	23.9	25.7	25-7
LIT	Cond.	S08	541	541	545	540	560	532
EO 0/	pH	7.60	7.5	7.60	7.5	7.4	7.4	7.5
50 %	DO	6.8	6.7	6.5	6.0	6.3	5.7	6.5
EFF	Temp.	24.6	25.9	25.2	24.9	24.0	25.8	25,3
Lii	Cond.	520	551	\$\$7	564	563	578	550
100.9/	рН	7.60	7.6	7.7	7.7	7.860	7.6	7.6
100 %	DO	6.Le	6.4	6.7	6.2	6.4	5.8	6.5
CCC	Temp.	24.60	25.8	24.9	24.60	24.0	26.0	25,8
EFF	Cond.	821	960	903	925	902	946	899
	Sample #	51157	51157	51167	51167	51171	51171	51171
	Date	10.24.18	10-25-18	10.26.18	10.27.18	00/28/18	16-29-18	10-30-6
	Initials	180	EB	18	Ke	n	EB	EB

Aquatec Environmental, Inc.

SDG: Project

15440 18017

CETIS Summary Report

Report Date: Test Code: 07 Nov-18 15:24 (p 1 of 2) 81606 | 00-0320-8903

Ceriodaphnia	a 7-d Survival a	nd Reprod	uction Te	est					Aquate	c Environm	ental,	Inc.
Batch ID:	16-3767-9415	Te	Test Type: Reproduction-Survival (2-8d)		4)	An	alyst:	Kaitlyn Priest				
Start Date:	23 Oct-18 10:5	5 Pr	otocol:	EPA/821/R-02-	013 (2002)		Dil	uent:	Soft Synthetic V	Vater		
Ending Date:	31 Oct-18 16:5	0 Sp	ecies:	Ceriodaphnia d	ubia		Bri	ine:	Not Applicable			
Duration:	8d 6h	So	ource:	In-House Cultu	re		Ag	e: ·	<24h			
Multiple Com	parison Summ	ary										
Analysis ID	Endpoint		Comp	arison Method			NOEL	LOEL	TOEL	TU	PMS	D/
19-5730-9535	2d Survival Rat	e	100000	Exact/Bonferro			100	> 100	n/a	1	n/a	
	8d Survival Rat	e	Fishe	r Exact/Bonferro	ni-Holm Tes	t	100	> 100	n/a	1	n/a	
19-3461-2593	Reproduction		Steel	Many-One Rank	Sum Test		100	> 100	n/a	1	66.39	%
Point Estima	te Summary			W. Color								
Analysis ID	Endpoint			Estimate Metho			Level	%	95% LCL	95% UCL		1
11-7941-8768	2d Survival Rat	e	Linea	Interpolation (IC	CPIN)		EC5	>100	n/a	n/a	<1	1
							EC10	>100	n/a	n/a	<1	1
							EC15	>100	n/a	n/a	<1	1
							EC20	>100	n/a	n/a	<1	1
							EC25	>100	n/a	n/a	<1	1
							EC40	>100 >100	n/a n/a	n/a n/a	<1	1
01-2160-2005	Reproduction	-	Linas	r Interpolation (IC	POINI		EC50	>100	n/a n/a	n/a n/a	<1	1
0 1-2 100-2005	Reproduction		Linea	interpolation (it	ar (IN)		IC10	>100	n/a	n/a	<1	1
							IC15	>100	n/a	n/a	<1	1
							IC20	>100	n/a	n/a	<1	1
							IC25	>100	n/a	n/a	<1	1
							IC40	>100	n/a	n/a	<1	1
							IC50	>100	n/a	n/a	<1	1
2d Survival F	Rate Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E		CV%	%Eff	_
0	R	10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
0	L	10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
12		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
24		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
48		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
50		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
100		10	1.000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.009	/0
	Rate Summary		2.4	2.017.01			ALC:Y	40.4	ad a		h/ = cc	
Conc-%	Code	Count	Mean		95% UCL	Min	Max	Std E		CV%	%Eff	_
0	R	10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
0	L	10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
12		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
24		10	1.000		1.0000	1.0000	1.0000	0.0000		0.00%	0.009	
48		10	1.000		1.0000	1.0000	1.0000			0.00% 35.14%	10.00	
50 100		10 10	0.900		1.0000	1.0000	1.0000	0.1000		0.00%	0.009	
Reproductio	n Summani	10	1.000	0 1.0000	1.0000	1.0000	1,0000	0.000	0.000	516515	(2).63	
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Eff	fect
0	R	10	16.2	10.07	22.33	4	28	2.711		52.93%	0.00	_
0	Ĺ	10	12.7	8.474	16.93	4	23	1.868		46.52%	21.60	
12		10	13.3	9.225	17.38	6	22	1.802		42.83%	17.90	
24		10	22.4	15.85	28.95	9	38	2.895		40.87%	-38.2	
48		10	31.5	24.76	38.24	9	40	2.979		29.90%	-94.4	4%
		10	28	19.15	36.85	0	40	3.913		44.19%	-72.8	34%
50		10	20	10.10	00.00	-						

Report Date: Test Code: 07 Nov-18 15:25 (p 2 of 2) 81606 | 00-0320-8903

											0 0000
Ceriodaphnia	7-d Survival a		Aquat	ec Environ	mental, Inc.						
2d Survival R	ate Detail			- 5.0							
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	R	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8d Survival Ra	ate Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	R	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Reproduction	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	R	17	23	18	23	23	5	6	28	4	15
0	L	12	15	9	23	13	17	4	17	13	4
12		6	11	20	14	22	6	17	15	15	7
24		14	34	16	21	27	28	19	9	38	18
48		34	29	38	39	25	28	9	38	40	35
50		13	32	35	34	34	34	24	34	0	40
100		33	30	35	35	39	41	37	35	31	39

Report Date: Test Code: 07 Nov-18 15:24 (p 1 of 2) 81606 | 00-0320-8903

Aquatec Environmental, Inc.

Ceriodaphnia	7-d :	Survival	and	Reproduction	Test
--------------	-------	----------	-----	--------------	------

19-5730-9535 Endpoint: 2d Survival Rate CETIS Version: CETISv1.9.2 07 Nov-18 15:24 Analysis: STP 2xK Contingency Tables Official Results: Yes

Sample ID: 10-7643-0565 Code: 15440 Client: Keene WWTP
Sample Date: 22 Oct-18 07:08 Material: POTW Effluent Project: Special Studies

Receipt Date: 22 Oct-18 14:30 Source: Permit # NH0100790 (KEENE NH)

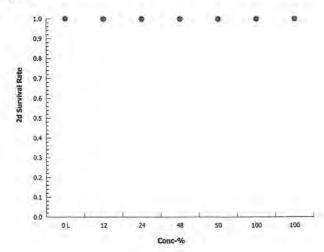
Sample Age: 28h Station: Keene WWTP

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C > T	100	> 100	n/a	1

Fisher Exact/Bonferroni-Holm Test

Control	vs	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	1.0000	Exact	1.0000	Non-Significant Effect
		50	1.0000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect

Data Summary


Analysis ID:

Analyzed:

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		10	0	10	1	0	0.0%	
100		10	0	10	1	0	0.0%	

2d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code:

> 100

100

07 Nov-18 15:24 (p 2 of 2) 81606 | 00-0320-8903

Aquatec Environmental, Inc.

CETISv1.9.2

n/a

Ceriodaphnia 7-d Survival and Reproduction Test	

Analysis ID: 07-3951-8497 Endpoint: 8d Survival Rate CETIS Version: CET Analyzed: 07 Nov-18 15:24 Analysis: STP 2xK Contingency Tables Official Results: Yes

Sample ID: 10-7643-0565 Code: 15440 Client: Keene WWTP
Sample Date: 22 Oct-18 07:08 Material: POTW Effluent Project: Special Studies

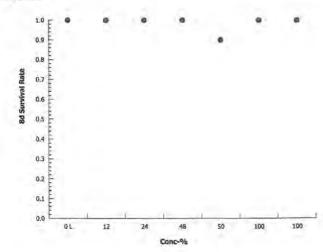
Receipt Date: 22 Oct-18 14:30 Source: Permit # NH0100790 (KEENE NH)
Sample Age: 28h Station: Keene WWTP

C > T

Data Transform Alt Hyp NOEL LOEL TOEL TU

Fisher Exact/Bonferroni-Holm Test

Control	VS	Group	Test Stat	P-Type	P-Value	Decision(a:5%)
Lab Water		12	1.0000	Exact	1.0000	Non-Significant Effect
		24	1.0000	Exact	1.0000	Non-Significant Effect
		48	1.0000	Exact	1.0000	Non-Significant Effect
		50	0.5000	Exact	1.0000	Non-Significant Effect
		100	1.0000	Exact	1.0000	Non-Significant Effect


Data Summary

Untransformed

Conc-%	Code	NR	R	NR+R	Prop NR	Prop R	%Effect	
0	L	10	0	10	1	0	0.0%	
12		10	0	10	1	0	0.0%	
24		10	0	10	1	0	0.0%	
48		10	0	10	1	0	0.0%	
50		9	1	10	0.9	0.1	10.0%	
100		10	0	10	1	0	0.0%	

8d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Report Date: Test Code: 07 Nov-18 15:24 (p 1 of 2) 81606 | 00-0320-8903

1030 0000.	01000 00-0320-0300
	Aquatec Environmental, Inc.

Analysis ID:	11-7941-8768	Endpoint:	2d Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	07 Nov-18 15:24	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Sample ID: 10-7643-0565 Code: 15440 Client: Keene WWTP
Sample Date: 22 Oct-18 07:08 Material: POTW Effluent Project: Special Studies

Resamples

n/a

Receipt Date: 22 Oct-18 14:30 Source: Permit # NH0100790 (KEENE NH)

Seed

<1

Sample Age: 28h Station: Keene WWTP

n/a

Ceriodaphnia 7-d Survival and Reproduction Test

Y Transform

n/a

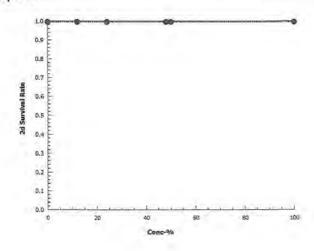
Linear Interpolation Options

X Transform

EC50

Linear		Linear	8660)48	200	Yes	Two-Point Interpolation
Point E	stimates						
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
EC5	>100	n/a	n/a	<1	n/a	n/a	
EC10	>100	n/a	n/a	<1	n/a	n/a	
EC15	>100	n/a	n/a	<1	n/a	n/a	
EC20	>100	n/a	n/a	<1	n/a	n/a	
EC25	>100	n/a	n/a	<1	n/a	n/a	
EC40	>100	n/a	n/a	<1	n/a	n/a	

Exp 95% CL

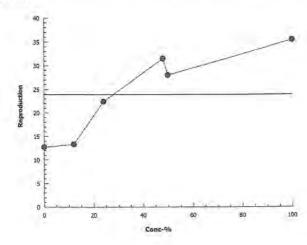

2d Survival R	d Survival Rate Summary				Calc	ulated Varia	ate(A/B)				
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	L	10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
12		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
24		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
48		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
50		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10
100		10	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.0%	10	10

n/a

2d Survival Rate Detail

>100

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	L	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
48		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000



Report Date: Test Code:

07 Nov-18 15:24 (p 2 of 2) 81606 | 00-0320-8903

								10	or ooue.		0100010	0.0020.000
Ceriod	aphnia	7-d Survival an	d Reprodu	uction T	est					Aquate	c Environ	nental, Inc
Analys	is ID:	01-2160-2005	En	dpoint:	Reproduction			CE	TIS Version:	CETISv1	1.9.2	
Analyz	ed:	07 Nov-18 15:2	24 An	alysis:	Linear Interpola	ation (ICPIN)		Off	ficial Results:	Yes		
Sample	e ID:	10-7643-0565	Co	de:	15440			Cli	ent: Kee	ne WWTP		
Sample	e Date:	22 Oct-18 07:08	Ma	terial:	POTW Effluent			Pro	oject: Spe	cial Studies	k)	
Receip	t Date:	22 Oct-18 14:30	So	urce:	Permit # NH01	00790 (KEENE	NH)					
Sample	e Age:	28h	Sta	ation:	Keene WWTP							
Linear	Interpo	lation Options										
X Tran	sform	Y Transform	se Se	ed	Resamples	Exp 95% Cl						
Linear		Linear	13	71373	200	Yes	Two	-Point Inte	rpolation			
Point E	Estimate	es										
Level	%	95% LCL	95% UC	_ TU	95% LCL	95% UCL						
IC5	>100	n/a	n/a	<1	n/a	n/a						
IC10	>100	n/a	n/a	<1	n/a	n/a						
IC15	>100	n/a	n/a	<1	n/a	n/a						
IC20	>100	n/a	n/a	<1	n/a	n/a						
IC25	>100	n/a	n/a	<1	n/a	n/a						
IC40	>100	n/a	n/a	<1	n/a	n/a						
IC50	>100	n/a	n/a	<1	n/a	n/a						
Repro	duction	Summary				Calcu	lated Va	ariate				
Conc-	%	Code	Count	Mean	n Min	Max S	td Err	Std Dev	CV%	%Effect		
0		L	10	12.7	4	23 1	.868	5.908	46.52%	0.0%		
12			10	13.3	6		.802	5.697	42.83%	-4.72%		
24			10	22.4	9		.895	9.155	40.87%	-76.38%		
48			10	31.5	9		.979	9.419	29.90%	-148.0%		
50			10	28	0		.913	12.37	44.19%	-120.5%		
100			10	35.5	30	41 1	.128	3.567	10.05%	-179.5%		
Repro	duction	Detail										
Conc-	%	Code	Rep 1	Rep	2 Rep 3		Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		L	12	15	9		3	17	4	17	13	4
12			6	11	20		2	6	17	15	15	7
24			14	34	16	21 2	7	28	19	9	38	18
48			34	29	38	39 2	5	28	9	38	40	35
50			13	32	35	34 3	4	34	24	34	0	40
400			00	00		05	0	44	27	25	21	30

Graphics

Report Date: Test Code: 07 Nov-18 15:24 (p 1 of 2) 81606 | 00-0320-8903

										168	f Code:		9100010	1-0320-090
Ceriodaphnia	a 7-d	Survival and	d Reprodu	uction Tes	st							Aquate	c Environn	nental, Inc.
Analysis ID:	19-	3461-2593	En	dpoint:	Rep	roduction				CET	IS Version	: CETISv1	.9.2	
Analyzed:	07	Nov-18 15:2	4 An	alysis: I	Non	parametric-	Contro	vs T	reatments	Offi	cial Results	s: Yes		
Sample ID:	10-7	643-0565	Co	de:	154	40				Clie	nt: Ke	ene WWTP		
Sample Date	: 22 (Oct-18 07:08	Ma	terial:	PO	TW Effluent				Pro	ject: Sp	ecial Studies		
Receipt Date	: 22 (Oct-18 14:30	So	urce:	Per	mit # NH010	00790 (KEE	VE NH)		45.00			
Sample Age:	28h		Sta	ation:	Kee	ne WWTP								
Data Transfo	rm		Alt Hyp							NOEL	LOEL	TOEL	TU	PMSD
Untransforme	d		C > T							100	> 100	n/a	1	66.29%
Steel Many-C	ne R	ne Rank Sum Test												
Control	VS	Conc-%		Test St	tat	Critical	Ties	DF	P-Type	P-Value	Decision	ı(a:5%)		
Lab Water		12	109 75 2 18 Asymp 0.9082 Non-Significant Eff					ificant Effect						
		24		137.5		75	1	18	Asymp	1.0000		ificant Effect		
		48		147.5		75	1	18	Asymp	1.0000	Non-Significant Effect			
		50		140		75	1	18	Asymp	1.0000		ificant Effect		
		100		155		75	0	18	Asymp	1.0000	Non-Sign	nificant Effect		
ANOVA Table	е													
Source		Sum Squa	ares	Mean S	Squ	are	DF		F Stat	P-Value	Decision			
Between		4491.8		898.36			5		13.28	<1.0E-37	Significa	nt Effect		
Error		3651.6		67.622	2		54							
Total		8143.4					59							
Distributiona	I Tes	ts												
Attribute		Test					Test		Critical	P-Value	Decision			
Variances		Bartlett Eq	uality of V	ariance Te	est		15.21		15.09	0.0095	23.403.40.40	Variances		
Distribution		Shapiro-W	ilk W Norr	mality Test	t _		0.937	6	0.9459	0.0042	Non-Non	mal Distributi	on	
Reproductio	n Sur	nmary												
Conc-%		Code	Count	Mean		95% LCL	95%	UCL	Median	Min	Max	Std Err	CV%	%Effect
0		L	10	12.7		8.474	16.93		13	4	23	1.868	46.52%	0.00%
12			10	13.3		9.225	17.38		14.5	6	22	1.802	42.83%	-4.72%
24			10	22.4		15.85	28.95		20	9	38	2.895	40.87%	-76.38%
48			10	31.5		24.76	38.24		34.5	9	40	2.979	29.90%	-148.03%
50			10	28		19.15	36.85		34	0	40	3.913	44.19%	-120.47%
100			10	35.5		32.95	38.05	9	35	30	41	1.128	10.05%	-179.53%
Reproductio	n Det	ail												
Conc-%		Code	Rep 1	Rep 2		Rep 3	Rep 4	1	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		L	12	15		9	23		13	17	4	17	13	4
12			6	11		20	14		22	6	17	15	15	7
24			14	34		16	21		27	28	19	9	38	18
48			34	29		38	39		25	28	9	38	40	35
50			13	32		35	34		34	34	24	34	0	40
488			20	EG			00		20	44	27	25	24	20

39

31

35

37

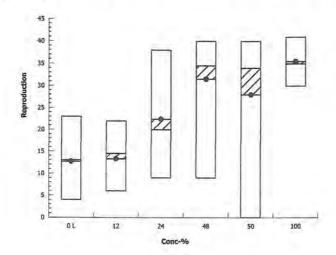
39

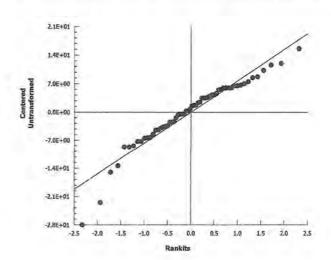
30

33

35

35


41


Report Date: Test Code: 07 Nov-18 15:24 (p 2 of 2) 81606 | 00-0320-8903

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Analysis ID:	19-3461-2593	Endpoint:	Reproduction	CETIS Version:	CETISv1.9.2
Analyzed:	07 Nov-18 15:24	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Report Date:

07 Nov-18 15:23 (p 1 of 2) 00-0320-8903/81606

Test Code/ID:

Ceriodaphnia 7-d Survival and Reproduction Test

Aquatec Environmental, Inc.

Start Date: 23 Oct-18 10:55 Species: Ceriodaphnia dubia

End Date: 31 Oct-18 16:50 Protocol: EPA/821/R-02-013 (2002) Sample Date: 22 Oct-18 07:08 Material: POTW Effluent

Sample Code: 15440 Sample Source: Permit # NH0100790

Sample Station: Keene WWTP

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Notes
0	L	1	21	1	-	1	-	-	-	-		1	-	0	3	9	0	0	0	0	INOTE
0	L	2	59	1		1						1		0	5	10	0	0	0	0	
0	L	3	66	1	-	1						1		0	6	2	1	0	0	0	1
0	L	4	20	1	-	1		-		-		1		0	7	14	2	0	0	0	+-
0	L	5	49	1		1						1		0	6	4	0	0	3	0	1
0	L	6	27	1		1						1		0	5	10	2	0	0	0	1
0	L	7	46	1		1						1		0	4	0	0	0	0	0	1
0	1	8	29	1		1						1		0	6	6	1	0	4	0	-
0	L	9	47	1		1						1		7	0	4	1	1	0	0	+-
0	L	10	45	1		1						1		0	3	0	1	0	0	0	+
0	R	1	12	1		1						1		0	3	13	0	1	0	0	
0	R	2	67	1	-	1	-					1		0	6	14	0	0	3	0	-
0	R	3	60	1	-	1		-	-			1		0	4	10	0	4	0	0	
0	R	4	44	1		1			-			1	-	0	5	12	5	1	0	0	-
0	R	5	23	1		1		-	-			1		0	6	16	1	0	0	0	+-
0	R	6	37	1		1	-	-		_		1	-	0	4	0	1	0	0	0	+
0	R	7	14	1	-	1	-	-	-	-	-	1		0	5	0	0	1	0	0	+
0	R	8	24	1		1	-		-			1		0	5	9	14	0	-	0	+
0	R	9	26	1		1	-	-	-			1	-	0	0	1	1	2	0	0	+
0	R	10	64	1		1	-	-	-			1	-	0	3	0	5	0	7	0	+
12	, rs	1	34	1	-	1		-	-		-	1		0	4	0	0	0	2	0	-
12				1		1	-	-	-	-	-	1	-	0	4	7	0	0	0	0	+
		2	9			-			-	-		1	-	0	6	11	3	0	U	0	+
12		3	68	1		1	-	-		-	-	1		0	5	9	0	0	0	0	+
	-	4	28	1		-			-			1		0	7	9	1	0	5	0	+
12	-	5	1	1		1		-	-			1		0	4	0	2	0	0	0	+
12		6	22	1	-	1	-	-	-			1	-	0	6	11	0	0	0	0	+
	-	7	63	1	-				-		-	1	-	0	7	6	0	0	2	0	+
12		8	30	1	-	1	-	-	-			1	-	5	0	10	0	0	0	0	+
12	-	9	53	1	-	1	-	-	-			1		0	4	0	3	0	0	0	+
12	-	10	5	1	-	1		-	-	-		1		4	0	9	0	1	0	0	+
24	-	1	32	1	-	1	-	-	-				-	6	0	11	16	1	0	0	+
24	1	2	57	1	-	1	-	-	-			1		-		-	6	0	0	0	+
24	-	3	55	1		1	-	-	-	-	-	1	-	0	4	6		0	0	0	+-
24	-	4	38	1	-	1			-			1		0	7	14	12	0	U	0	+
24		5	65	1		1				-		1	-	0	6	-	12	0		0	-
24	-	6	42	1	-	1			-			1	-	6	0	10	12	_	2	-	-
24		7	62	1	-	1						1	-	5	0	12	0	0	2	0	-
24		8	50	1		1			-			1	-	0	4	4	1	0	0	0	-
24	-	9	69	1	-	1		-	-			1		5	0	14	19	^	_	0	+
24		10	61	1		1						1	-	0	3	0	15	0	0	0	+-
48		1	56	1		1			-			1		6	0	10	18		0	0	-
48		2	19	1		1						1		5	0	9	15		0	0	-
48		3	4	1		1						1	-	6	0	12	20			0	+
48		4	3	1		1						1		7	0	14	18	0		0	-
48		5	18	1		1						1		3	0	11	11	0		0	

008-615-283-3

CETIS™ v1.9.2.4

Analyst: QA: 11/10/13

CETIS Test Data Worksheet

Report Date: Test Code/ID: 07 Nov-18 15:24 (p 2 of 2) 00-0320-8903/81606

Conc-%	Code	Rep	Pos	# Exposed	1d Surv	2d Surv	3d Surv	4d Surv	5d Surv	6d Surv	7d Surv	8d Surv	2d Neo	3d Neo	4d Neo	5d Neo	6d Neo	7d Neo	8d Neo	Male	Notes
48		6	43	1		1						1		0	7	13	8	0		0	
48		7	39	1		1						1		6	0	0	0	3	0	0	
48		8	48	1		1						1		0	7	14	17	0		0	
48		9	13	1		1						1		6	0	13	21		0	0	
48		10	40	1		1						1		5	0	13	17		0	0	
50		1	8	1		1						1		5	0	8	0	0	0	0	
50		2	52	1		1						1		6	0	10	16		0	0	
50		3	7	1		1						1		0	6	13	16	0		0	1
50	-	4	6	1		1						1		6	0	12	16		0	0	
50		5	17	1		1						1		0	5	11	18		0	0	
50		6	33	1		1						1		0	6	15	13	0		0	
50		7	35	1		1						1		0	5	12	7	0		0	
50		8	15	1		1						1		6	0	14	1	0	13	0	
50		9	58	1		1						0		0	0	0	0	0	0	0	
50		10	11	1		1						1		6	0	12	22		0	0	
100		1	36	1		1			-			1	-	5	0	10	18		0	0	
100		2	51	1		1						1		5	0	10	15		0	0	
100		3	54	1		1						1		0	6	14	15	0		0	
100		4	25	1		1						1		6	0	11	18		0	0	
100		5	41	1		1						1		8	0	14	17		0	0	
100	12	6	10	1		1						1		7	0	15	19			0	
100		7	16	1		1				-		1		7	0	13	16	1		0	
100		8	70	1		1						1		5	0	11	19			0	
100		9	2	1		1						1		5	0	13	13		0	0	
100		10	31	1		1						1		6	0	12	21		0	0	

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID: Ke	ene/Ley					Permit No	. NH010	0790	Pipe	No. 1
гохісіту т			100		1.77	25.N		D	Test	
% Effluent	Rep.	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	DAY B
	1	0	0	0	0	3	9	0	0	0000
/	2	0	0	0	0	<u>3</u> 5	10	0	0	Š
Du	3	0	0	0	0	7	2	1	0	8
0.0/	4	0	0	0	0	7	14	2	0	
0 %	5	0	0	0	0	10	4	0	0	3
SOFT	6	0	0	0	0	5	10	2	00	0
CTRL	7	0	0	0	0	5	0	0		0
		0	0	0	0	6	6	1	0	4
	8	0	0	0	7	0	4	j	1	0
	9		O	0	0	3	0	1	0	0
	10	0						-		0
	1	0	0	6	0	3	13	0	L	3
	2	0	0	0	0	4	14	0	0	
	3	0	0	0	0	4	10	5	4	0
0 %	4	0	0	0	0	5	12	3	1	Q
0 70	5	0	0	0	0	94	16		0	8
5111	6	0	0	0	0	4	0	i,	0	
RW	7	0	0	0	0	5	0	0	1	0
	8	0	0	0	0	5	9	14	0	20
	9	0	0	0	0	0	1	1	2	9
	10	0	0	0	0	3	0	5	0	
	1	0	0	0	0	4	0	0	0	a
	2	0	0	0	0	4	7	6	0	0
		0	0	0	0	10	11	3	0	
420/	3	0	0	O	0	57	9	0	0	0
12 %		0	0	0	0	7	9	1	0	500
	5	0	0		O	4	Ó	2	0	8
EFF	6	0	0	8	0	6	11	0	0	Ö
	7		0	0		7	6	0	0	2
	8	0			5	0	16	0	0	8
	9	0	0	8	0	4	0	3	0	0
	10	0			13					*
	1	0	0	0	7	00	9	0	i i	0
	2	0	0	0	6	0	11	16	0	0
	3	0	0	0	0	4	6	6	I I I I I I I I I I I I I I I I I I I	- Q
24 %	4	0	0	0	0	'+	14	0	0	Q
27 /0	5	0	0	0	0	0	9	12	0	100
	5 6	0	0	0	0 6 5	0	14 9 10 12	12	0	2
EFF	7	0	0	0	5	0	12	0	0	2
		0	0	0	0	4	14	1	0	0
	8	0	0	0	5	0	14	19	2	7
	10	0	0	0	0	4 0 3	0	15	0	70000
	10									

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species: Ceriodaphnia dubia Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Rep.	Day 0	Day 1	4.04					Test	ID 81606
			Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
	0	0	0	6	0	10	18	3	0
	0	0	0	5	0	9	15	16	0_
3	0	0	0	6	0	12	20	18	3
4	0	0	0	7	0	14	18		4
5	0	0	0	3	7	11	- 11	0	26_
	0	0	0	0		13	P	0	6
7	0	0		le	0			3	9
8	0	0					1.0	-	16
9	0	0		6	0	13			
10	0	0	0	5	0	13	11		0
1	0	0	0	5	0	8	0	0	0
	0		0	6		10	160		0
	0	0	0	0	6	13	16	0	17
4	0	0	0	6		12	16		0
	0	0	0	0			18		0
	0	0	0		(0	15	13		2
7	0	0	0						00
8	0	0	0		0	14		0	12
9	0	0	0	0/4					-
10	0	0	0	0	0	12	02		0
1	0	0	0	5	0	10	18		0
	0	0	0	5		10			-0-
	0	0	0	0					13
4	0	0	0	6			18		2
5	0			8					2
6	0			7	0				19
7	0			1+			160		131
8	0			5					-0
9								16	~
10	0	0							0
Sample #	51157	51157	51167	51167	51171	51171	51171	51171-	
Fed	V	/	/	1	/	/	V	4	_
	10-23-18	10.24.18	10-25-18	10.26.18	10.27.18	10/28/3	10-29-18	10/30/18	10/31/18
	10155		1235		and the second s	13:06	17:30	16315	16.50
	8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 5 6 7 8 9	7 0 8 0 9 0 10 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 7 7 9 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 7 14 17 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10/30/18 - 100 MK Sel /407 14103 each CUP.

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species: Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID:	Keene/Ley					Permit No.	NH010	0790	Pipe	No. 1
	TEST DA	TA.							Test	ID 81606
% Effluent		Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	DAS B
	1	0	0	0	0	3	9	0	0	8
Section 1	2	0	0	0	0	5	10	0	0	X
Du	3	0	0	0	0	6	2	1	. 0	8
0.0/	3	0	0	0	0	7	14	2	0	
0 %	4	0	0	0	0		4	0	0	3
SOFT	5	0	0	0	0	5	10	20		0
CTRL	6		0		0	4	0_	0(1)	8	0
01111	/	0	0	0	0	6	6	1	0	1
	8	0	0		7	0	4	81		0
	9	0	0	0	0	3	0	1	0	0
	10	0	U							0
	1	0	0	0	0	3	13	0	L	3
	2	0	0	0	0	60	14	0	0	~
	3	0	0	0	0	4	10	0	4	2
0%	4	0	0	0	0	5	12	(5-	1)	_ 0
0 70	5	0	0	0	0	6	16		0	20
	6	0	0	0	0	4	0	6	0	00
RW	7	0	0	0	0	5	0	0	1	1
	8	0	0	0	0	5	9	14	0	(20)
	9	0	0	0	0	0	1	1	2	_ 0
	10	0	0	0	0	3	0	5	0	†
	10	-					-	0	0	2
	1	0	D	Ŏ	_ 0	7	0		0	0.
	2	0	0	0	0		1	0	0	De
	3	0	0	C		Co	11	3	0	4
12 %	4	0	0	0	0	577	7	-0	0	E
alle film 70	5	0	0	0	0	+	9		0	8
FFF	6	0	0	0	0		0	2	0	-8
EFF	7	0	- 0	Q	0	6	11	0	0	- 0
	8	0	0	0	0	7	6	0	0	- 8
	9	0	0	2	5	0	10		0	0
	10	0	0	U	0	4	0	3		
	1	0	0	0	H	0	9	0	-	0
	1 2	0	0	0	6	0	11	06)	0
	3	0	0	O	0	4	6	6	U	0 .
0401	2	0	00	0	0	4	14	0	0	0
24 %	4		0	0		10	9	12	0	(le) 0
	5	0	0	-0	10	0	10	12	0	(0)-6
EFF	6	0	0	0	5	0	12	0	0 0	2
-11	7	0	0	0	O	9	4	1	20	- ane
	8	0	0	1	0 30 5	0	10 12 4	19	(2)	(4)
	9	0	00	1 %	0	3	0	15	0	0
	10	0	C							

O Circled #5 of neoneres were viewed as split broods

(2) Circled with flag neoneres were fourth broods excluded from dere telulations and analysis. (20)

0 = Original organism surviving, No young; D = Original organism dead; # = Number young released; * = Lab-induced mortality

15440

Aquatec Environmental, Inc.
Reviewed by: Date: 11/10/18

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

0 = Original organism surviving, No young; D = Original organism dead; # = Number young released; * = Lab-induced mortality

Aquatec Environmental, Inc.

Reviewed by: _____ Date: 11/10/13

Project

1002.0 Daphnid, C. dubia, Survival and Reproduction Test

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Permit No. NH0100790 Pipe No. Client ID: Keene/Ley 81606 Test ID **INITIAL CHEMISTRY DATA:** Day 6 Day 7 % Effluent **Analysis** Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 7.4 pH Cug 0 % DO SOFT 25.3 Temp. **CTRL** 178 Cond. 6.9 pH 0% 7.3 DO 24.9 Temp. RW 66 Cond. pH 12 % 7.3 DO 25-1 Temp. **EFF** 269 Cond. 7.6 pH 24 % DO Temp. **EFF** Cond. рН 48 % DO Temp. **EFF** Cond. pH 50 % DO Temp. **EFF** Cond. pH 100 % DO Temp. **EFF** Cond. 51171 Sample # 51157 51157 10-30-18 Date EB Initials

> Aquatec Environmental, Inc. Date: 11/10/18. Reviewed by:

SDG: Project

Daphnid, C. dubia, Survival and Reproduction Test 1002.0

Species:

Ceriodaphnia dubia

Reference:

EPA-821-R-02-013

SOP:

WET-A-002

Client ID:	Keene/Le	ev			- 1	Permit No.	NH0100	790	Pipe N	0, 1	
FINAL CI		RY DATA:							Test II	0 8	31606
	Effluent	Analysis	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	V.	Day 8
1	0.0/	рН	7.5	7.6	7.5	7.6	7.3	7.3	7,20	7-2	7.2
DW <	0%	DO	7.8	7.4	7.5	7.60	7.7	7.1	6.4	7.0	+17
-	CTDI	Temp.	24.1	25.5	25.1	25.0	24.3	25.8	25.8	23.3	26.0
	CTRL	Cond.	194	196	194	197	186	190	179	189	199
	2.01	рН	7.0	7.1	7.2	7.1	7.0	6.9	67	6-8	6.9
	0 %	DO	7.8	7.4	7.4	7.4	7.7	7.0	63	7.0	+4
	214/	Temp.	24.2	25.6	25.3	25.3	24-6	25.9	25.8	23.5	-96.1
	RW	Cond.	82	76	79	79	82	76	70	81	80
		рН	7.4	7.6	7.60	7.60	7.3	7.4	7.2	7.1	7.2
3	12 %	DO	7.8	7.6	7.5	7.3	7.7	7.1	66	7.0	7.5
		Temp.	24.3	25.6	25,3	25,4	24-6	25.9	25.6	23.8	26,2
	EFF	Cond.	273	281	278	282	269	279	268	255	291
_		рН	7.60	7.7	7.7	7.7	7.5	7.5	7-3	7.4	7.3
	24 %	DO	7.7	7.5	7.5	7.4	7.7	7.1	6.7	7.1	1.5
		Temp.	24.3	25,6	25.4	25.5	24.6	25,8	25.7	24.0	
	EFF	Cond.	354	362	368	369	358	371	358	364	384
-	22.30	рН	7.7	7.8	7.8	7.8	7.6	7.7	7.4	7.5	7.5
	48 %	DO	7.7	76	7.4	7.4	7.7	7.1	4.6	6.9	
		Temp.	24.3	25.6	25.3	25.5	24-6	25.7	25.7	24.2	
	EFF	Cond.	508	522	527	533	527	556	532	534	5 lele
_	2. 43	рН	7.7	7.8	7.8	7.8	7.8	7.7	7.5	7.6	7.5
	50 %	DO	7.7	7.6	7.5	7.3	7.7	7.1	4.5	7.0	73
		Temp.	24.3	256	25,3	25,4	24.4	25.9	25.3	24.2	-1
	EFF	Cond.	521	535	539	542	544	567	650	544	
1	074 A 4 9	рН	7.8	7.9	7.9	8.0	7.9	7.9	7.6	78	7.7
1	100 %	DO	7.7	7-4	7.5	7.4	7.8	7.2	6.5	7.1	7.3
		Temp.	24.2	25.6	25.3	25.1	24.5	25,8	25.8	24.	2260
	EFF	Cond.	837	859	873	881	868	935	899	898	948
_		Sample #	51157	51157	51167	51167	51171	51171-	**		10
		Date	10.24.18	10.25.18	10.26.18	1.20.1372.70	10/23/18	51171-	10.30-18	10/30	1 1431
		Initials	Ke	EB	R	160	ou	EB	ES.	100	ICA M

(1) Recording error, Pp Find chem data recorded on Col sheet. Transcribed Pp data on correct sheet EB 10-30-15

Aquatec Environmental, Inc.

SDG: Project

Documentation of Collection

Species:	Ceriodaphnia dubia	Client/Project:	Werns
Source:		Cheff(Project:	KEENE
Source.	In-House Cultures	Testing Date:	10/23/18

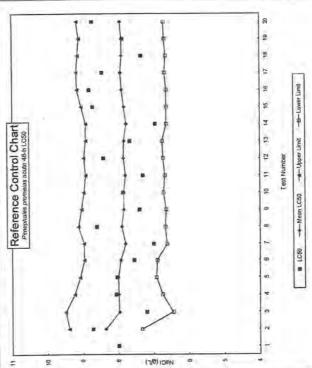
Acclimation/Holding Procedures: Transfer culture cups collected within 8-hour intervals to the top of the brood board, group each collection by collection time or Collect neonates into a small Carolina bowl of <24-hour pooled neonates. Acclimate/Hold at appropriate testing temperature.

Feeding: Feed 200µL 1:1 Mix of Pseudokirschneriella subcapitata formally Selenastrum capricornutum (Lot #: 10101分型) and YTC (Lot #: 10101分型) to each culture cup or ~3mL 1:1 Mix to a small Carolina bowl of pooled neonates.

Culture ID	Date / Time / Init Cleared of Neonates	Date / Time / Init Neonate Collection	Number of Cups Collected*	Fed (√)
101418-cd 101518-cd	10-22-18/11:30/EB	10/22/18 18:35	14	, ,
101518-cd	10-22-18/11:US/EB	10/22/18 18:200	(20)	V
				1 11

^{*} Neonates collected must number at least eight per cup, and be from a healthy adult female

Aquatec Environmental, Inc.


DAPHNID COLLECTION FORM

D 11/10/18

Standard Reference Toxicant Control Chart(s)

Pimephales promelas acute survival LC50 Control Chart Reference toxicant: sodium chloride (g/L)

Test	Test	LC50	Mean	Calculat	Calculated limits	
Number	Date	(a/L)	LC50	Upper	Lower	Source
-	10/19-21/2016	7.994		4 14		Aquatic Biosystems
2	11/29/16-12/1/16	8.722	8.36	9.39	7.33	Aquatic Biosystems
6	1/10/17-1/12/17	7.204	7.97	9.49	6.45	Aquatic Biosystems
V	2/7/17-2/9/17	8.071	8.00	9.24	6.75	Aquatic Biosystems
2	3/21/17-3/23/17	8.042	8,01	90.6	6.93	Aquatic Biosystems
49	5/2/17-5/4/17	7.561	7.93	8.96	6.90	Aquatic Biosystems
7	7/12/17-7/14/17	7.005	7.80	8.97	6.63	Aquatic Biosystems
8	8/8/17-8/10/17	8.61	7.90	9,13	6.67	Aquatic Biosystems
o	9/12/17-9/14/14	7,403	7.85	90.0	6.65	Aquatic Biosystems
10	10/24/17-10/26/17	7.867	7.85	8.98	6.72	Aquatic Biosystems
11	14/7/17-11/9/17	7.31	7.80	8.92	6.68	Aquatic Biosystems
12	1/25/18-1/27/18	8.42	7,85	8.98	6.73	Aquatic Biosystems
13	2/6/18-2/8/18	7.678	7.84	8.92	6.76	Aquatic Biosystems
14	3/6/18-3/8/18	6.952	7.77	8.92	6.63	Aquatic Biosystems
15	4/3/18-4/5/18	8.722	7.84	9.04	6.63	Aquatic Biosystems
16	6/5/18-6/7/18	8.819	7.90	9.16	6.64	Aquatic Biosystems
17	7/24/18-7/26/18	8.451	7.93	9.18	6.68	Aquatic Biosystems
18	8/14/18-8/16/18	7.35	7.90	9.14	6.65	Aquatic Biosystems
19	9/11/18-9/13/18	7.87	7.90	9.11	69'9	Aquatic Biosystems
20	10/23/18-10/25/18	8.729	7.94	9.17	6.70	Aquatic Biosystems

Note: Tests through September of 2016 were as Aquatec Biological Sciences, Inc. SRT tests beginning in October of 2016 were as Aquatec Environmental, Inc.

Pimephales promelas chronic IC25 Control Chart based on minnow growth Reference toxicant: sodium chloride (g/L)

Test	Test	IC-25 (a/L)	Mean IC-25	Calculated limits Upper Lowe	d limits	CV of Avg.	CV S	Growth PMSD (%)	Avg. PMSD (%)	Source
	10/19-26/2016	3.04	3.04					18,00	18.00	Aquatic Biosystems
	11/29/16-12/6/16	2.99	3.01	3.08	2.95	10.0	0.01	20.40	19.20	Aquatic Biosystems
1 00	1/10/17-1/17/17	3.09	3.04	3.14	2.94	0.02	0.01	11.20	15.80	Aquatic Biosystems
4	71117-2114117	3.73	3.21	3,91	2.52	0.11	0.04	7.45	14.26	Aquatic Biosystems
140	3/21/17-3/28/17	2.71	3,11	3.86	2.36	0.12	90'0	14.80	14.37	Aquatic Biosystem
0	5/2/14-5/9/17	2.66	3.04	3.80	2.27	0.13	80.0	15.10	14.49	Aquatic Biosystem
1	7112/17-7/19/17	3.55	3.11	3.91	2.31	0.13	80.0	12.80	14.26	Aquatic Biosystem
. 00	8/8/17-8/15/17	2 33	3.01	3,93	2.09	0.15	0.09	only 2 reps	12.48	Aquatic Biosystems
0	71/61/6-71/21/9	3.91	3.11	4.16	2.06	0.17	0.10	19.00	13.21	Aquatic Biosystems
9	10/24/17-10/31/17	3.29	3.13	4.13	2.13	0.16	0.11	22,10	14.10	Aquatic Biosystems
11	11/7/17-11/14/17	3.02	3.12	4.07	2.17	0.15	0.11	27.00	15.27	Aquatic Biosystems
45	1/25/18-2/1/18	3.06	3.11	4.02	2.21	0.15	0.12	15.50	15.29	Aquatic Biosystems
2	2/6/18-2/13/18	3.83	3.18	4.15	2.20	0.15	0.12	14.70	15.24	Aquatic Biosystem
14	3/6/18-3/13/18	3.38	3.19	4.14	2.25	0.15	0.12	19.20	15.53	Aquatic Biosystem
12	4/3/18-4/10/18	3.57	3.22	4.15	2.29	0.14	0.12	13.20	15.37	Aquatic Biosystem:
9	6/5/18-6/12/18	3.72	3.25	4.18	2.31	0.14	0.13	12.80	15.21	Aquatic Biosystem
17	7/24/18-7/31/18	2.99	3.23	4.15	2.32	0.14	0.13	20.80	15.54	Aquatic Biosystems
18	8/14/18-8/21/18	3.76	3.26	4.18	2.34	0.14	0.13	9.11	15.02	Aquatic Biosystems
19	9/11/18-9/18/18	3,88	3.30	4.23	2.36	0.14	0.13	12.60	15.05	Aquatic Biosystems
00	10/23/18-10/30/18	3 23	3 29	4.20	2.38	0.14	0.13	9.04	14.75	Aquatic Biosystems

8 0 19 -B-Lower Link 12 5 42 - Upper Limit Reference Control Chart Test Number 9 - Mean IC-25 ■ IC-26 P# 0,50 000 1,50 1,00 5.00 4.50 4.00 3.50 3.00 2.50 2,00 (1/6) IDEN

Assessment of test precision and sensitivity: They CV of average IC25 values was within the 25th Percentile (0.21) for fathead minnow growth (Table 3-2, EPA 833-R-00-003) indicating high precision (only 25% of labs reported CV's of not more than 0.21). The per-test PMSD values were less than the EPA upper limit of 30% indicating low-to moderate variability (moderate to high sensitivity) for this method. The cumulative average PMSD value of 20 tests (15.0) was near the EPA lower boundary (12.%), indicating high statistical sensitivity for this test method. Updated 9/25/18

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

Avg. PMSD (%)

Avg.

CV of Avg. IC25

Calculated limits

Ceriodaphnia dubia Reference Control Chart for NaCl Chronic Toxicity based on reproduction

0.28 0.028 0.028 0.025 0.025 0.025 0.028 0.029 0.029 0.029

0.33 0.24 0.24 0.24 0.25 0.35 0.35 0.35 0.35 0.35

0.47

4 6 6 6

0.2996

0.47

1.10 1.00 1.00 1.00 1.03 1.03 0.97 0.93 0.90 0.90 0.92

0.4474 0.3857

0.18

0.8601

1,105

1,145

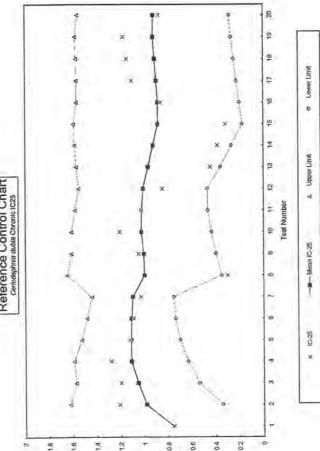
0.20 0.22 0.25 0.27 0.28

0.34 0.53 0.70 0.74 0.78 0.35 0.40

55 53 53 53

1.2 .123 1.03 048 1.208 023 0.85

0.76


(g/L) 0.7583

Test	Test	LCS0	Mean	Calculated limits	d limits	Test	Test
Number	Date	(a/L)	LC50	Upper	Lower	Number	Date
-	11/29/16-12/1/16	2.000	2.00			1	11/29/16-12/5/16
0	1/10/17-1/12/17	1.966	1.98	2.03	1.93	2	1/10/17-1/16/17
1 67	2/14/17-2/16/17	2.098	2.02	2.16	1.88	m	2/14/17-2/22/17
4	3/21/17 3/23/17	2.195	2.08	2.27	1.86	4	3/21/17-3/28/17
10	5/16/17-5/18/17	2,195	2.09	2.30	1.88	20	5/16/17-5/22/17
10	7/11/17-7/13/17	1,414	1.98	2.56	1.39	9	7/11/17-7/13/17
7	8/1/17-8/3/17	1,743	1.94	2.51	1.38	7	8/1/17-8/7/17
00	9/12/17-9/14/17	1.684	1.91	2.46	1,36	œ	9/12/17-9/18/17
0	9/28/17-9/30/17	2,449	1.97	2.60	1.34	o	9/28/17-10/4/17
10	10/31/17-11/2/17	2.319	2.01	2.64	1.37	10	10/31/17-11/6/1
=	11/28/17-11/30/17	2.161	2.05	2.63	1.4.1	11	11/28/17-12/4/1
12	1/9/18-1/11/18	2.077	2.03	2.60	1.45	12	1/9/18-1/16/18
13	2/6/18-2/8/18	1.861	2.01	2.57	1.45	43	2/6/18-2/12/18
14	3/8/18-3/8/18	1.966	2.01	2.55	1.47	14	3/6/18-3/12/18
15	4/3/18-4/5/18	2.577	2,05	2.64	1.45	15	4/3/18-4/10/18
16	5/15/18-5/17/18	2.337	2.07	2.66	1.47	16	5/15/18-5/21/18
17	6/12/18-6/14/18	2.337	2.08	2.67	1.49	17	6/12/18-6/18/18
18	7/24/18-7/26/18	1.966	2.07	2.85	1.50	18	7/24/18-7/30/19
19	8/14/18-8/16/18	2.195	2.08	2.64	1.52	19	8/14/18-8/20/18
06	10/2/18-10/4/18	1.668	2.06	2.64	1.48	20	10/2/18-10/8/18

Organisms Sour

Reference Control Chart

were less than the EPA upper limit of 47% indicating acceptable variability (sensitivity) of test data . The cumulative Assessment of test precision and sensitivity: The comulative average CV of 0.27 for reproduction was near the 50th Percentile (0.27, Table 3-2 of EPA 833-R-00-003) indicating normal (median) variability. The PMSD values average PMSD values were slightly above EPA lower boundary (13%), indicating high-to-moderate statistical sensitivity for this test method when averaged for the most recent 20 tests. Updated 09/02/18.

IqaqelsrtsICd SRT including CV and PMSD

NPDES DRAFT PERMIT COMMENTS

APPENDIX D

VRAP Annual Reports

.....

New Hampshire Volunteer River Assessment Program 2007 Ashuelot River Watershed Water Quality Report

February 2008

New Hampshire Volunteer River Assessment Program 2007 Ashuelot River Watershed Water Quality Report

State of New Hampshire
Department of Environmental Services
Water Division
Watershed Management Bureau
P.O. Box 95
29 Hazen Drive
Concord, New Hampshire 03302-0095
www.des.nh.gov

Thomas S. Burack Commissioner

Harry T. Stewart Water Division Director

Prepared By:

Ted Walsh, VRAP Program Manager

Jen Drociak, VRAP Coordinator

Chelsea Martin, VRAP Assistant

February 2008

Cover Photo: Ashuleot River, 15-ASH, West Swanzey

TABLE OF CONTENTS

1.	INTRODUCTION	4
1.1	Purpose of Report	4
1.2	Report Format	
2.	PROGRAM OVERVIEW	6
2.1	What is VRAP?	6
2.2	Why is VRAP Important?	6
2.3	How Does VRAP Work?	
2.4	Equipment & Sampling Schedule	7
2.5	Training & Technical Support	7
2.6	Data Usage	7
2.7	Quality Assurance & Quality Control	8
3.	METHODS	10
4.	RESULTS & RECOMMENDATIONS	12
4.1	Dissolved Oxygen	12
4.2	pH	18
4.3	Turbidity	23
4.4	Specific Conductance	25
4.5	Water Temperature	29
4.6	Escherichia coli/Bacteria	32
4.7	Total Phosphorus	35

List of Figures and Tables

Figure 1:	Dissolved Oxygen Concentration Statistics13
Figure 2:	Dissolved Oxygen Concentration Statistics (6/28/07 - 7/3/07)15
Figure 3:	Dissolved Oxygen Saturation Statistics (6/28/07 - 7/3/07)
Figure 4:	Dissolved Oxygen Concentration Statistics (9/17/07 - 9/25/07)16
Figure 5:	Dissolved Oxygen Saturation Statistics (9/17/07 - 9/25/07)16
Figure 6:	pH Statistics19
Figure 7:	pH Statistics (6/28/07 – 7/3/07)21
Figure 8:	pH Statistics (9/17/07 – 9/25/07)21
Figure 9:	Turbidity Statistics24
Figure 10:	Specific Conductance Statistics
Figure 11:	Specific Conductance Statistics (6/28/07 - 7/3/07)27
Figure 12:	Specific Conductance Statistics (9/17/07 - 9/25/07)27
Figure 13:	Water Temperature Statistics30
Figure 14:	Water Temperature Statistics (6/28/07 - 7/3/07)31
Figure 15:	Water Temperature Statistics (9/11/07 - 9/25/07)31
Figure 16:	Escherichia coli/Bacteria Statistics33
Figure 17:	Total Phosphorus Statistics
Table 1:	Field Analytical Quality Controls9
Table 2:	Sampling Stations for the Ashuelot River Watershed, 200711
Table 3:	Sampling and Analysis Methods11
Table 4:	Dissolved Oxygen Concentration Data Summary12
Table 5:	pH Data Summary18
Table 6:	Turbidity Data Summary23
Table 7:	Specific Conductance Data Summary25
Table 8:	Water Temperature Data Summary29
Table 9:	Escherichia coli/Bacteria Data Summary32
Table 10:	Escherichia coli/Bacteria Geomean Summary33
Table 11:	Total Phosphorus Data Summary35
	List of Appendices
Appendix A:	2007 Ashuelot River Watershed Water Quality Data
Appendix B:	Interpreting VRAP Water Quality Parameters
	VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audit
	The New Hampshire Surface Water Quality Assessment Process
Appendix E:	Programs, Publications & Links of Interest

ACKNOWLEDGEMENTS

The New Hampshire Department of Environmental Services Volunteer River Assessment Program extends sincere thanks to the volunteers of the Ashuelot River Local Advisory Committee for their efforts during 2007. This report was created solely from the data collected by the volunteers listed below. Their time and dedication is an expression of their genuine concern for local water resources and has significantly contributed to our knowledge of river and stream water quality in New Hampshire.

2007 Ashuelot River Volunteers

Barbara Skuly, Coordinator

Paul Daniello

Pat Eggleston

Penny Eggleston

Jim Holley

Brad Hutchinson

Bob Lamoy

Carolyn MacDonald

Malcom MacDonald

Mike Morrison

Bill Patnode

Barbara Richter

Steve Stepenuck

Ann Sweet

Roger Sweet

Sigrid Scholz-Karabakakis

Bob Thompson

1.0 INTRODUCTION

1.1. Purpose of Report

Each year the New Hampshire Volunteer River Assessment Program (VRAP) prepares and distributes a water quality report for each volunteer river monitoring group that is based solely on the water quality data collected by that group during a specific year. The reports summarize and interpret the data, particularly as they relate to New Hampshire's surface water quality standards, and serve as a teaching tool and guidance document for future monitoring activities by the individual volunteer groups.

1.2. Report Format

Each report includes the following:

■ Volunteer River Assessment Program Overview

This section includes a description of the history of VRAP, the technical support, training and guidance provided by NHDES, and how data is transmitted to the volunteers and used in surface water quality assessments.

Monitoring Program Description

This section provides a description of the volunteer group's monitoring program including monitoring objectives as well as a table and map showing sample station locations.

Results and Recommendations

Water quality data collected during the year are summarized on a parameter-by-parameter basis using: (1) a data summary table, which includes the number of samples collected, data ranges, the number of samples meeting New Hampshire water quality standards, and the number of samples adequate for water quality assessments at each station; (2) a discussion of the data; (3) a river graph showing the range of measured values at each station; and (4) a list of applicable recommendations.

Sample results reported as less than the detection limit were assumed equal to one-half the detection limit on the river graphs. This approach simplifies the understanding of the parameter of interest, and specifically helps one to visualize how the river or watershed is functioning from upstream to downstream. In addition, this format allows the reader to better understand potential pollution areas and target those areas for additional sampling or environmental enhancements. Where applicable, the river graph also shows New Hampshire surface water quality standards or levels of concern for comparison purposes.

Appendix A – Water Quality Data

This appendix includes a spreadsheet detailing the data results and additional information such as data results which do not meet New Hampshire surface water quality standards, and data that is unusable for assessment purposes due to quality control requirements.

Appendix B – Interpreting VRAP Water Quality Parameters

This appendix provides a brief description of water quality parameters typically sampled by VRAP volunteers and their importance, as well as applicable state water quality criteria or levels of concern.

Appendix C – VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audits)

This appendix provides an overview of the VRAP Volunteer Monitor Field Sampling Procedures Assessment (field audit) process with respect to programmatic quality assurance/quality control (QA/QC) guidelines.

Appendix D – The New Hampshire Surface Water Quality Assessment Process

This appendix provides an overview of how data collected by VRAP volunteers, which meets QA/QC criteria, is used in the state assessment process of New Hampshire's rivers and streams.

Appendix E - Programs, Publications, & Links of Interest

This appendix lists NHDES Watershed Management Bureau programs, publications, and links of interest with respect to water quality, chemistry, biology, and watershed protection.

2.0 PROGRAM OVERVIEW

2.1 What is VRAP?

In 1998, the New Hampshire Volunteer River Assessment Program was established to promote awareness and education of the importance of maintaining water quality in New Hampshire's rivers and streams. VRAP aims to educate people about river and stream water quality and ecology and to improve water quality monitoring coverage for the protection of water resources.

Today, VRAP loans water quality monitoring equipment, provides technical support, and facilitates educational programs to volunteer groups on numerous rivers and watersheds throughout the state. VRAP volunteers conduct water quality monitoring on an ongoing basis and increase the amount of river water quality information available to local, state and federal governments, which allows for better watershed planning.

2.2 Why is VRAP Important?

VRAP establishes a regular volunteer-driven water sampling program to assist NHDES in evaluating water quality throughout the state. VRAP empowers volunteers with information about the health of New Hampshire's rivers and streams. Regular collection of water quality data allows for early detection of water quality changes allowing NHDES to trace potential problems to their source. Data collected by VRAP volunteers are directly contributing to New Hampshire's obligations under the Clean Water Act. Measurements taken by volunteers are used in assessing the water quality of New Hampshire's river and streams, and are included in reporting to the US Environmental Protection Agency.

2.3 How Does VRAP Work?

VRAP is a cooperative program between NHDES, river groups, local advisory committees, watershed associations, and individuals working to protect New Hampshire's rivers and streams. Volunteers are trained by VRAP staff in the use of water quality monitoring equipment at an annual training workshop. VRAP works with each group to establish monitoring stations and develop a sampling plan.

During the summer months, VRAP receives water quality data from trained volunteers. The data are reviewed for quality assurance, and are entered into the environmental monitoring database at NHDES. During the off-season, VRAP interprets the data and compiles the results into an annual report for each river. VRAP volunteers can use the data as a means of understanding the details of water quality, as well as guide future sampling efforts. NHDES can use the data for making surface water quality assessments, provided that the data met certain quality assurance/quality control guidelines.

2.4 Equipment and Sampling Schedule

VRAP frequently lends and maintains water quality monitoring equipment kits to VRAP groups throughout the state. The kits contain meters and supplies for routine water quality parameter measurements of turbidity, pH, dissolved oxygen, water temperature and specific conductance (conductivity). Other parameters such as nutrients, metals, and *E. coli* can also be studied, although VRAP does not always provide funds to cover laboratory analysis costs. Thus, VRAP encourages groups to pursue other fundraising activities such as association membership fees, special events, in-kind services (non-monetary contributions from individuals and organizations), and grant writing.

Each year, volunteers design and arrange a sampling schedule in cooperation with VRAP staff. Project designs are created through a review and discussion of existing water quality information, such as known and perceived problem areas or locations of exceptional water quality. The interests, priorities, and resources of the partnership determine monitoring locations, parameters, and frequency. VRAP typically recommends sampling every other week from May through September, and VRAP groups are encouraged to organize a long-term sampling program in order to begin to determine trends in river conditions.

2.5 Training and Technical Support

Each VRAP volunteer attends an annual training workshop to receive a demonstration of monitoring protocols and sampling techniques and the calibration and use of water quality monitoring equipment. During the training, volunteers have an opportunity for hands-on use of the equipment and receive instruction in the collection of samples for laboratory analysis.

VRAP groups conduct sampling according to a prearranged monitoring schedule and VRAP protocols. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols (see Appendix C). If necessary, volunteers are re-trained during the visit, and the group's monitoring coordinator is notified of the result of the verification visit. VRAP groups forward water quality results to NHDES for incorporation into an annual report and state water quality assessment activities.

2.6 Data Usage

Annual Water Quality Reports

Water quality measurements repeated over time create a picture of the fluctuating conditions in rivers and streams and help to determine where improvements, restoration or preservation may benefit the river and the communities it supports. All data collected by volunteers are summarized in water quality reports that are prepared and distributed after the conclusion of the sampling period. VRAP groups can use the reports and data as a means of understanding the details of water quality, guiding future sampling efforts, or determining restoration activities.

New Hampshire Surface Water Quality Assessments

Along with data collected from other water quality programs, specifically the State Ambient River Monitoring Program, applicable volunteer data are used to support periodic NHDES surface water quality assessments. VRAP data are entered into NHDES's environmental monitoring database and are ultimately uploaded to the EPA database. Assessment results and the methodology used to assess surface waters are published by NHDES every two years (i.e., Section 305(b) Water Quality Reports) as required by the federal Clean Water Act. The reader is encouraged to log on to the NHDES web page to review the methodology and assessment list of impaired waters www.des.nh.gov/wmb/swqa/.

2.7 Quality Assurance/Quality Control

In order for VRAP data to be used in the assessment of New Hampshire's surface waters, the data must meet quality control guidelines as outlined in the VRAP Quality Assurance Project Plan (QAPP). The VRAP QAPP was approved by NHDES and reviewed by EPA in the summer of 2003. The QAPP is reviewed annually and is officially updated and approved every five years. The VRAP quality assurance/quality control (QA/QC) measures include a six-step approach to ensuring the accuracy of the equipment and consistency in sampling efforts.

- **Calibration:** Prior to each measurement, the pH and DO meters must be calibrated. Conductivity and turbidity meters are checked against a known standard before the first measurement and after the last one.
- **Replicate Analysis:** A second measurement by each meter is taken from the original sample at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the replicate analysis should be conducted at different stations. Replicates should be measured within 15 minutes of the original measurements.
- **6.0 pH Standard:** A reading of the pH 6.0 buffer is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the 6.0 pH standard check should be conducted at different stations.
- **Zero Oxygen Solution:** A reading of a zero oxygen solution is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the zero oxygen standard check should be conducted at different stations.
- **DI (De-Ionized) Turbidity Blank**: A reading of the DI blank is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the blank check should be conducted at different stations.
- End of the Day Conductivity and Turbidity Meter Check: At the conclusion of each sampling day, the conductivity and turbidity meters are re-checked against a known standard.

2.7.1 Measurement Performance Criteria

Precision is calculated for field and laboratory measurements through measurement replicates (instrumental variability) and is calculated for each sampling day. The use of VRAP data for assessment purposes is contingent on compliance with a parameter-specific relative percent difference (RPD) as derived from equation 1, below. Any data exceeding the limits of the individual measures are disqualified from surface water quality assessments. All data that exceeds the limits defined by the VRAP QAPP are acknowledged in the data tables with an explanation of why the data was unusable. Table 1 shows typical parameters studied under VRAP and the associated quality control procedures.

(Equation 1. Relative Percent Difference)

$$RPD = \frac{|x_1 - x_2|}{\frac{x_1 + x_2}{2}} \times 100 \%$$

where x_1 is the original sample and x_2 is the replicate sample

Table 1. Field Analytical Quality Controls

Water Quality Parameter	QC Check	QC Acceptance Limit	Corrective Action	Person Responsible for Corrective Action	Data Quality Indicator
Temperature	Measurement Replicate	RPD < 10% or Absolute Difference <0.8 C.	Repeat Measurement	Volunteer Monitors	Precision
Dissolved	Measurement Replicate	RPD < 10%	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Oxygen	Known Buffer (Zero O ₂ Sol.)	RPD < 10% or Absolute Difference <0.4 mg/L	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Relative Accuracy
рН	Measurement Replicate	RPD < 10% or Absolute Difference <0.3 pH units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
pii	Known Buffer (pH = 6.0)	± 0.1 std units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Specific	Measurement Replicate	RPD < 10% or Absolute Difference <5µS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Conductance	Method Blank (Zero Air Reading)	± 5.0 μS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Turbidity	Measurement Replicate	RPD < 10% or Absolute Difference <0.5 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Turbidity	Method Blank (DI Water)	± 0.1 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Laboratory Parameters	Measurement Replicate	RPD < 20% or Absolute Difference less than ½ the mean value of the parameter in NHDES's Environmental Monitoring Database	Repeat Measurement	Volunteer Monitors	Precision

3.0 METHODS

In 2001, volunteers from the Ashuelot River Local Advisory Committee began monitoring water quality on the Ashuelot River. The goal of this effort was to provide water quality data from the Ashuelot River relative to surface water quality standards and to allow for the assessment of the river for support of aquatic life and primary contact recreation (swimming). The establishment of a long-term monitoring program allows for an understanding of the river's dynamics, or variations on a station-by-station and year-to-year basis. The data can also serve as a baseline from which to determine any water pollution problems in the river and/or watershed. The Volunteer River Assessment Program has provided field training, equipment, financial assistance for laboratory costs, and technical assistance.

During 2007, trained volunteers from the Ashuelot River Local Advisory Committee monitored water quality at 10 stations on the mainstem of the Ashuelot River from its upper limits in Washington to just upstream of its confluence with the Connecticut River in Hinsdale (Figure 1, Table 2). One station was also monitored on the South Branch of the Ashuelot River in Swanzey. In addition, eight stations in the Ashuelot River watershed were monitored by VRAP staff using submersible dataloggers.

Stations IDs are designated using a three-letter code to identify the waterbody name plus a number indicating the relative position of the station. The higher the station number the more upstream the station is in the watershed. All stations monitored in 2007 are designated as Class B waters. This classification is used to apply the appropriate water quality standard.

Water quality monitoring was conducted monthly from May to September. In-situ measurements of water temperature, air temperature, dissolved oxygen, pH, and specific conductance were taken using handheld meters. Turbidity samples were collected in the field, brought to a central location and measured the same day. Samples for *E.coli* and total phosphorous were taken using sterile and/or preserved bottles and were stored on ice during transport from the field to the NHDES laboratory or the Keene Wastewater Treatment Facility. Table 3 summarizes the parameters measured, laboratory standard methods, and equipment used.

Table 2. Sampling Stations for the Ashuelot River, NHDES VRAP, 2007

Station ID	Location	Town	Elevation*
28-ASH	Route 31	Washington	1600
27-ASH	Mountain Road	Lempster	1500
04-GSB	Grassy Brook at Route 123 Bridge	Marlow	1100
24A-ASH	Route 10	Marlow	1100
01-DTB	Dart Brook at Surry Road	Gilsum	800
23-ASH	Route 10	Gilsum	800
21P-ASH	Gilsum/Surry Road	Surry	600
02-OTB	Otter Brook at Granite Gorge	Roxbury	900
20A-ASH	Stone Arch Bridge	Keene	500
18-ASH	Route 101		
16-ASH	Cresson Bridge	Swanzey	500
16B-ASH	D/S of WWTF, U/S of SBA River	Swanzey	500
02-SBA	Rt 32 Bridge Near Swanzey Schools		
15-ASH	Denman Thompson Bridge	West Swanzey	400
07-ASH	Route 119	Winchester	400
14T-ASH	U/S of Deniman Thompson Highway Bridge	Swanzey	400
01-ASH	147 River Street	Hinsdale	200

^{*}Elevations have been rounded off to 100-foot increments for calibration of dissolved oxygen meter

Table 3. Sampling and Analysis Methods

Parameter	Sample Type	Standard Method	Equipment Used	Laboratory
	In-Situ	SM 2550	YSI 85	
Temperature	Datalogger	SM 2550	In Situ Multiparameter Series Troll 9500	
	In-Situ	SM 4500 O G	YSI 85	
Dissolved Oxygen	Datalogger	SM 2550	In Situ Multiparameter Series Troll 9500	
рН	In-Situ	SM 4500 H+	Oakton pH 11	
Turbidity	In-Situ	EPA 180.1	LaMotte 2020 e	
Specific	In-Situ	SM 2510	YSI 85	
Conductance	Datalogger	SM 2550	In Situ Multiparameter Series Troll 9500	
E.coli	Bottle (Sterile)	EPA 1103.1		NHDES
Total Phosphorus	Bottle (w/ Preservative)	EPA 365.3		NHDES

RESULTS AND RECOMMENDATIONS

Results and recommendations for each monitored parameter are presented in the following sections. For a description of the importance of each parameter and pertinent water quality criteria for these and other parameters, please see Appendix B, "Interpreting VRAP Water Quality Parameters."

4.1 Dissolved Oxygen

Five measurements were taken in the field for dissolved oxygen concentration at 10 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 4). VRAP staff also deployed submersible dataloggers to record dissolved oxygen at eight stations in the Ashuelot River watershed. Of the 59 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for dissolved oxygen includes a minimum concentration of 5.0 mg/L **and** a minimum daily average of 75 percent of saturation. In other words, there are criteria for both concentration and saturation that must be met before the river can be assessed as meeting dissolved oxygen standards. Table 4 reports only dissolved oxygen concentration as more detailed analysis is required to determine if instantaneous dissolved oxygen saturation measurements are above or below water quality standards.

Table 4. Dissolved Oxygen Concentration (mg/L) Summary - Ashuelot River, 2007

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	5	6.43 - 10.42	0	5
27-ASH	5	7.30 - 10.15	0	5
24A-ASH	5	6.28 - 9.98	0	5
23-ASH	5	8.40 - 11.02	0	5
20A-ASH	5	6.41 - 9.52	0	5
18-ASH	5	5.11 - 9.58	0	5
16-ASH	5	5.86 - 9.49	0	5
16B-ASH	1	7.55	0	1
02-SBA	6	5.09-9.92	0	6
15-ASH	6	6.24 - 9.60	0	6
07-ASH	5	7.47 - 9.87	0	5
14T-ASH	1	9.48	0	1
01-ASH	5	8.13 - 10.91	0	5
Total	59		0	59

Dissolved oxygen concentration levels were above the New Hampshire Class B surface water quality standard at all stations and on all occasions with the average ranging from 7.01 mg/L to 9.15 mg/L (Figure 1). Levels of dissolved oxygen sustained above the standards are considered adequate for the support of aquatic life and other desirable water quality conditions.

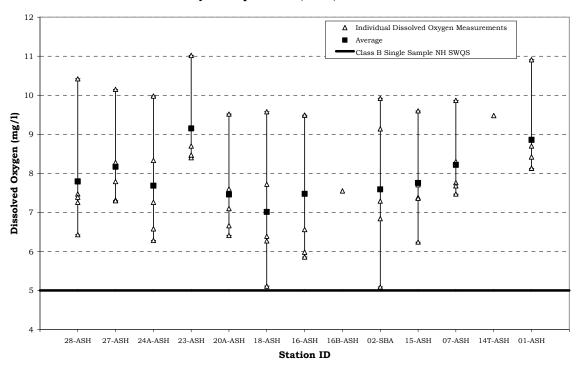


Figure 1. Dissolved Oxygen Concentration Statistics for the Ashuelot River May 19 - September 11, 2007, NHDES VRAP

Figures 2 though 5 illustrate the results of dissolved oxygen concentration and saturation levels obtained at six stations in the Ashuelot River watershed using submersible multiparameter dataloggers deployed on two separate occasions. On each occasion, the meters were programmed to take dissolved oxygen readings every 15 minutes over a multiple day period. In general the daily minimum is used to determine if the waterbodies are meeting the surface water quality standard for dissolved oxygen concentration (mg/L) and the 24 hour average is analyzed for % saturation of dissovled oxygen.

During the first deployment (June 28 through July 3) three dataloggers were deployed in the mainstem of the Ashuelot River (16B-ASH, 15-ASH, and 14T-ASH) and one in the South Branch of the Ashuelot River (02-SBA). During the deployment four full 24-hour periods were measured. Stations 15-ASH and 14T-ASH were measured to gather baseline data upstream and downstream of the Homestead Woolen Mills Dam which is currently under consideration for removal. The datalogger deployed at station 16B-ASH failed post deployment QA/QC checks and is not included in the graphs.

Dissolved oxygen concentration levels were above the Class B surface water quality standard of 5.0 mg/L at all three stations on all occasions (Figure 2). The daily average of dissolved oxygen % saturation was also above the Class B surface water quality standard of 75% at all three stations on all days (Figure 3).

During the second deployment (September 17 through September 25) one datalogger was deployed in the mainstem of the Ashuelot River (21P-ASH) and three in tributaries of the Ashuelot River: Grassy Brook (04-GSB, Dart Brook (01-DTB and Otter Brook (02-OTB). This deployment was conducted to help identify river segments and tributaries with very high water quality. Seven full 24-hour periods were measured. The datalogger deployed in Grassy Brook (02-GSB) failed post deployment QA/QC checks and is not included in the graphs.

Dissolved oxygen concentration levels were above the Class B surface water quality standard of 5.0 mg/L at all three stations on all occasions (Figure 4). The daily average of dissolved oxygen % saturation was also above the Class B surface water quality standard of 75% at all three stations on all days (Figure 5).

Figures 2 through 5 also depict the typical cyclical variations in dissolved oxygen measurements one would expect to see during a 24-hour period in the summer. In general, dissolved oxygen levels are lowest in the early morning when there is low photosynthetic activity and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Peak dissolved oxygen levels occur when photosynthetic activity is at its peak. The greater the amount of photosynthetic activity the greater the production of oxygen as a byproduct of photosynthesis.

Figure 2. Dissolved Oxygen Concentration Statistics for Ashuelot River Watershed
June 28 - July 3 2007, NHDES VRAP

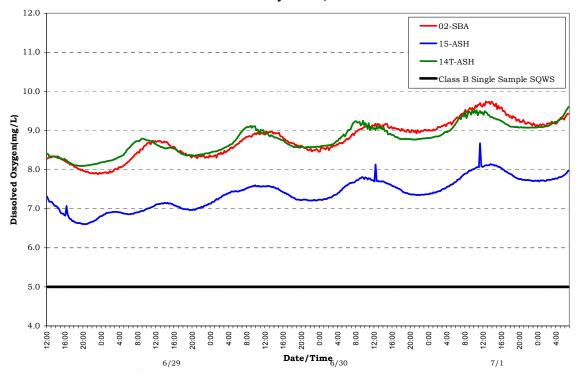


Figure 3. Dissolved Oxygen Saturation Statistics for the Ashuelot River Watershed
June 28- July 3 2007, NHDES VRAP

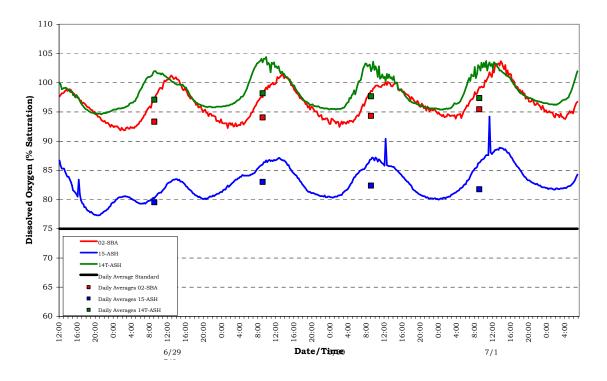


Figure 4. Dissolved Oxygen Concentration Statistics for the Ashuelot River Watershed September 17-25, 2007, NHDES VRAP

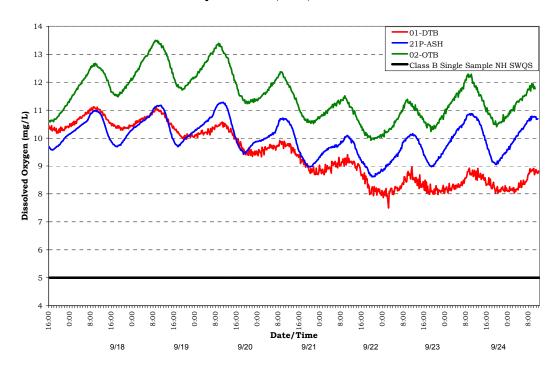
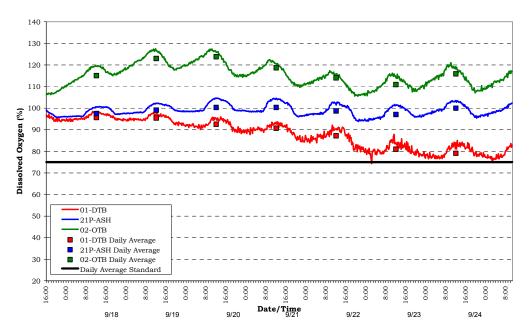



Figure 5. Dissolved Oxygen Saturation Statistics for the Ashuelot River Watershed September 17-25, 2007, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- If possible, take measurements between 5 a.m. and 10 a.m., which is when dissolved oxygen is usually the lowest, and between 2 p.m. and 7 p.m. when dissolved oxygen is usually the highest. In general, dissolved oxygen levels are lowest in the early morning when there is low photosynthetic activity and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Peak dissolved oxygen levels occur when photosynthetic activity is at its peak. The greater the amount of photosynthetic activity the greater the production of oxygen as a byproduct of photosynthesis.
- Continue to incorporate the use of in-situ dataloggers to automatically record dissolved oxygen saturation levels during a period of several days. The use of these instruments is dependent upon availability, and requires coordination with NHDES.

4.2 pH

Between one and five measurements were taken in the field for pH at 13 stations in the Ashuelot River watershed from Washington to Hinsdale. VRAP staff also deployed submersible dataloggers to record pH at eight stations in the Ashuelot River watershed [Table 5]. Of the 59 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard is 6.5 - 8.0, unless naturally occurring.

Table 5. pH Data Summary - Ashuelot River, 2007

Station ID	Samples Collected	Data Range (standard units)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	5	4.91 - 5.54	5	5
27-ASH	5	4.75 - 5.61	5	5
24A-ASH	5	4.95 - 5.39	5	5
23-ASH	5	5.42 - 6.02	5	5
20A-ASH	5	5.59 - 5.9	5	5
18-ASH	5	5.58 - 5.87	5	5
16-ASH	5	5.60 - 5.94	5	5
16B-ASH	1	6.48	1	1
02-SBA	6	5.52 - 6.17	6	6
15-ASH	6	5.77 - 6.65	5	6
07-ASH	5	5.96 - 6.85	3	5
14T-ASH	1	6.48	1	1
01-ASH	5	6.17 - 7.28	2	5
Total	59		53	59

A majority of the pH measurements were below the New Hampshire surface water quality standard minimum (Figure 6). In general, stations in the upper portions of the watershed had lower pH measurements than stations in the lower portions of the watershed.

Lower pH measurements are likely the result of natural conditions such as the soils, geology, or the presence of wetlands in the area. Rain and snow falling in New Hampshire is relatively acidic, which can also affect pH levels; after the spring melt or significant rain events, surface waters will generally have a lower pH.

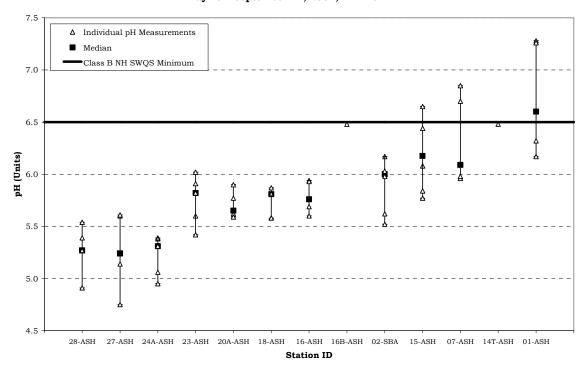


Figure 6. pH Statistics for the Ashuelot River May 19 - September 11, 2007, NHDES VRAP

Figures 7 and 8 illustrate the results of pH measurements obtained at seven stations in the Ashuelot River watershed using submersible multiparameter dataloggers deployed on two separate occasions. On each occasion, the meters were programmed to take pH measurements every 15 minutes over a multiple day period. In general the daily minimum is used to determine if the waterbodies are meeting the surface water quality standard for pH.

During the first deployment (June 28 through July 3) three dataloggers were deployed in the mainstem of the Ashuelot River (16B-ASH, 15-ASH, and 14T-ASH) and one in the South Branch of the Ashuelot River (02-SBA). pH measurements at station15-ASH were below the minimum standard on all occasions. Stations 16B-ASH and 14-ASH had daily minimums below the minimum standard on all days that were measured though both stations did have some pH readings that were above the minimum standard. The datalogger deployed in the South Branch Ashuelot River (02-SBA) failed post deployment QA/QC checks and is not included in the graphs (Figure 7).

During the second deployment (September 17 through September 25) one datalogger was deployed in the mainstem of the Ashuelot River (21P-ASH) and three in tributaries of the Ashuelot River: Grassy Brook (04-GSB, Dart Brook (01-DTB and Otter Brook (02-OTB). This deployment was done to help identify river segments and tributaries with very high water quality. Seven full 24-hour periods were measured. pH measurements from stations 21P-ASH and 01-DTB met the state of New Hampshire surface water quality standard on all occasions while measurements from station 02-OTB were both above and below the standard with daily variations. Station 04-GRB failed to meet the standard on all occasions (Figure 8).

Figures 7 and 8 also depicts the typical cyclical variations in pH measurements one would expect to see during a 24-hour period in the summer. In general, pH levels are lowest (more acidic) in the early morning when there is low photosynthetic activity, low dissolved oxygen levels, and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Higher (more basic/alkaline) pH levels occur when photosynthetic activity is at its peak.

Figure 7. pH statistics for the Ashuelot River Watershed June 28- July 3, 2007, NHDES VRAP

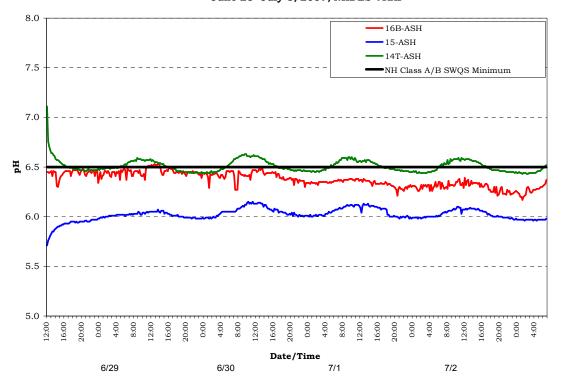
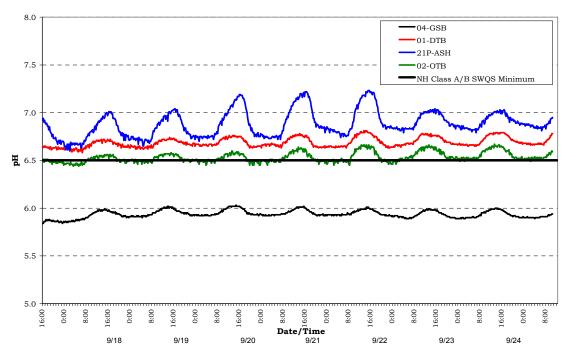



Figure 8. pH Statistics for the Ashuelot River Watershed September 17-25, 2007, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider sampling for pH in some of the tributaries and wetland areas that are influencing the pH of stations with measurements below state standards. Site conditions are considered along with pH measurements because of the narrative portion of the pH standard. RSA 485-A:8 states that pH of Class B waters shall be between 6.5 and 8.0, except when due to natural causes. Wetlands can lower the pH of a river naturally by releasing tannic and humic acids from decaying plant material. If the sampling location is influenced by wetlands or other natural conditions, then the low pH measurements are not considered a violation of water quality standards. It is important to note that the New Hampshire water quality standard for pH is fairly conservative, thus pH levels slightly below the standard are not necessarily harmful to aquatic life. In this case, additional information about factors influencing pH levels is needed.

4.3 Turbidity

Five measurements were taken in the field for turbidity at 10 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 6]. Of the 54 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for turbidity is less than 10 NTU above natural background.

Table 6. Turbidity Data Summary - Ashuelot River, 2007

Station ID	Samples Collected	Data Range (NTU)	Acceptable Samples Potentially Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	5	0.7 - 1.9	0	5
27-ASH	5	0.8 - 1.1	0	5
24A-ASH	5	0.75 - 1.6	0	5
23-ASH	5	0.55 - 2.4	0	5
20A-ASH	5	0.7 - 2.7	0	5
18-ASH	5	1.2 - 4.9	0	5
16-ASH	5	2.1 - 5.4	0	5
02-SBA	4	2.1 - 3.2	0	4
15-ASH	5	1.7 - 2.6	0	5
07-ASH	5	1.4 - 1.9	0	5
01-ASH	5	0.9 - 1.8	0	5
Total	54		0	54

Turbidity levels were low with the average ranging from 0.90 NTU to 3.30 NTU (Figure 9). In general, turbidity levels tended to increase in the middle portions of the watershed and then decrease again in the lower portions of the watershed. Although clean waters are associated with low turbidity there is a high degree of natural variability involved. Precipitation often contributes to increased turbidity by flushing sediment, organic matter and other materials from the surrounding landscape into surface waters. However, human activities such as removal of vegetation near surface waters and disruption of nearby soils can lead to dramatic increases in turbidity levels. In general it is typical to see a rise in turbidity in more developed areas due to increased runoff.

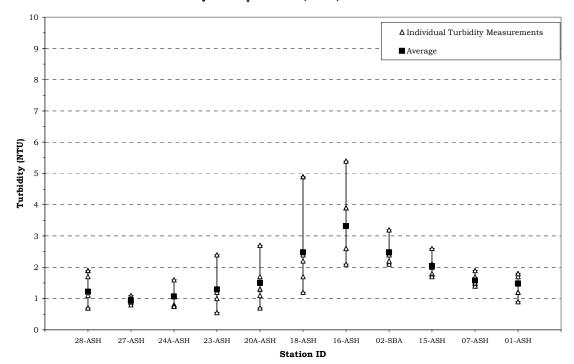


Figure 9. Turbidity Statistics for the Ashuelot River May 19 - September 11, 2007, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Collect samples during wet weather. This will help us to understand how the river responds to runoff and sedimentation.
- If a higher than normal turbidity measurement occurs, volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated turbidity levels. In addition, take good field notes and photographs. If human activity is suspected or verified as the source of elevated turbidity levels, volunteers should contact NHDES.

4.4 Specific Conductance

Between one and six measurements were taken in the field for specific conductance at 17 stations in the Ashuelot River watershed from Washington to Hinsdale. VRAP staff also deployed submersible dataloggers to record specific conductance at eight stations in the Ashuelot River watershed [Table 7]. Of the 67 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

New Hampshire surface water quality standards do not contain numeric limits for specific conductance.

Table 7. Specific Conductance Data Summary - Ashuelot River, 2007

Station ID	Samples Collected	Data Range (μS/cm)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	5	22.8 - 27.5	Not Applicable	5
27-ASH	5	30.7 - 36.0	N/A	5
04-GSB	2	31.5 - 35.2	N/A	2
24A-ASH	5	29.4 - 47.1	N/A	5
01-DTB	2	41.2 - 46.9	N/A	2
23-ASH	5	37.4 - 91.5	N/A	5
21P-ASH	2	55.2 - 66.3	N/A	2
02-OTB	2	66.6 - 94.3	N/A	2
20A-ASH	5	49.1 - 88.8	N/A	5
18-ASH	5	75.8 - 291.2	N/A	5
16-ASH	5	87.3 - 168.4	N/A	5
16B-ASH	1	332.0	N/A	1
02-SBA	6	57.0 - 110.0	N/A	6
15-ASH	6	85.0 - 249.9	N/A	6
07-ASH	5	83.9 - 187.2	N/A	5
14T-ASH	1	136.3	N/A	1
01-ASH	5	77.9 - 182.2	N/A	5
Total	67		N/A	67

Specific conductance levels were variable with the average ranging from 25.7 μ S/cm to 136.1 μ S/cm (Figure 10). Specific conductance measurements tended to be higher in the lower portion of the watershed. Higher specific conductance levels can be indicative of pollution from sources such as urban/agricultural runoff, road salt, failed septic systems, or groundwater pollution. The variable specific conductance levels generally indicate low pollutant levels at some stations and higher levels at others.

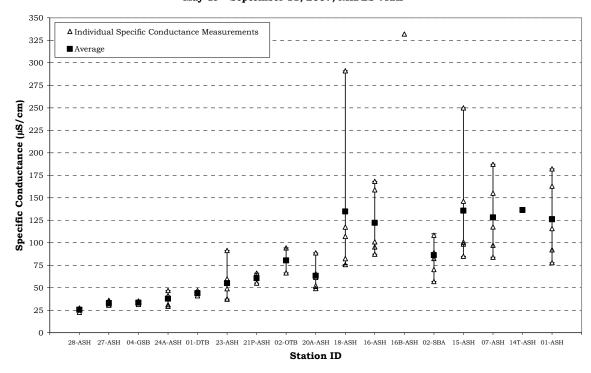


Figure 10. Specific Conductance Statistics for the Ashuelot River May 19 - September 11, 2007, NHDES VRAP

Figures 11 and 12 illustrate the results of specific conductance measurements obtained at eight stations in the Ashuelot River watershed using submersible multiparameter dataloggers deployed on two separate occasions. On each occasion, the meters were programmed to take specific conductance measurements every 15 minutes over a multiple day period.

During the first deployment (June 28 through July 3) three dataloggers were deployed in the mainstem of the Ashuelot River (16B-ASH, 15-ASH, and 14T-ASH) and one in the South Branch of the Ashuelot River (02-SBA). Stations 15-ASH and 14T-ASH were measured to gather baseline data upstream and downstream of the Homestead Mill Woolen Dam which is currently under consideration for removal. Specific conductance measurements were highest at station 16B-ASH. Specific conductance levels at the stations upstream (15-ASH) and downstream (14T-ASH) of the Homestead Mill Woolen Dam were nearly identical. Station 01-SBA has the lowest levels. (Figure 11).

During the second deployment (September 17 through September 25) one datalogger was deployed in the mainstem of the Ashuelot River (21P-ASH) and three in tributaries of the Ashuelot River: Grassy Brook (04-GSB, Dart Brook (01-DTB and Otter Brook (02-OTB). This deployment was done to help identify river segments and tributaries with very high water quality. Specific conductance measurements remained low, and stable at all four stations. Station 04-GRB and had the lowest measurements and station 02-OTB had the highest, though all measurements were below $100~\mu\text{S/cm}$ (Figure 12).

Figure 11. Specific Conductivity Statisitcs for the Ashuelot River Watershed June 28-July 3, 2007, NHDES VRAP

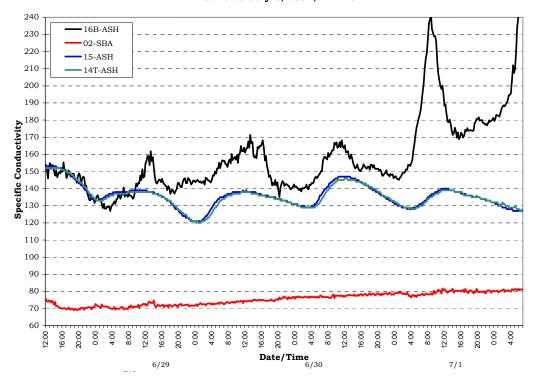
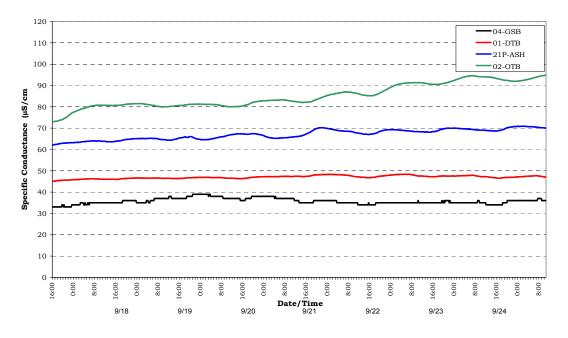



Figure 12. Specific Conductance Statistics for the Ashuelot River Watershed September 17-25, 2007, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider collecting chloride samples at the same time that specific conductance is measured. During the late winter/early spring snowmelt, higher specific conductance levels are often seen due to elevated concentrations of chloride in the runoff. Specific conductance levels are very closely correlated to chloride levels. Simultaneously measuring chloride and specific conductance will allow for a better understanding of their relationship.
- Continue to incorporate the use of in-situ dataloggers to automatically determine specific conductance levels during rain events, snowmelt, and baseline dry weather conditions. The use of these instruments is dependent upon availability, and requires coordination with NHDES.

4.5 Water Temperature

Between one and six measurements were taken in the field for water temperature at 17 stations in the Ashuelot River watershed from Washington to Hinsdale. VRAP staff also deployed submersible dataloggers to record water temperature at eight stations in the Ashuelot River watershed [Table 8]. Of the 67 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Table 8. Water Temperature Data Summary - Ashuelot River, 2007

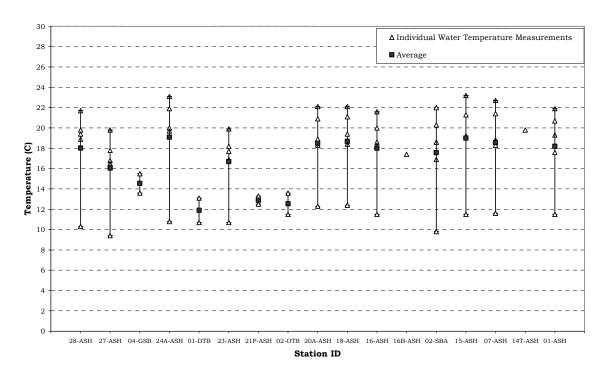
Station ID	Samples Collecte d	Data Range (°C)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	5	10.3 - 21.7	Not Applicable	5
27-ASH	5	9.4 - 19.8	N/A	5
04-GSB	2	13.6 - 15.5	N/A	2
24A-ASH	5	10.8 - 23.1	N/A	5
01-DTB	2	10.7 - 13.1	N/A	2
23-ASH	5	10.7 - 19.9	N/A	5
21P-ASH	2	12.5 - 13.3	N/A	2
02-OTB	2	11.5 - 13.6	N/A	2
20A-ASH	5	12.3 - 22.1	N/A	5
18-ASH	5	12.4 - 22.1	N/A	5
16-ASH	5	11.5 - 21.6	N/A	5
16B-ASH	1	17.4	N/A	1
02-SBA	6	9.8 - 22.0	N/A	6
15-ASH	6	11.5 - 23.2	N/A	6
07-ASH	5	11.6 - 22.7	N/A	5
14T-ASH	1	19.8	N/A	1
01-ASH	5	11.5 - 21.9	N/A	5
Total	67		N/A	67

Figure 13 shows the results of instantaneous water temperature measurements taken at 17 stations in the Ashuelot River watershed. The average water temperature varied from 11.9 °C. to 19.1 °C. Figures 14 and 15 illustrate the results of water temperature measurements obtained at eight stations in the Ashuelot River watershed using submersible multiparameter dataloggers deployed

on two separate occasions. On each occasion, the meters were programmed to take water temperature readings every 15 minutes over a multiple day period.

Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and the activity of bacteria in the water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation along the shoreline, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and the influence of groundwater.



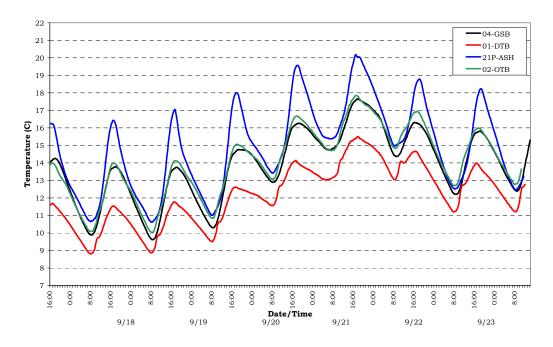

Figure 13. Water Temperature Statistics for the Ashuelot River
May 19 - September 11, 2007, NHDES VRAP

Figure 14. Temperature Statistics for the Ashuelot River Watershed June 28- July 3 2007, NHDES VRAP

Figure 15. Water Temperature Statistics for the Ashuelot River Watershed September 17-25, 2007, NHDES VRAP

Date/Time

Recommendations

Continue collecting water temperature data via both instantaneous reading and long-term deployment of dataloggers.

4.6 Escherichia coli/Bacteria

Three samples were taken for *Escherichia coli* (*E. coli*) at 10 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 9). Of the 33 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

Class B New Hampshire surface water quality standards for *E.coli* are as follows:

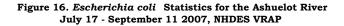

≤406 cts/100 ml, based on any single sample or ≤126 cts/100 ml, based on a geometric mean calculated from three samples collected within a 60-day period.

Table 9. E.coli Data Summary - Ashuelot River, 2007

Station ID	Samples Collecte d	Data Range (cts/100ml)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	3	1 - 5	0	3
27-ASH	3	3 - 27	0	3
24A-ASH	3	20 - 58	0	3
23-ASH	3	6 - 76	0	3
20A-ASH	3	13 - 411	1	3
18-ASH	3	80 - 517	1	3
16-ASH	3	172 - 687	1	3
02-SBA	3	81-261	0	3
15-ASH	3	38 - 166	0	3
07-ASH	3	42 - 96	0	3
01-ASH	3	21 - 219	0	3
Total	33		3	33

E.coli measurements met the state of New Hampshire Class B surface water quality standards on all but three occasions. Stations 20A-ASH, 18-ASH, and 16-ASH in the middle portion of the watershed failed to meet the standard on 9/11/2007. (Figure 16) In order to fully determine whether a waterbody is meeting surface water standards for *E.coli* a geometric mean must be calculated. A geometric mean is calculated using three samples collected within a 60-day period. At all stations one geometric mean was calculated. Of the 11 geometric means calculated all but three stations (18-ASH, 16-ASH, 02-SBA) met the state of New Hampshire Class B geometric mean standard of 126 cts/100ml (Table 10).

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife (e.g., birds), and the presence of septic systems along the river

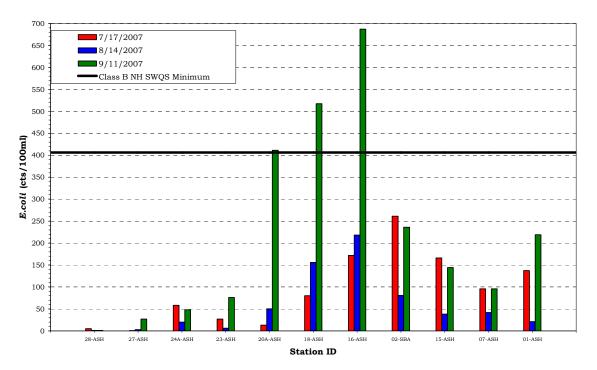


Table 10. E. coli Geometric Mean Data Summary - Ashuelot River, 2007

Station ID	Geometric Means Calculated	Geometric Mean 7/17/07 - 9/11/07	Geometric Means Not Meeting NH Class B Standards	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	1	2	0	1
27-ASH	1	9	0	1
24A-ASH	1	38	0	1
23-ASH	1	23	0	1
20A-ASH	1	64	0	1
18-ASH	1	186	1	1
16-ASH	1	295	1	1
02-SBA	1	171	1	1
15-ASH	1	97	0	1
07-ASH	1	76	0	1
01-ASH	1	86	0	1
Total	11		3	11

Recommendations

- Continue collecting three samples within any 60-day period during the summer to allow for determination of geometric means. Samples need only be collected during the critical period of May 24 to September 15 for assessment purposes. This coincides with the peak contact recreation season.
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling).
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling). At stations with particularly high bacteria levels volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated bacteria levels. Those sampling should also look for any potential sources of bacteria such as emission pipes, failed septic systems, farm animals, pet waste, wildlife and waterfowl.

4.7 Total Phosphorus

Three measurements were taken for total phosphorus at 10 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 11). Of the 33 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2008 surface water quality report to the US Environmental Protection Agency.

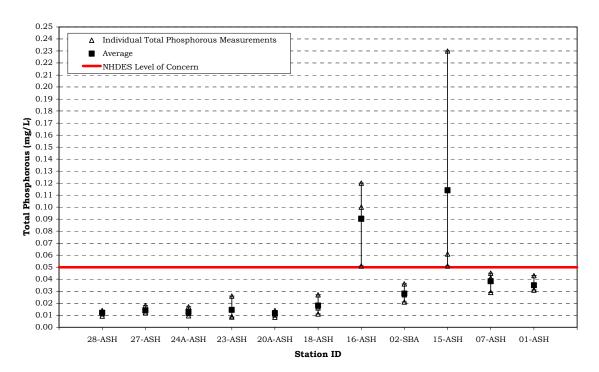
There is no numeric standard for total phosphorus for Class B waters. The narrative standard states that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses." The NHDES "level of concern" for total phosphorous is 0.05 mg/L.

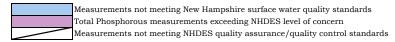
Table 11. Total Phosphorus Data Summary - Ashuelot River, 2007

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Exceeding NHDES Level of Concern	Number of Usable Samples for 2008 NH Surface Water Quality Assessment
28-ASH	3	0.010 - 0.014	0	3
27-ASH	3	0.012 - 0.018	0	3
24A-ASH	3	0.010 - 0.017	0	3
23-ASH	3	0.009 - 0.026	0	3
20A-ASH	3	0.008 - 0.014	0	3
18-ASH	3	0.011 - 0.027	0	3
16-ASH	3	0.051 - 0.120	3	3
02-SBA	3	0.021 - 0.036	0	3
15-ASH	3	0.051 - 0.230	3	3
07-ASH	3	0.029 - 0.045	0	3
01-ASH	3	0.031 - 0.043	0	3
Total	33		6	33

Nine of the eleven stations had total phosphorous levels that were always below the NHDES "level of concern" (Figure 17). All three measurements taken at stations 16-ASH and 15-ASH were above the NHDES "level of concern". Under undisturbed natural conditions phosphorus is at very low levels in aquatic ecosystems. Of the three nutrients critical for aquatic plant growth; potassium, nitrogen, and phosphorus, it is usually phosphorous that is the limiting factor to plant growth. When the supply of phosphorus is increased due to human activity, algae respond with significant growth.

A major source of excessive phosphorus concentrations in aquatic ecosystems can be wastewater treatment facilities, as sewage typically contains relatively high levels of phosphorus detergents. However, fertilizers used on lawns and agricultural areas can also contribute significant amounts of phosphorus.




Figure 17. Total Phosphorous Statistics for the Ashuelot River July 17 - September 11, 2007, NHDES VRAP

Recommendations

Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.

APPENDIX A 2006 Ashuelot River Watershed Water Quality Data

2007 ASHUELOT RIVER WATERSHED VRAP DATA

 $^{^{\}rm A}$ QA/QC Sample collected during datalogger deployment/retreival

28-ASH, Route 31, Washington

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	08:10	10.42	92.4	4.91	1.1	25.7	10.3	10.0			
6/16/2007	07:38	7.47	83.3	5.54	1.7	22.8	19.8	19.0			
7/17/2007	07:25	7.26	80.3	5.27	0.7	25.9	21.7	19.8	5		0.014
8/14/2007	07:30	6.43	71.1	5.27	0.7	26.8	19.4	17.8	1		0.009
9/11/2007	07:30	7.39	81.1	5.39	1.9	27.5	18.9	17.5	1	2	0.013

27-ASH, Mountain Road, Lempster

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	08:55	10.15	94.2	4.75	0.9	31.6	9.4	10.2			
6/16/2007	08:21	8.28	87.3	5.14	1.1	31.0	17.8	17.2			
7/17/2007	08:07	7.32	86.0	5.24	0.8	30.7	19.8	18.3	<1		0.018
8/14/2007	08:13	7.30	76.0	5.60	1.0	36.0	16.8	16.0	3		0.012
9/11/2007	08:00	7.79	82.0	5.61	0.9	35.2	16.5	16.4	27	9	0.012

04-GSB, Grassy Brook at Route 123 Bridge, Marlow

Date	Conductance		Water Temp. (°C)
Standard	NA	NA	NA
9/17/2007 ^A	12:25	31.5	13.6
9/25/2007 ^A	14:12	35.2	15.5

24A-ASH, Route 10, Marlow

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	09:59	9.98	96.9	4.95	1.1	29.4	10.8	10.5			
6/16/2007	09:02	8.33	91.8	5.06	1.6	31.2	20.0	18.8			
7/17/2007	09:10	7.26	84.0	5.39	1.1	40.6	23.1	21.6	58		0.017
8/14/2007	08:52	6.28	77.5	5.31	0.8	41.5	21.9	18.6	20		0.010
9/11/2007	08:40	6.58	72.7	5.38	0.8	47.1	19.7	18.1	48	38	0.012

01-DTB, Dart Brook at Surry Road, Surry

Date	Time of Sample Specific Conductance (uS/cm)		Water Temp. (°C)
Standard	NA	NA	NA
9/17/2007 ^A	12:25	41.2	10.7
9/25/2007 ^A	12:05	46.9	13.1

23-ASH, Route 10, Gilsum

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	10:20	11.02	99.0	5.42	1.0	37.6	10.7	10.3			
6/16/2007	09:48	9.17	97.3	5.82	1.2	37.4	18.2	18.2			
7/17/2007	09:38	8.40	93.0	5.60	2.4	49.0	19.9	19.9	27		0.026
8/14/2007	09:20	8.70	86.0	6.02	0.6	59.9	17.7	21.8	6		0.009
9/11/2007	09:15	8.47	87.8	5.91	1.3	91.5	16.9	17.0	76	23	0.009

21P-ASH, Gilsum/Surry Road, Surry

Date	Time of Sample	Specific Conductance (uS/cm)	Water Temp. (°C)
Standard	NA	NA	NA
9/17/2007 ^A	12:00	55.2	12.5
9/25/2007 ^A	11:38	66.3	13.3

02-OTB, Otter Brook at Granite Gorge, Roxbury

Date	Time of Sample	Specific Conductance (uS/cm)	Water Temp. (°C)
Standard	NA	NA	NA
9/17/2007 ^A	10:55	66.6	11.5
9/25/2007 ^A	10:40	94.3	13.6

20A-ASH, Stone Arch Bridge, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	08:00	9.52	88.9	5.62	2.7	52.2	12.3	10.9			
6/16/2007	07:55	7.60	81.9	5.59	1.7	49.1	18.9	16.2			
7/17/2007	07:30	6.66	73.8	5.65	1.1	61.5	22.1	19.2	13		0.014
8/14/2007	09:55	7.10	99.1	5.77	0.7	65.5	20.9	20.5	50		0.008
9/11/2007	10:10	6.41	70.7	5.90	1.3	88.8	18.3	17.9	411	64	0.012

18-ASH, Route 101, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	09:05	9.58	89.7	5.58	2.4	82.4	12.4	11.1			
6/16/2007	08:35	7.72	84.5	5.58	2.2	75.8	19.4	18.8			
7/17/2007	08:15	6.39	74.5	5.82	1.7	117.5	22.1	20.7	80		0.016
8/14/2007	08:20	6.27	72.2	5.81	1.2	107.2	21.1	19.6	156		0.011
9/11/2007	09:05	5.11	54.3	5.87	4.9	291.2	18.4	17.8	517	186	0.027

16-ASH, Cresson Bridge, Swanzey

10-4511, (-Abii, Clesson Bridge, Swanzey												
Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)		
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA		
5/19/2007	10:05	9.49	87.1	5.60	2.6	87.3	11.5	10.8					
6/16/2007	09:26	9.49	83.5	5.69	2.1	95.4	18.6	18.1					
7/17/2007	09:39	6.56	74.8	5.76	2.6	101.0	21.6	21.4	172		0.051		
8/14/2007	07:25	5.98	67.5	5.94	5.4	168.4	20.0	6.0	218		0.100		
9/11/2007	07:45	5.86	60.9	5.93	3.9	158.9	18.3	17.9	687	295	0.120		

16B-ASH, D/S of WWTF, U/S of South Branch Ashuelot River, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Specific Conductance (uS/cm)	Water Temp. (°C)	
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	NA	NA	
7/3/2007 ^A	9:55	7.55	79.4	6.48	332.0	17.4	

02-SBA, Route 132 Bridge Near Swanzey Schools, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	9:38	9.92	87.8	5.52	2.1	57.0	9.8	9.9			
6/28/2007 ^A	12:30	5.09	59.1	6.03		82.5	22.0				
7/3/2007 ^A	11:00	9.14	94.1	6.17		89.2	16.9				
7/17/2007	9:00	6.84	78.7	5.62	3.2	70.3	20.3	19.9	261		0.036
8/14/2007	8:20	7.29	75.9	5.98	2.2	108.3	18.6	17.7	81		0.021
9/11/2007	8:20	7.25	73.8	6.02	2.4	110.0	17.8	17.7	236	171	0.027

15-ASH, Deniman Thompson Bridge, West Swanzev

10 11011, 1	-ASH, Dennian Thompson Bridge, west Swanzey												
Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)		
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA		
5/19/2007	11:00	9.60	88.0	5.77	2.0	85.0	11.5	10.6					
6/16/2007	09:13	7.38	79.2	5.84	1.8	98.5	19.2	18.9					
7/3/2007 ^A	12:10	8.22	89.4	6.27		134.5	19.6						
7/17/2007	11:35	7.36	86.1	6.08	2.6	100.8	23.2	23.2	166		0.051		
8/14/2007	09:30	7.71	87.1	6.65	1.7	146.2	21.3	18.4	38		0.061		
9/11/2007	11:20	6.24	67.5	6.44	2.1	249.9	19.2	17.7	144	97	0.230		

07-ASH, Route 119, Winchester

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Water Temp.	Air Temp. (°C)	Specific Conductance (uS/cm)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA
5/19/2007	10:01	9.87	91.2	5.96	1.9	11.6	11.5	83.9			
6/16/2007	08:50	7.76	83.2	5.98	1.7	18.3	18.9	97.2			
7/17/2007	10:50	7.68	89.4	6.09	1.4	22.7	22.8	117.6	96		0.045
8/14/2007	08:50	7.47	84.6	6.85	1.4	21.4	19.8	155.2	42		0.029
9/11/2007	10:20	8.30	89.1	6.70	1.5	18.8	18.2	187.2	96	73	0.041

14T-ASH, U/S of Deniman Thompson Highway Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Specific Conductance (uS/cm)	Water Temp.	
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	NA	NA	
7/3/2007 ^A	13:18	9.48	104.0	6.48	136.3	19.8	

01-ASH, 147 River Street, Hinsdale

01-A511, 1	-ASH, 147 River Street, Hinsuale													
Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	Air Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)			
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	NA	NA	NA	<406	<126	NA			
5/19/2007	08:45	10.91	96.5	6.17	1.8	77.9	11.5	10.1						
6/16/2007	08:05	8.70	90.8	6.32	1.7	92.2	17.6	17.2						
7/17/2007	09:05	8.13	93.2	6.60	1.8	115.8	21.9	20.8	137		0.043			
8/14/2007	08:00	8.13	91.1	7.28	0.9	162.9	20.7	19.0	21		0.031			
9/11/2007	09:01	8.42	91.5	7.26	1.2	182.2	19.3	18.5	219	86	0.031			

APPENDIX B: Interpreting VRAP Water Quality Monitoring Parameters

Chemical Parameters

Dissolved Oxygen (DO)

- **Unit of Measurement:** concentration (milligrams per liter) and saturation (percent); (abbreviated as mg/L and %, respectively).
- **Description:** A measure of the amount of oxygen in the water: Concentration is a measure of the amount of oxygen in a volume of water; saturation is a measurement of the amount of oxygen in the water compared to the amount of oxygen the water can actually hold at full saturation. Both of these measurements are necessary to accurately determine whether New Hampshire surface water quality standards are met.
- Importance: Oxygen is dissolved into the water from the atmosphere, aided by wind and wave action, or from rocky, steep, or uneven stream beds. The presence of dissolved oxygen is vital to bottom-dwelling organisms as well as fish and amphibians. Aquatic plants and algae produce oxygen in the water during the day, but consume oxygen during the night. Bacteria utilize oxygen (day and night) as they process organic matter deposited in the river into smaller and smaller particles.

Class A NH Surface Water Quality Standard: 6 mg/L at any place or time, or 75% minimum daily average – (unless naturally occurring).

Class B NH Surface Water Quality Standard: 5 mg/L at any place or time or 75% minimum daily average – (unless naturally occurring).

Several measurements of oxygen saturation taken in a 24-hour period must be averaged to compare to the 75 percent daily average saturation standard. The concentration of dissolved oxygen is dependent on many factors including temperature and sunlight, and tends to fluctuate throughout the day. Saturation values are averaged because a reading taken in the morning may be low due to respiration, while a measurement that afternoon may show that the saturation has recovered to acceptable levels. Water can become saturated with more than 100 percent dissolved oxygen.

pН

- **Unit of Measurement:** units (no abbreviation).
- **Description:** A measure of hydrogen ion activity in water, or, in general terms, the acidity of water. pH is measured on a logarithmic scale of 0 to 14 with 7 being neutral. A high pH is indicative of an alkaline or basic environment and a low pH is indicative of an acidic environment. pH is influenced by geology and soils, organic acids (decaying leaves and other matter), and human-induced acids from acid rain (which typically has a pH of 3.5 to 5.5).
- Importance: pH affects many chemical and biological processes in the water and this is important to the survival and reproduction of fish and other aquatic life. Different organisms flourish within different ranges of pH. Measurements outside of this preferred range can potentially stress the physiological systems of organisms and can limit their growth and reproduction. Low pH can also affect the toxicity of aquatic compounds such as ammonia and certain metals. Lower pH levels can make these toxic compounds more "available" for uptake by aquatic plants and animals. This can produce conditions that are toxic to aquatic life.

Class A NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring). Class B NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring).

Sometimes, readings that fall below this range are determined to be naturally occurring, perhaps because of the influence of wetlands near the sample station. This is due to the presence or release of tannic and humic acids by decaying plants, which can create more acidic waters in areas influenced by wetlands.

pH Units	Category	
<5.0	High Impact	
5.0 – 5.9	Moderate to High Impact	
6.0 – 6.4	Normal; Low Impact	
6.5 – 8.0	Normal;	
6.1 – 8.0	Satisfactory	

Specific Conductance or Conductivity

- **Unit of Measurement:** micromhos per centimeter or microsiemens per centimeter (abbreviated as umhos/cm or uS/cm, respectively).
- Description: The numerical expression of the ability of water to carry an electrical current at 25°C and is a measurement of free ion (charged particles) content in the water. These ions can come from natural sources such as bedrock, or human sources such as stormwater runoff. Specific conductance can be used to indicate the presence of chlorides, nitrates, sulfates, phosphates, sodium, magnesium, calcium, iron, and aluminum ions. The difference between conductivity and specific conductance is specific conductance accounts for the actual water temperature rather than 25°C. The term "specific conductance" is used in the VRAP because the actual measurement is of the *conductivity* (or electric current) at a *specific* water temperature. In some studies and programs, the term "conductivity" is used. This term should only be used when the measurement *does not* adjust to a specific temperature.
- Importance: Discharges to streams can change the conductivity depending on their make-up. Specific conductance readings are useful in locating potential pollution sources because they usually have higher specific conductance than unimpaired surface waters. High specific conductance values may indicate pollution from sources such as road salting, septic systems, wastewater treatment plants, or urban/agricultural runoff. Specific conductance can also be related to geology. In rivers and streams not impacted by pollutants, geology and the associated groundwater are the primary influcences on specific conductance levels.

Class A NH Surface Water Quality Standard: No numeric standard.
Class B NH Surface Water Quality Standard: No numeric standard.

Although there is no formal standard for specific conductance, data collect by VRAP groups and NHDES indicated a very close relationship between specific conductance levels. In some cases NHDES can use specific conductance measurements as a surrogate for chloride levels. The data collected by NHDES indicate that the chronic chloride standard is correlated with a specific conductance level of approximately 850 μ S/cm.

Unit	Category
0 – 100	Normal
101 – 200	Low Impact
201 – 500	Moderate Impact
> 501	High Impact
> 850	Likely exceeding chronic chloride standard

Turbidity

- **Unit of Measurement:** Nephelometric Turbidity Units (abbreviated at NTU).
- **Description:** A measurement of the amount of suspended material in the water, such as clay, silt, algae, suspended sediment, and decaying plant material, that cause light to be scattered and absorbed, not transmitted in straight lines through the water.
- Importance: Higher turbidity increases water temperatures because suspended particles absorb more heat. This, in turn, reduces the concentration of dissolved oxygen (DO) because warm water holds less DO than cold. Higher turbidity also reduces the amount of light penetrating the water, which reduces photosynthesis and the production of DO. Suspended materials can clog fish gills, reducing resistance to disease in fish, lowering growth rates, and affecting egg and larval development. As the particles settle, they can blanket the stream bottom, especially in slower waters, and smother fish eggs and benthic macroinvertebrates. Clean waters are generally associated with low turbidity, but there is a high degree of natural variability involved. Rain events often contribute turbidity to surface waters by flushing sediment, organic matter and other materials from the surrounding landscape into surface waters. Human activities such as removal of vegetation near surface waters and disruption of nearby soils can lead to dramatic increases in turbidity levels.

Class A NH Surface Water Quality Standard: As naturally occurs.

Class B NH Surface Water Quality Standard: Shall not exceed naturally occurring conditions by more than 10 NTU.

Physical Parameters

Temperature

Unit of Measurement: ° Celsius

Importance: Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and the activity of bacteria in the water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation along the shoreline, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and the influence of groundwater.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Nutrient Parameters

Chlorophyll-a (Chlor a)

- Unit of Measurement: Milligrams per liter (abbreviated as mg/L).
- **Description:** An indicator of the biomass, or abundance, of planktonic algae in the river. The technical term "biomass" is used to represent "amount by weight." Chlorophyll-a can be strongly influenced by phosphorus, which is derived by natural and human activities.
- **Importance:** Because algae is a plant and contains the green pigment chlorophyll-a, the concentration of chlorophyll-a found in the water gives an estimation of the concentration of algae. If the chlorophyll-a concentration increases, this indicates an increase in the algal population.

Class A NH Surface Water Quality Standard: No numeric standard.

Class B NH Surface Water Quality Standard: No numeric standard.

Unit	Category
< 3	Excellent
3 – 7	Good
7 – 15	Less than desirable
> 15	Nuisance

Total Phosphorus (TP)

- **Unit of Measurement:** Milligrams per liter (abbreviated as mg/L).
- **Description:** A measure of all forms of phosphorus in the water, including inorganic and organic forms. There are many sources of phosphorus, both natural and human. These include soil and rocks, sewage, animal manure, fertilizer, erosion, and other types of contamination.
- Importance: Phosphorus is a nutrient that is essential to plants and animals, however, in excess amounts can cause rapid increases in the biological activity in water. Phosphorus is usually the "limiting nutrient" in freshwater streams, which means relatively small amounts can increase the amount of algae and chlorophyll-a levels in the river. Algal blooms and/or excessive aquatic plant growth can decrease oxygen levels and the attractiveness of waters for recreational purposes. Phosphorus can indicate the presence of septic systems, sewage, animal waste, lawn fertilizer, road and construction erosion, other types of pollution, or natural wetlands and atmospheric deposition.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses.

Unit	Category
< 0.010	Ideal
0.011 - 0.025	Average
0.026 - 0.050	More than desirable
> 0.051	Excessive (potential nuisance concentration)

Total Kjeldahl Nitrogen (TKN)

- Unit of Measurement: Milligrams per liter (abbreviated mg/L).
- **Description:** A measure of the amount of ammonia and organic nitrogen in the water.
- **Importance:** High nitrogen can increase the amount of algae and chlorophyll-a levels in the river, but is generally of less concern in fresh water when compared to phosphorus. Nitrogen can indicate the presence of sewage, animal waste, fertilizer, erosion, or other types of pollution.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no nitrogen in such concentrations that would impair any existing or designated uses.

Unit	Category
< 0.25	Ideal
0.26 - 0.40	Average
0.41 - 0.50	More than desirable
> 0.51	Excessive (potential nuisance concentration)

Other Parameters

Chloride

- **Unit of Measurement:** Milligrams per liter (abbreviated as mg/L).
- **Description:** The chloride ion (Cl-) is found naturally in some surface waters and groundwater and in high concentrations in seawater. Higher-than-normal chloride concentrations in freshwater, due to sodium chloride (table salt) that is used on foods and present in body wastes, can indicate sewage pollution. The use of highway deicing salts can also introduce chlorides to surface water or ground water. Elevated groundwater chlorides in drinking water wells near coastlines may indicate saltwater intrusion. In New Hampshire, the application of road salt for winter accident prevention is a large source of chloride to the environment, which is increasing over time due to the expansion of road networks and increased vehicle traffic. Road salt (most often sodium chloride) readily dissolves and enters aquatic environments in ionic forms. Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. As such, chloridecontaining compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans.
- Importance: Research shows that elevated chloride levels can be toxic to freshwater aquatic life. Among the species tested, freshwater aquatic plants and invertebrates tend to be the most sensitive to chloride. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria.

Acute Standard: 860 mg/L. Chronic Standard: 230 mg/L.

Escherichia Coliform Bacteria (E. coli)

- **Unit of Measurement:** Counts per 100 milliliter (abbreviated as cts/100 mL).
- **Description:** An indicator of the potential presence of pathogens in fresh water. *E. coli* bacteria is a normal component in the large intestines of humans and other warm-blooded animals, and can be excreted in their fecal material. Organisms causing infections or disease (pathogens) are often excreted in the fecal material of humans and other warm-blooded animals.
- **Importance:** *E.coli* bacteria is a good indicator of fecal pollution and the possible presence of pathogenic organisms. In freshwater, *E. coli* concentrations help determine if the water is safe for recreational uses such as swimming.

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife, and the presence of septic systems along the river.

Class A NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 47 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 153 *E.coli* cts/100 mL in any one sample.

Class B NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 126 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 406 *E.coli* cts/100 mL in any one sample.

Metals

Depending on the metal concentration, its form (dissolved or particulate), and the hardness of the water, trace metals can be toxic to aquatic life. Metals in dissolved form are generally more toxic than metals in the particulate form. The dissolved metal concentration is dependent on the pH of the water, as well as the presence of solids and organic matter that can bind with the metal to render it less toxic.

Hardness is primarily a measure of the calcium and magnesium ion concentrations in water, expressed as calcium carbonate. The hardness concentration affects the toxicity of certain metals. New Hampshire water quality regulations include numeric criteria for a variety of metals. Since dissolved metals are typically found in extremely low concentrations, the potential contamination of samples collected for trace metals analyses has become a primary concern of water quality managers. To prevent such contamination and to ensure reliable results, the use of "clean techniques" is becoming more and more frequent when sampling for dissolved metals. Because of this, sampling for metals may be more costly and require additional effort than in the past.

New Hampshire Volunteer River Assessment Program

29 Hazen Drive – PO Box 95 Concord, NH 03302-0095 p (603) 271-0699 – f (603) 271-7894 www.des.nh.gov/wmb/vrap

2008

APPENDIX C:

2007 VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audit)

VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group is notified of the result of the verification visit. During the visit, volunteers were assessed in the following five categories:

- 1) Assessment of **sampling procedures** include: Appropriate storage of meters, sample collection, laboratory sample collection and transportation, beginning and end of day meter checks, collecting a field replicate once during the sampling day from the original sample, performing QA/QC meter checks, and ensuring that all calibration and sampling data was properly documented on the 2007 "VRAP Field Data Sheet" and the "NHDES Laboratory Services Login & Custody Sheet".
- 2) Assessment of *turbidity procedures* include: Inspection and cleaning of glass turbidity vials prior to measurement of standards and samples, performing the "*Initial Turbidity Meter Check Value*" with a known standard (1.0 or 10.0 NTU) and calibrating the meter to a known standard at the beginning of the sampling day, recording the value of the DI Turbidity Blank (QAQA Meter Check) once during the sampling day, and performing the "*End of the Day Meter Check*" using a known standard (1.0 or 10.0 NTU) at the conclusion of the sampling day.
- 3) Assessment of **pH procedures** include: Inspection of the pH electrode probe prior to sampling, calibration to both pH 7.0 and 4.0 buffers prior to each measurement/at each station, rinsing and wiping the pH electrode probe prior to and after the measurement of standards and samples, allowing the pH measurement to stabilize prior to recording the measurement, and recording the value of the 6.0 buffer (QAQC Meter Check) once during the sampling day,
- 4) Assessment of Water **Temperature and Dissolved Oxygen procedures** include: Ensuring the calibration chamber sponge was sufficiently moist/dampened, ensuring the meter was turned on at least 15 minutes prior to the first calibration, ensuring the meter was kept on until the end of the day, calibration of the meter to % saturation relative to station elevation prior to each measurement/at each station, rinsing and wiping the probe prior to and after the measurement of standards and samples, slight agitation of the probe in the sample, allowing the water temperature to stabilize, allowing dissolved oxygen (% saturation) to stabilize during agitation, immediately taking dissolved oxygen concentration (mg/L) after % saturation has stabilized, properly obtaining ambient air temperature, replacing the sensor probe in the calibration chamber for a post-sample check (Dissolved Oxygen % Saturation in Chamber), and recording the value of the Zero Dissolved Oxygen Standard (QAQC Meter Check) once during the sampling day.
- 5) Assessment of **Specific Conductance procedures** include: Performing the "Initial Conductivity Check Value" meter check using a known standard at the beginning of the sampling day, rinsing and wiping the probe prior to and after the measurement of standards and samples, ensuring the probe was entirely submerged in the sample, slight agitation of the probe in the sample, allowing the measurement to stabilize, and performing the "End of the Day Meter Check" using a known standard at the conclusion of the sampling day.

During the field sampling procedures assessment, VRAP staff offer important reminders and suggestions to ensure proper sampling techniques and re-train volunteers in the areas needing improvement. Afterwards, the volunteers are sent a follow-up e-mail providing written reminders and suggestions of the methods that need improvement. It is important to ensure that all volunteers attend an annual VRAP training workshop prior to the sampling season and to familiarize themselves with proper sampling techniques, written protocols, and the use of water quality meters. Please remember to schedule an annual volunteer field sampling procedures assessment in 2008 by contacting the VRAP Coordinator at (603) 271-0699.

1

APPENDIX D:

New Hampshire Surface Water Quality Standards and the Surface Water Quality Assessment Reporting Process

Every two years, the federal Clean Water Act (CWA) requires states to submit two surface water quality documents to the U.S. Environmental Protection Agency. Section 305(b) of the CWA requires submittal of a report, commonly called the "305(b) Report", that describes the quality of the surface waters and an analysis of the extent to which all such waters provide for the protection and propagation of a balanced population of shellfish, fish, and wildlife, and allow recreational activities in and on the water. The second document is typically called the "303(d) List" because it is a required by Section 303(d) of the CWA. The 303(d) list includes all surface waters that

- Are impaired or threatened by a pollutant or pollutant(s);
- Are not expected to meet water quality standards even after application of best technology standards for point sources or best management practices for nonpoint sources and;
- Require development of comprehensive water quality studies called Total Maximum Daily Load (TMDL) studies.

Water Quality Standards

It is important to obtain a basic understanding of water quality standards since they are the basis of all water quality assessments. In general, water quality standards provide the baseline quality that all surface waters of the state must meet in order to protect their intended uses. They are the "yardstick" for identifying where water quality violations exist and for determining the effectiveness of regulatory pollution control and prevention programs.

Env-WS 1700 includes the state's surface water quality regulations. A copy can be obtained by visiting www.des.nh.gov/wmb/wmbrules.htm. The standards are composed of three parts: designated uses, water quality criteria, and antidegradation.

Designated Uses

All surface waters of the state are either classified as Class A or Class B, with the majority of waters being Class B. NHDES maintains a list that includes a narrative description of all the legislative classified waters. Designated uses represent the uses that a waterbody should support. As indicated below, state statute RSA 485-A:8 is quite general with regards to designated uses for New Hampshire surface waters.

- Class A: These are generally of the highest quality and are considered potentially usable for water supply after adequate treatment. Discharge of sewage or wastes is prohibited to waters of this classification.
- Class B: Of the second highest quality, these waters are considered acceptable for fishing, swimming, and other recreational purposes, and, after adequate treatment, for use as water supplies.

Further review and interpretation of the regulations (Env-Ws 1700), however, reveals that the general uses can be expanded and refined to include the seven specific designated uses. Each of the designated uses, with the exception of wildlife, is assessed during the reporting period. An assessment methodology for wildlife has not yet been developed but will be included in future assessments.

Designated Use	Definition	Applicable Surface Waters
Aquatic Life	Waters that provide suitable chemical and physical conditions for supporting a balanced, integrated and adaptive community of aquatic organisms.	All surface waters
Fish Consumption	Waters that support fish free from contamination at levels that poses a human health risk to consumers.	All surface waters
Shellfish Consumption	Waters that support a population of shellfish free from toxicants and pathogens that could pose a human health risk to consumers.	All tidal surface waters
Drinking Water Supply After Adequate Treatment	Waters that with adequate treatment will be suitable for human intake and meet state/federal drinking water regulations.	All surface waters
Primary Contact Recreation (i.e swimming)	Waters that are suitable for recreational uses that require or are likely to result in full body contact and/or incidental ingestion of water.	All surface waters
Secondary Contact Recreation (i.e boating)	Waters that support recreational uses that involve incidental contact with the water.	All surface waters
Wildlife	Waters that provide suitable physical and chemical conditions in the water and the riparian corridor to support wildlife as well as aquatic life.	All surface waters

Water Quality Criteria

The second major component of the water quality standards is the "criteria". Criteria are designed to protect the designated uses of all surface waters and may be expressed in either numeric or narrative form. A waterbody that meets the criteria for its assigned classification is considered to meet its intended use. Water quality criteria for each classification may be found in RSA 485-A:8, I-V and in the state's surface water quality regulations.

Antidegradation

The third component of water quality standards is antidegradation which are provisions designed to preserve and protect the existing beneficial uses and to minimize degradation of the state's surface waters. Antidegradation regulations are included in Part Env-Ws 1708 of the state's surface water quality regulations. According to Env-Ws 1708.03, and antidegradation applies to the following:

- Any proposed new or increased activity, including point and nonpoint source discharges or pollutants that would lower water quality or affect the existing or designated uses;
- A proposed increase in loadings to a waterbody when the proposal is associated with existing activities:
- An increase in flow alteration over an existing alteration; and
- All hydrologic modifications, such as dam construction and water withdrawals.

Assessment and Listing Methodology: Waterbody Coverage, Waterbody Types, and Assessment Units

Waterbody Coverage

Assessment units are the basic unit of record for conducting and reporting water quality assessments. In 2002, all surface waters in New Hampshire were subdivided into approximately 5,100 assessment units. The system is based on 1:100,000 scale hydrography that is linked to the National Hydrography Dataset (NHD), the national coverage used by EPA. By 2010, NHDES will attempt to move to higher resolution (1:24,000 scale) hydrography, which will result in even more accurate assessments.

Waterbody Types & Sizes

Based on the NHD coverage and to facilitate reporting, surface waters are separated into five waterbody types; Rivers and Streams, Impoundments, Lakes and Ponds, Estuaries, and the Ocean.

Assessment Units

Each waterbody is divided into smaller segments called Assessment Units (AUs). In general, AUs are the basic unit of record for conducting and reporting the results of all water quality assessments. AUs are intended to be representative of homogenous segments: consequently, sampling stations within an AU can be assumed to be representative of the segment. In general, the size of AUs are not so small that they result in an unmanageable number of AUs for reporting. On the other hand, AUs are not so large that they result in grossly inaccurate assessments. Many factors can influence the homogeneity of a segment. Factors used to establish homogenous AUs for assessments include: waterbody type, HUC-12 boundaries, water quality standards, pollutant sources, Maximum AU size for rivers and streams, major changes in land use, stream order/location of major tributaries, public water supplies, outstanding resource waters, shellfish program categories, designated beaches, and cold water fish spawning areas.

How Are Water Quality Assessments Conducted?

How do we determine if a waterbody is healthy (i.e. fully supporting), impaired (i.e. not supporting), threatened, or if there is insufficient information to make an assessment? Answers to these questions and many more can be found in the Consolidated Assessment and Listing Methodology, (CALM), which is available at http://www.des.nh.gov/WMB/swqa/. In general the CALM is the translator for how the water quality data will be used to make surface water quality attainment decisions by designated use (aquatic life, swimming, ...) consistent with state surface water quality standards. RSA 485-A:8, Env-Ws which and 1700 can be viewed visiting www.des.nh.gov/wmb/wmbrules.htm

What is the CALM?

The Consolidated Assessment and Listing Methodology (or CALM) describes, in detail, the process used to make surface water quality attainment decisions for 305(b) reporting and 303(d) listing purposes. The term "listing" refers to the process of placing (or listing) a water on the Section 303(d) List of impaired waters. The CALM also includes descriptions and definitions of the many terms used in the presentation of assessment results; consequently all are encouraged to review the CALM prior to reviewing the assessments as it will help one to better understand and interpret assessment results.

It is important to understand that assessment methodologies are dynamic and likely to change as new information and assessment techniques become available. Such changes can also impact monitoring strategies designed to determine if waterbodies are attaining water quality standards.

Periodic updates of the methodology will hopefully result in even more accurate and reliable assessments and, therefore, better management of water resources in the future.

Is Volunteer Data Used?

As long as the quality assurance/quality control measures result in data of adequate quality, we can and do use it in the assessments. The 2006 assessments of riverine assessment units included over 53,000 water quality standard comparisons of which nearly 60 percent came from volunteer sampling efforts. This volunteer data contributed to the assessment of 1,820 miles of rivers and streams on 489 riverine assessment units.

Factors to Consider When Assessing Waterbodies

Physical, chemical, toxicological, biological and/or habitat indicators can be used to assess the aquatic life use. If data for more than one indicator is available for assessments this can sometimes lead to conflicting assessment results. That is, one indicator might suggest that the designated use is not supporting (NS) while others may indicate a fully supporting (FS) use attainment status.

To resolve cases with conflicting data, NHDES uses an approach to make final assessment decisions. In general, this approach involves "weighing" the factors shown in the following table for each of the indicators. The assessment is then based on the indicator(s) with the highest weight (i.e., score).

Factor	Comments
Data Quality (Sampling and Analysis Protocols)	Data of high quality is given more weight than data of low quality.
Sample Time	Usually more weight is given to data which is the most recent, but one must also consider if samples were taken at times when exceedances are most likely to occur (i.e., the critical period). For example, when sampling for dissolved oxygen in rivers, water quality exceedances are most likely to occur during the summer months in the early morning when river flows are low and temperatures are high. If data for Indicator A indicated FS and was more recent but was not collected during the critical period, and data for Indicator B was older but indicated NS, more weight would be given to Indicator B as Indicator A data was not collected during the critical period.
Sample Location	Although AUs are theoretically homogenous, in reality, water quality differences can and do occur within an AU. In general, more weight is given to data that is collected the furthest downstream in an AU as it is more representative of all conditions affecting the AU. However if a particular location within an AU is suspected or known to have a greater likelihood of criteria exceedence, samples from that site would likely be given weight over a downstream site where water quality may have recovered.
Quantity of Samples	In general, more weight is given to the indicator which has the most data as it is more likely to be representative of the population being sampled, provided that a sufficient number of samples were collected during the critical period when violations are most apt to occur. In other words, quantity of data is not permitted to override critical condition data.
Type of Data (i.e., physical, chemical, toxicological, habitat and/or biological)	It is generally believed that for making aquatic life use assessments, biological data should be weighted more heavily than physical, chemical, habitat or toxicological data. This is because high quality biological data provide a direct measure of aquatic life and can detect the cumulative impact of multiple stressors on the aquatic community including new or previously undetected stressors over time. Physical/chemical data, on the other hand, provides a snapshot of river conditions when the samples were taken and do not account for the long term effects of stressors or the presence of other pollutants which may be impairing the biota.

Use Support Attainments

Each designated use for each assessment unit (AU), and each assessed parameter is assigned one of the following four base use support attainment options.

- **Fully Supporting:** A use is fully supporting if there is sufficient data or evidence for the core indicators to determine that the use is fully supporting and there is no other data or evidence indicating an impaired or threatened status.
- **Not Supporting:** A use is not supporting (i.e., impaired) if there is sufficient data or evidence to indicate impairment.
- **Insufficient Information:** This option is assigned to any use associated with any AU which has some, but not enough useable data or information to make a final assessment decision.
- Not Assessed: This option is assigned to any use associated with any AU, which does not have any useable data or information to make an assessment decision.

The CALM further describes how the four base use support attainment options have been subdivided to describe degrees of support, non-support, and insufficient information. For example, fully supporting is broken down to illustrate cases where a parameter just meets standards (i.e. marginal) or is well above standards (i.e. good).

How Many Measurements Must VRAP Groups Take for Assessment Purposes?

Statistically, for most parameters measured, less data is required to determine that a waterbody is impaired than is necessary to say that a parameter fully meets water quality criteria. The number of samples below presumes that the parameter in question will meet water quality standards.

- **Turbidity:** Routine turbidity measurements are not currently used in surface water quality assessments. However, turbidity easements related to specific projects with ongoing management issues are compared with water quality standards.
- **pH:** 10 measurements within five years.
- **Water Temperature:** Water temperature is currently only used to assess lake and impoundment profiles. Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody. In that case, critical times and periods will be more important.
- **Dissolved Oxygen:** 10 measurements within five years. Samples must be taken during critical times and seasons depending on the water type and use:
 - If the surface water is not a cold water natural reproducing fishery, at least 50% of the minimum number of independent samples needed for Fully Supporting shall be taken between June 1 and September 30. This is when dissolved oxygen is most apt to be lowest due to high temperatures and low flows.
 - If the surface water is a cold water natural reproducing fishery, 100% of the minimum number of independent samples needed for Fully Supporting determination shall be taken between October 1 and May 14. Additionally, at least 50% of the minimum number of independent samples needed for Fully Supporting shall be taken between June 1 and September 30.

- Chloride/Specific Conductance: 10 measurements within five years. Chloride and specific conductance are very closely related to one another and the protocols NHDES uses to assess waterbodies allows specific conductance to be used as a formal surrogate for chloride. Monitoring for specific conductance and chloride in the winter and early spring months will help determine what the immediate runoff impact of road salt application is in the watershed. Sampling in late summer under low flow conditions will help determine the degree of chloride saturation in baseflow. At least 50% of the minimum number of independent samples needed for Fully Supporting need to come from each of these key periods and combined these samples will indicated what time of year chloride levels tend to be highest.
- **Escherichia coli/Bacteria (E.coli):** 10 samples within five years. To be Fully Supporting, there must be sufficient data to make an assessment during the peak contact recreation season (May 24 to September 15). In order to fully determine whether a waterbody is meeting surface water standards for *E.coli* a geometric mean should be calculated. A geometric mean is calculated using three independent samples collected within a 60-day period provided that at least two of the samples are separated by a period of at least 1 day.
- **Total Phosphorus (TP):** Total Phosphorus is not currently used directly in surface water quality assessments.
- **Total Kjeldahl Nitrogen (TKN) and Nitrate/Nitrite:** Neither Total Kjeldahl Nitrogen, nor nitrate/nitrite are currently used directly in surface water quality assessments.
- **Chlorophyll-a:** 10 measurements within five years. To be Fully Supporting, there must be sufficient data to make an assessment during the peak contact recreation season (May 24 to September 15).
- **Metals:** 10 samples within five years. For seven metals; cadmium, copper, chromium+3, lead, nickel, silver, and zinc the exact water quality criteria is dependent upon the hardness of the water at the time of sampling. Consequentially, hardness samples need to be collected when one or more of those seven metals is to be analyzed. Additionally, it is important to ensure that the laboratory that will analyze the samples has detection limits that are below the water quality criteria to be compared.

How Can VRAP Groups Determine Which Portions of Their River have been Assessed?

There are an assortment of text documents available at the surface water quality assessment website. For those with GIS capabilities the AU shapefiles are available. As a fallback you can contact NHDES. All VRAP data marked as valid is used on the portion of river it is sampled in.

Where Can You Find the Report?

You can access the report by visiting http://des.nh.gov/wmb/swqa/.

For More Information

Contact Ken Edwardson, NHDES Water Quality Planning Section, at (603) 271-8864 or kedwardson@des.state.nh.us

APPENDIX E:

Programs, Publications & Links of Interest

Biomonitoring Program

http://www.des.nh.gov/WMB/biomonitoring/

Clean Lakes Program

http://www.des.nh.gov/wmb/CleanLakes/

Coastal Program

http://www.des.nh.gov/Coastal/

Exotic Species Program

http://www.des.nh.gov/WMB/exoticspecies/

Exotic Plant Distribution Map

http://www.des.nh.gov/WMB/ExoticSpecies/milfoil_list.htm

Unwanted: The Frightful Fourteen

http://www.des.nh.gov/WMB/ExoticSpecies/documents/Fourteen.pdf

Exotic Species Fact Sheets

http://www.des.nh.gov/WMB/ExoticSpecies/facts.htm

2004-2005 Exotic Species Program Report

http://www.des.nh.gov/WMB/ExoticSpecies/documents/2004-2005_Report.pdf

Weed Watchin': Annual Weed Watcher Newsletter

http://www.des.nh.gov/WMB/ExoticSpecies/documents/2005 Weed Watchin.pdf

Fact Sheets of Interest

http://www.des.nh.gov/openme.htm

- Lake Biology: http://www.des.nh.gov/bb.htm
- Shoreland Protection Program: http://www.des.nh.gov/sp.htm
- **Water Supply:** http://www.des.nh.gov/sp.htm
- **Watershed Management:** http://www.des.nh.gov/sp.htm
- **Wetlands Bureau:** http://www.des.nh.gov/wet.htm

Lakes Management & Protection Program

http://www.des.nh.gov/wmb/lakes/

Rivers Management & Protection Program

http://www.des.nh.gov/rivers/

Publications & Fact Sheets

http://www.des.nh.gov/Rivers/link-2.htm

Meanderings: Newsletter of the Rivers Management & Protection Program

Spring 2007: http://www.des.nh.gov/news/meanderings/MeanderSpring07.pdf

Shoreland Protection Program

http://www.des.nh.gov/cspa/

Surface Water Quality Assessments

http://www.des.nh.gov/WMB/swqa/

Volunteer Lake Assessment Program

http://www.des.nh.gov/WMB/vlap/

VLAP Field Manual

http://www.des.nh.gov/wmb/VLAP/documents/fieldmanual.pdf

The Sampler: Annual VLAP Newsletter

Spring 2007: http://www.des.nh.gov/wmb/VLAP/documents/Samplr07.pdf

Annual Reports

http://www.des.nh.gov/wmb/VLAP/2006/

Volunteer River Assessment Program

http://www.des.nh.gov/WMB/vrap

Water Quality Monitoring Field Sampling Protocols for Volunteer Monitors

http://www.des.nh.gov/wmb/vrap/documents/Protocols.pdf

Interpreting VRAP Water Quality Parameters

http://www.des.nh.gov/wmb/vrap/documents/WQParams.pdf

VRAP Water Quality Standards

http://www.des.nh.gov/wmb/vrap/documents/WQ_Standards.pdf

Native Shoreland & Riparian Buffer Plantings for New Hampshire

http://www.des.nh.gov/wmb/vrap/documents/NativeShorelandRiparianBufferPlantingsNH.pdf

Glossary of River Ecology Terms

http://www.des.nh.gov/wmb/vrap/documents/Glossary_of_Riverine_Ecology_Terms.pdf

A Field Guide to Common Riparian Plants of New Hampshire

http://www.des.nh.gov/wmb/vrap/documents/FieldGuideToCommonRiparianPlantsOfNH.pdf

Streamlines: Annual VRAP Newsletter

June 2007: http://www.des.nh.gov/wmb/vrap/documents/Streamlines/June2007.pdf

Annual Reports, Data, & Maps

http://www.des.nh.gov/wmb/vrap/data.html

Watershed Assistance

http://www.des.nh.gov/WMB/was/

Nonpoint Source Newsletter

http://www.des.nh.gov/WMB/Was/documents/NPS_news_2004.pdf

Greenworks: Ideas for a Cleaner Environment

http://www.des.nh.gov/gw-list.htm

Wetlands Bureau

http://www.des.nh.gov/Wetlands/

New Hampshire Volunteer River Assessment Program 2008 Ashuelot River Watershed Water Quality Report

February 2009

New Hampshire Volunteer River Assessment Program 2007 Ashuelot River Watershed Water Quality Report

State of New Hampshire
Department of Environmental Services
Water Division
Watershed Management Bureau
P.O. Box 95
29 Hazen Drive
Concord, New Hampshire 03302-0095
www.des.nh.gov

Thomas S. Burack Commissioner

Harry T. Stewart Water Division Director

Prepared By:

Ted Walsh, VRAP Program Manager

Jen Drociak, VRAP Coordinator

Danielle Mucciarone, VRAP Assistant

February 2009

Cover Photo: Ashuelot River, 24A-ASH, Marlow

TABLE OF CONTENTS

1.	INTRODUCTION	6
1.1 1.2	Purpose of Report	
	-	
2.	PROGRAM OVERVIEW	8
2.1	What is VRAP?	8
2.2	Why is VRAP Important?	
2.3	How Does VRAP Work?	
2.4	Equipment & Sampling Schedule	
2.5	Training & Technical Support	
2.6	Data Usage	
2.7	Quality Assurance & Quality Control	
3.	METHODS	12
4.	RESULTS & RECOMMENDATIONS	16
4.1	Dissolved Oxygen	16
4.2	pH	
4.3	Turbidity	
4.4	Specific Conductance	
4.5	Water Temperature	
4.6	Escherichia coli/Bacteria	
4.7	Total Phosphorus	
4.8	Chloride	32
4.9	Cadmium	34
4.10	Copper	36
4.11	Lead	39
4.12	Zinc	41

List of Figures and Tables

Figure 1:	Ashuelot River Watershed and Monitoring Stations15
Figure 2:	Dissolved Oxygen Concentration Statistics18
Figure 3:	pH Statistics20
Figure 4:	Turbidity Statistics
Figure 5:	Specific Conductance Statistics24
Figure 6:	Water Temperature Statistics26
Figure 7:	Escherichia coli/Bacteria Statistics
Figure 8:	Total Phosphorus Statistics31
Figure 9:	Chloride Statistics
Table 1:	Field Analytical Quality Controls11
Table 2:	Sampling Stations for the Ashuelot River Watershed, 200813
Table 3:	Sampling and Analysis Methods14
Table 4:	Dissolved Oxygen Concentration Data Summary17
Table 5:	pH Data Summary19
Table 6:	Turbidity Data Summary21
Table 7:	Specific Conductance Data Summary23
Table 8:	Water Temperature Data Summary25
Table 9:	Escherichia coli/Bacteria Data Summary27
Table 10:	Escherichia coli/Bacteria Geometric Summary29
Table 11:	Total Phosphorus Data Summary30
Table 12:	Chloride Data Summary32
Table 13:	Cadmium Data Summary35
Table 14:	Copper Data Summary37
Table 15:	Lead Data Summary40
Table 16:	Zinc Data Summary42
	List of Appendices

Annendix A	2008	Achirelat	Diver 1	Watershed	Water	mality D	ata
ADDELICIX A.	2000	ASHUEIOL	KIVEI 1	watershed	walet C	mannv m	กเล

- Appendix B: Interpreting VRAP Water Quality Parameters
 Appendix C: VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audit)
- Appendix D: New Hampshire Watershed Report Cards

ACKNOWLEDGEMENTS

The New Hampshire Department of Environmental Services Volunteer River Assessment Program extends sincere thanks to the volunteers of the Ashuelot River Local Advisory Committee for their efforts during 2008. This report was created solely from the data collected by the volunteers listed below. Their time and dedication is an expression of their genuine concern for local water resources and has significantly contributed to our knowledge of river and stream water quality in New Hampshire.

2008 Ashuelot River Volunteers

Barbara Skuly Charlie Beck Adam Black Penny Eggleston Patrick Eggleston Linda Fuerderer Jim Holley Brad Hutchinson Robert Lamoy Carolyn MacDonald Malcom MacDonald Mike Morrison Sigrid Scholz Barbara Skuly Steve Stepenuck Ann Sweet Roger Sweet Robert Thompson

1.0 INTRODUCTION

1.1. Purpose of Report

Each year the New Hampshire Volunteer River Assessment Program (VRAP) prepares and distributes a water quality report for each volunteer river monitoring group that is based solely on the water quality data collected by that group during a specific year. The reports summarize and interpret the data, particularly as they relate to New Hampshire's surface water quality standards, and serve as a teaching tool and guidance document for future monitoring activities by the individual volunteer groups.

1.2. Report Format

Each report includes the following:

■ Volunteer River Assessment Program Overview

This section includes a description of the history of VRAP, the technical support, training and guidance provided by NHDES, and how data is transmitted to the volunteers and used in surface water quality assessments.

Monitoring Program Description

This section provides a description of the volunteer group's monitoring program including monitoring objectives as well as a table and map showing sample station locations.

Results and Recommendations

Water quality data collected during the year are summarized on a parameter-by-parameter basis using: (1) a data summary table, which includes the number of samples collected, data ranges, the number of samples meeting New Hampshire water quality standards, and the number of samples adequate for water quality assessments at each station; (2) a discussion of the data; (3) a river graph showing the range of measured values at each station; and (4) a list of applicable recommendations.

Sample results reported as less than the detection limit were assumed equal to one-half the detection limit on the river graphs. This approach simplifies the understanding of the parameter of interest, and specifically helps one to visualize how the river or watershed is functioning from upstream to downstream. In addition, this format allows the reader to better understand potential pollution areas and target those areas for additional sampling or environmental enhancements. Where applicable, the river graph also shows New Hampshire surface water quality standards or levels of concern for comparison purposes.

Appendix A – Water Quality Data

This appendix includes a spreadsheet detailing the data results and additional information such as data results which do not meet New Hampshire surface water quality standards, and data that is unusable for assessment purposes due to quality control requirements.

Appendix B – Interpreting VRAP Water Quality Parameters

This appendix provides a brief description of water quality parameters typically sampled by VRAP volunteers and their importance, as well as applicable state water quality criteria or levels of concern.

Appendix C – VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audits)

This appendix provides an overview of the VRAP Volunteer Monitor Field Sampling Procedures Assessment (field audit) process with respect to programmatic quality assurance/quality control (QA/QC) guidelines.

Appendix D -New Hampshire Watershed Report Cards

This appendix provides an overview of the New Hampshire Watershed Report Cards built from the 2008 305(b)/303(d) Surface Water Quality Reports.

2.0 PROGRAM OVERVIEW

2.1 What is VRAP?

In 1998, the New Hampshire Volunteer River Assessment Program was established to promote awareness and education of the importance of maintaining water quality in New Hampshire's rivers and streams. VRAP aims to educate people about river and stream water quality and ecology and to improve water quality monitoring coverage for the protection of water resources.

Today, VRAP loans water quality monitoring equipment, provides technical support, and facilitates educational programs to volunteer groups on numerous rivers and watersheds throughout the state. VRAP volunteers conduct water quality monitoring on an ongoing basis and increase the amount of river water quality information available to local, state and federal governments, which allows for better watershed planning.

2.2 Why is VRAP Important?

VRAP establishes a regular volunteer-driven water sampling program to assist NHDES in evaluating water quality throughout the state. VRAP empowers volunteers with information about the health of New Hampshire's rivers and streams. Regular collection of water quality data allows for early detection of water quality changes allowing NHDES to trace potential problems to their source. Data collected by VRAP volunteers are directly contributing to New Hampshire's obligations under the Clean Water Act. Measurements taken by volunteers are used in assessing the water quality of New Hampshire's river and streams, and are included in reporting to the US Environmental Protection Agency.

2.3 How Does VRAP Work?

VRAP is a cooperative program between NHDES, river groups, local advisory committees, watershed associations, and individuals working to protect New Hampshire's rivers and streams. Volunteers are trained by VRAP staff in the use of water quality monitoring equipment at an annual training workshop. VRAP works with each group to establish monitoring stations and develop a sampling plan.

During the summer months, VRAP receives water quality data from trained volunteers. The data are reviewed for quality assurance, and are entered into the environmental monitoring database at NHDES. During the off-season, VRAP interprets the data and compiles the results into an annual report for each river. VRAP volunteers can use the data as a means of understanding the details of water quality, as well as guide future sampling efforts. NHDES can use the data for making surface water quality assessments, provided that the data met certain quality assurance/quality control guidelines.

2.4 Equipment and Sampling Schedule

VRAP frequently lends and maintains water quality monitoring equipment kits to VRAP groups throughout the state. The kits contain meters and supplies for routine water quality parameter measurements of turbidity, pH, dissolved oxygen, water temperature and specific conductance (conductivity). Other parameters such as nutrients, metals, and *E. coli* can also be studied, although VRAP does not always provide funds to cover laboratory analysis costs. Thus, VRAP encourages groups to pursue other fundraising activities such as association membership fees, special events, in-kind services (non-monetary contributions from individuals and organizations), and grant writing.

Each year, volunteers design and arrange a sampling schedule in cooperation with VRAP staff. Project designs are created through a review and discussion of existing water quality information, such as known and perceived problem areas or locations of exceptional water quality. The interests, priorities, and resources of the partnership determine monitoring locations, parameters, and frequency. VRAP typically recommends sampling every other week from May through September, and VRAP groups are encouraged to organize a long-term sampling program in order to begin to determine trends in river conditions.

2.5 Training and Technical Support

Each VRAP volunteer attends an annual training workshop to receive a demonstration of monitoring protocols and sampling techniques and the calibration and use of water quality monitoring equipment. During the training, volunteers have an opportunity for hands-on use of the equipment and receive instruction in the collection of samples for laboratory analysis.

VRAP groups conduct sampling according to a prearranged monitoring schedule and VRAP protocols. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols (see Appendix C). If necessary, volunteers are re-trained during the visit, and the group's monitoring coordinator is notified of the result of the verification visit. VRAP groups forward water quality results to NHDES for incorporation into an annual report and state water quality assessment activities.

2.6 Data Usage

Annual Water Quality Reports

Water quality measurements repeated over time create a picture of the fluctuating conditions in rivers and streams and help to determine where improvements, restoration or preservation may benefit the river and the communities it supports. All data collected by volunteers are summarized in water quality reports that are prepared and distributed after the conclusion of the sampling period. VRAP groups can use the reports and data as a means of understanding the details of water quality, guiding future sampling efforts, or determining restoration activities.

New Hampshire Surface Water Quality Assessments

Along with data collected from other water quality programs, specifically the State Ambient River Monitoring Program, applicable volunteer data are used to support periodic NHDES surface water quality assessments. VRAP data are entered into NHDES's environmental monitoring database and are ultimately uploaded to the EPA database. Assessment results and the methodology used to assess surface waters are published by NHDES every two years (i.e., Section 305(b) Water Quality Reports) as required by the federal Clean Water Act. The reader is encouraged to log on to the NHDES web page to review the assessment methodology and list of impaired waters http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm.

2.7 Quality Assurance/Quality Control

In order for VRAP data to be used in the assessment of New Hampshire's surface waters, the data must meet quality control guidelines as outlined in the VRAP Quality Assurance Project Plan (QAPP). The VRAP QAPP was approved by NHDES and reviewed by EPA in the summer of 2003. The QAPP is reviewed annually and is officially updated and approved every five years. The VRAP quality assurance/quality control (QA/QC) measures include a six-step approach to ensuring the accuracy of the equipment and consistency in sampling efforts.

- **Calibration:** Prior to each measurement, the pH and DO meters must be calibrated. Conductivity and turbidity meters are checked against a known standard before the first measurement and after the last one.
- **Replicate Analysis:** A second measurement by each meter is taken from the original sample at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the replicate analysis should be conducted at different stations. Replicates should be measured within 15 minutes of the original measurements.
- **6.0 pH Standard:** A reading of the pH 6.0 buffer is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the 6.0 pH standard check should be conducted at different stations.
- **Zero Oxygen Solution:** A reading of a zero oxygen solution is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the zero oxygen standard check should be conducted at different stations.
- **DI (De-Ionized) Turbidity Blank**: A reading of the DI blank is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the blank check should be conducted at different stations.
- End of the Day Conductivity and Turbidity Meter Check: At the conclusion of each sampling day, the conductivity and turbidity meters are re-checked against a known standard.

2.7.1 Measurement Performance Criteria

Precision is calculated for field and laboratory measurements through measurement replicates (instrumental variability) and is calculated for each sampling day. The use of VRAP data for assessment purposes is contingent on compliance with a parameter-specific relative percent difference (RPD) as derived from equation 1, below. Any data exceeding the limits of the individual measures are disqualified from surface water quality assessments. All data that exceeds the limits defined by the VRAP QAPP are acknowledged in the data tables with an explanation of why the data was unusable. Table 1 shows typical parameters studied under VRAP and the associated quality control procedures.

(Equation 1. Relative Percent Difference)

$$RPD = \frac{|x_1 - x_2|}{\frac{x_1 + x_2}{2}} \times 100 \%$$

where x_1 is the original sample and x_2 is the replicate sample

Table 1. Field Analytical Quality Controls

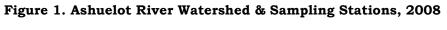
Water Quality Parameter	QC Check	QC Acceptance Limit	Corrective Action	Person Responsible for Corrective Action	Data Quality Indicator
Temperature	Measurement Replicate	RPD < 10% or Absolute Difference <0.8 C.	Repeat Measurement	Volunteer Monitors	Precision
Dissolved	Measurement Replicate	RPD < 10%	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Oxygen	Known Buffer (Zero O ₂ Sol.)	RPD < 10% or Absolute Difference <0.4 mg/L	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Relative Accuracy
рН	Measurement Replicate	Absolute Difference <0.3 pH units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
рн	Known Buffer (pH = 6.0)	± 0.1 std units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Specific	Measurement Replicate	RPD < 10% or Absolute Difference <5µS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Conductance	Method Blank (Zero Air Reading)	± 5.0 μS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Turbidity	Measurement Replicate	RPD < 10% or Absolute Difference <1.0 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Turblanty	Method Blank (DI Water)	± 0.1 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Laboratory Parameters	Measurement Replicate	RPD < 20% or Absolute Difference less than ½ the mean value of the parameter in NHDES's Environmental Monitoring Database	Repeat Measurement	Volunteer Monitors	Precision

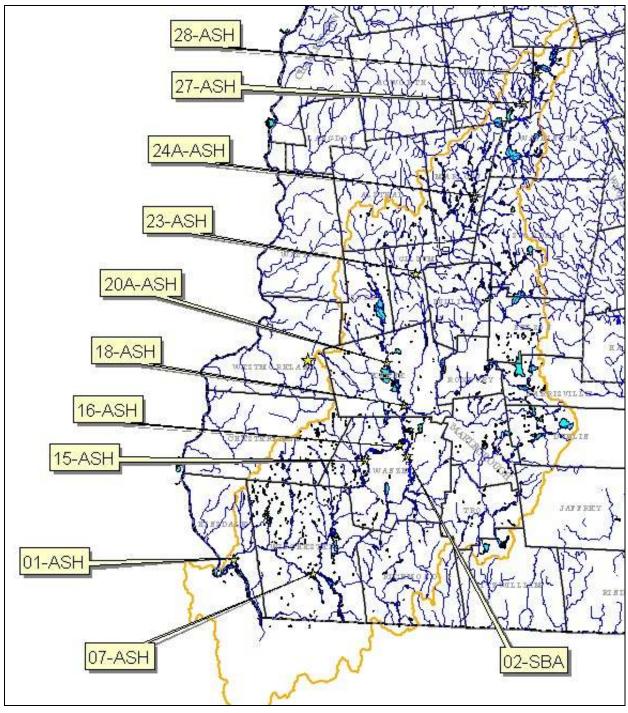
3.0 METHODS

In 2001, volunteers from the Ashuelot River Local Advisory Committee began monitoring water quality on the Ashuelot River. The goal of this effort was to provide water quality data from the Ashuelot River relative to surface water quality standards and to allow for the assessment of the river for support of aquatic life and primary contact recreation (swimming). The establishment of a long-term monitoring program allows for an understanding of the river's dynamics, or variations on a station-by-station and year-to-year basis. The data can also serve as a baseline from which to determine any water pollution problems in the river and/or watershed. The Volunteer River Assessment Program has provided field training, equipment, financial assistance for laboratory costs, and technical assistance.

During 2008, trained volunteers from the Ashuelot River Local Advisory Committee monitored water quality at 15 stations in the Ashuelot River watershed from its upper limits in Washington to just upstream of its confluence with the Connecticut River in Hinsdale (Figure 1, Table 2).

Stations IDs are designated using a three-letter code to identify the waterbody name plus a number indicating the relative position of the station. The higher the station number the more upstream the station is in the watershed. All stations monitored in 2008 are designated as Class B waters. This classification is used to apply the appropriate water quality standard.


Water quality monitoring was conducted monthly from May to September. Insitu measurements of water temperature, air temperature, dissolved oxygen, pH, and specific conductance were taken using handheld meters. Turbidity samples were collected in the field, brought to a central location and measured the same day. Samples for *E.coli*, total phosphorous, chloride, and metals were taken using sterile and/or preserved bottles and were stored on ice during transport from the field to the NHDES laboratory or the Keene Wastewater Treatment Facility. Table 3 summarizes the parameters measured, laboratory standard methods, and equipment used.


Table 2. Sampling Stations for the Ashuelot River, NHDES VRAP, 2008

Station ID & AUID	Class	Waterbody Name	Location	Town	Elevation (Rounded to the Nearest 100 Feet)
28-ASH NHRIV802010101-08	В	Ashuelot River	Route 31	Washington	1600
27-ASH NHRIV802010101-08	В	Ashuelot River	Mountain Road	Lempster	1500
24A-ASH NHRIV802010102-11	В	Ashuelot River	Route 10	Marlow	1100
23-ASH NHRIV802010103-22	В	Ashuelot River	Route 10	Gilsum	800
20A-ASH NHRIV802010301-04	В	Ashuelot River	Stone Arch Bridge	Keene	500
18-ASH NHRIV802010301-09	В	Ashuelot River	Route 101	Keene	500
16D-ASH NHRIV802010301-11	В	Ashuelot River	50' Upstream of Keene WWTF	Swanzey	500
16A-ASH NHRIV802010301-11	В	Ashuelot River	10' Downstream of Confluence of SBA	Swanzey	500
16-ASH NHRIV802010401-15	В	Ashuelot River	Cresson Bridge	Swanzey	500
15M-ASH NHRIV600030703-15	В	Ashuelot River	Intersection of Route 10 and Winchester Street	Swanzey	500
15J-ASH NHRIV801060702-12	В	Ashuelot River	Upstream of Faulkner's Garden	Swanzey	500
02B-SBA NHRIV600030608-15	В	South Branch Ashuelot River	Upstream of Monadnock Regional H.S.	Swanzey	500
02-SBA NHRIV802010303-23	В	South Branch Ashuelot River	Route 32 Bridge	West Swanzey	500
07-ASH NHRIV802010403-07	В	Ashuelot River	Route 119	Winchester	400
01-ASH NHRIV802010403-20	В	Ashuelot River	147 River Street	Hinsdale	200

Table 3. Sampling and Analysis Methods

Parameter	Sample Type	Standard Method	Equipment Used	Laboratory
Temperature	In-Situ	SM 2550	YSI 85	
Dissolved Oxygen	In-Situ	SM 4500 O G	YSI 85	
рН	In-Situ	SM 4500 H+	Oakton pH 11	
Turbidity	In-Situ	EPA 180.1	LaMotte 2020 e	
Specific Conductance	In-Situ	SM 2510	YSI 85	
E.coli	Bottle (Sterile)	EPA 1103.1		NHDES
Total Phosphorus	Bottle (w/ Preservative)	EPA 365.3		NHDES & Eastern Analytical
Chloride	Bottle	SM D512C		NHDES Limnology Center
Cadmium	Bottle (w/ Preservative)	SM 3111B		Keene WWTF
Copper	Bottle (w/ Preservative)	SM 3111B		Keene WWTF
Lead	Bottle (w/ Preservative)	SM 3111B		Keene WWTF
Zinc	Bottle (w/ Preservative)	SM 3111B		Keene WWTF

RESULTS AND RECOMMENDATIONS

Results and recommendations for each monitored parameter are presented in the following sections. For a description of the importance of each parameter and pertinent water quality criteria for these and other parameters, please see Appendix B, "Interpreting VRAP Water Quality Parameters."

4.1 Dissolved Oxygen

Between one and five measurements were taken in the field for dissolved oxygen concentration at 15 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 4). Of the 60 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for dissolved oxygen includes a minimum concentration of 5.0 mg/L **and** a minimum daily average of 75 percent of saturation. In other words, there are criteria for both concentration and saturation that must be met before the river can be assessed as meeting dissolved oxygen standards. Table 4 reports only dissolved oxygen concentration as more detailed analysis is required to determine if instantaneous dissolved oxygen saturation measurements are above or below water quality standards.

Dissolved oxygen concentration levels were above the New Hampshire Class B surface water quality standard at all stations and on all occasions with the average ranging from 7.73 mg/L to 9.03 mg/L (Figure 2). Levels of dissolved oxygen sustained above the standards are considered adequate for the support of aquatic life and other desirable water quality conditions.

Table 4. Dissolved Oxygen Concentration (mg/L) Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	7.21 - 9.51	0	5
27-ASH	5	7.64 - 9.85	0	5
24A-ASH	5	7.39 - 9.25	0	5
23-ASH	5	8.45 - 10.39	0	5
20A-ASH	5	6.49 - 9.06	0	5
18-ASH	5	6.72 - 9.11	0	5
16A-ASH	1	8.97	0	1
16-ASH	5	6.50 - 9.15	0	5
15M-ASH	2	7.83 - 8.44	0	2
15J-ASH	1	8.70	0	1
02B-ASH	1	8.39	0	1
02-SBA	5	7.35 - 9.35	0	5
15-ASH	5	6.36 - 9.72	0	5
07-ASH	5	6.87 - 9.87	0	5
01-ASH	5	8.03 - 10.16	0	5
Total	60		0	60

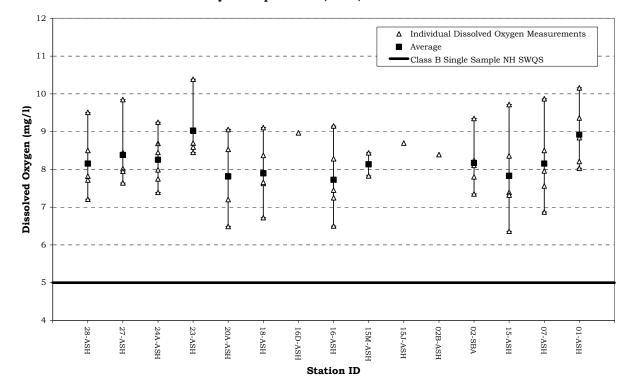


Figure 2. Dissolved Oxygen Concentration Statistics for the Ashuelot River Watershed
May 17 - September 15, 2008, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- If possible, take measurements between 5 a.m. and 10 a.m., which is when dissolved oxygen is usually the lowest, and between 2 p.m. and 7 p.m. when dissolved oxygen is usually the highest. In general, dissolved oxygen levels are lowest in the early morning when there is low photosynthetic activity and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Peak dissolved oxygen levels occur when photosynthetic activity is at its peak. The greater the amount of photosynthetic activity the greater the production of oxygen as a byproduct of photosynthesis.
- Consider incorporating the use of in-situ dataloggers to automatically record dissolved oxygen saturation levels during a period of several days.

4.2 pH

Between one and five measurements were taken in the field for pH at 15 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 5]. Of the 60 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard is 6.5 - 8.0, unless naturally occurring.

Table 5. pH Data Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (standard units)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	4.37 - 5.40	5	5
27-ASH	5	4.38 - 5.31	5	5
24A-ASH	5	4.63 - 5.48	5	5
23-ASH	5	5.12 - 5.82	5	5
20A-ASH	5	5.68 - 6.40	5	5
18-ASH	5	5.79 - 6.55	3	5
16A-ASH	1	6.50	0	1
16-ASH	5	5.90 - 6.56	3	5
15M-ASH	2	5.91 - 5.99	2	2
15J-ASH	1	6.19	1	1
02B-ASH	1	5.86	1	1
02-SBA	5	5.66 - 6.53	3	5
15-ASH	5	5.86 - 6.01	5	5
07-ASH	5	5.88 - 6.20	5	5
01-ASH	5	6.20 - 6.78	3	5
Total	60		51	60

A majority of the pH measurements were below the New Hampshire surface water quality standard minimum (Figure 3). In general, stations in the upper portions of the watershed had lower pH measurements than stations in the lower portions of the watershed.

Lower pH measurements are likely the result of natural conditions such as the soils, geology, or the presence of wetlands in the area. Rain and snow falling in New Hampshire is relatively acidic, which can also affect pH levels; after the spring melt or significant rain events, surface waters will generally have a lower pH.

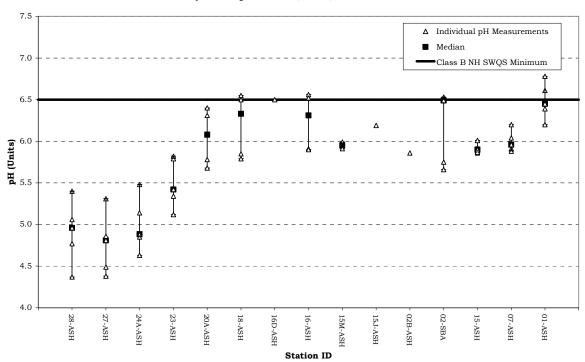


Figure 3. pH Statistics for the Ashuelot River Watershed May 17 - September 15, 2008, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider sampling for pH in some of the tributaries and wetland areas that are influencing the pH of stations with measurements below state standards. Site conditions are considered along with pH measurements because of the narrative portion of the pH standard. RSA 485-A:8 states that pH of Class B waters shall be between 6.5 and 8.0, except when due to natural causes. Wetlands can lower the pH of a river naturally by releasing tannic and humic acids from decaying plant material. If the sampling location is influenced by wetlands or other natural conditions, then the low pH measurements are not considered a violation of water quality standards. It is important to note that the New Hampshire water quality standard for pH is fairly conservative, thus pH levels slightly below the standard are not necessarily harmful to aquatic life. In this case, additional information about factors influencing pH levels is needed.

4.3 Turbidity

Between one and five measurements were taken in the field for turbidity at 15 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 6]. Of the 59 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for turbidity is less than 10 NTU above natural background.

Table 6. Turbidity Data Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (NTU)	Acceptable Samples Potentially Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	0.6 - 1.4	0	5
27-ASH	5	0.5 - 1.6	0	5
24A-ASH	5	0.9 - 1.4	0	5
23-ASH	5	0.7 - 2.3	0	5
20A-ASH	5	1.3 - 3.9	0	5
18-ASH	5	1.6 - 4.0	0	5
16A-ASH	1	2.2	0	1
16-ASH	1	2.4 - 26	1	1
15M-ASH	5	1.6 - 2.3	0	5
15J-ASH	1	2.5	0	1
02B-ASH	1	2.1	0	1
02-SBA	5	1.5 - 4.6	0	5
15-ASH	5	1.7 - 3.3	0	5
07-ASH	5	1.6 - 3.4	0	5
01-ASH	5	1.6 - 2.6	0	5
Total	59		1	59

Turbidity levels were low with the average ranging from 1.0 NTU to 7.7 NTU (Figure 4). Station 16-ASH had one elevated measurement of 26 NTU on 7/21/08 that potentially fails to meet the state of New Hampshire Class B surface water quality standard. Intermittent rain during the sampling date, and rain three days prior to the sampling date was noted on the VRAP Field Data Sheet and may have contributed to the higher turbidity levels due to stormwater runoff and the flushing of wetland areas.

Although clean waters are associated with low turbidity there is a high degree of natural variability involved. Precipitation often contributes to increased turbidity by flushing sediment, organic matter and other materials from the surrounding landscape into surface waters. However, human activities such as removal of vegetation near surface waters and disruption of nearby soils can lead to dramatic increases in turbidity levels. In general it is typical to see a rise in turbidity in more developed areas due to increased runoff.

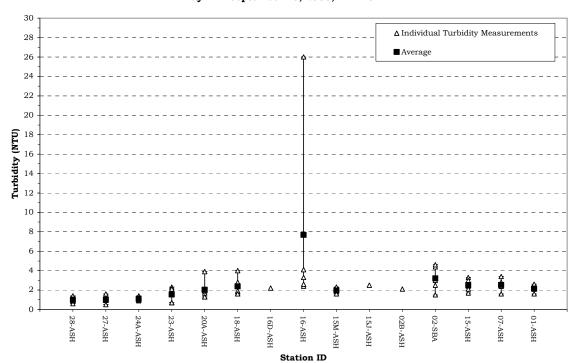


Figure 4. Turbidity Statistics for the Ashuelot River Watershed May 17 - September 15, 2008, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Collect samples during wet weather. This will help us to understand how the river responds to runoff and sedimentation.
- If a higher than normal turbidity measurement occurs, volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated turbidity levels. In addition, take good field notes and photographs. If human activity is suspected or verified as the source of elevated turbidity levels, volunteers should contact NHDES.

4.4 Specific Conductance

Between one and five measurements were taken in the field for specific conductance at 15 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 7]. Of the 60 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

New Hampshire surface water quality standards do not contain numeric criteria for specific conductance although in many fresh surface waters, specific conductance can be used as a surrogate to predict compliance with numeric water quality criteria for chloride.

Table 7. Specific Conductance Data Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (μS/cm)	Acceptable Samples Not Meeting NH Class B Standards (μS/cm as chloride surrogate)	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	20 - 29	0	5
27-ASH	5	25 - 33	0	5
24A-ASH	5	31 - 44	0	5
23-ASH	5	33 - 72	0	5
20A-ASH	5	47 - 79	0	5
18-ASH	5	64 - 175	0	5
16A-ASH	1	72	0	1
16-ASH	5	79 - 156	0	5
15M-ASH	2	88 - 101	0	2
15J-ASH	1	79	0	1
02B-ASH	1	96	0	1
02-SBA	5	59 - 99	0	5
15-ASH	5	83 - 175	0	5
07-ASH	5	84 - 136	0	5
01-ASH	5	75 - 150	0	5
Total	60		0	60

Specific conductance levels were variable with the average ranging from 25.4 μ S/cm to 122.5 μ S/cm (Figure 10). In general, specific conductance measurements tended to be higher in the mid to lower portion of the watershed. Higher specific conductance levels can be indicative of pollution from sources such as urban/agricultural runoff, road salt, failed septic systems, or groundwater pollution. The variable specific conductance levels generally indicate low pollutant levels at some stations and higher levels at others.

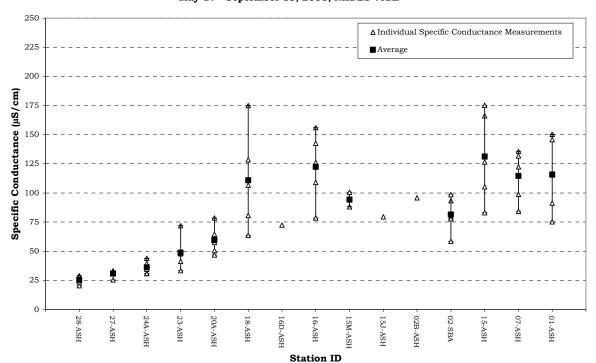


Figure 5. Specific Conductance Statistics for the Ashuelot River Watershed
May 17 - September 15, 2008, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider collecting chloride samples at the same time that specific conductance is measured. During the late winter/early spring snowmelt, higher specific conductance levels are often seen due to elevated concentrations of chloride in the runoff. Specific conductance levels are very closely correlated to chloride levels. Simultaneously measuring chloride and specific conductance will allow for a better understanding of their relationship.
- Consider incorporating the use of in-situ dataloggers to automatically determine specific conductance levels during rain events, snowmelt, and baseline dry weather conditions. The use of these instruments is dependent upon availability, and requires coordination with NHDES.

4.5 Water Temperature

Between one and five measurements were taken in the field for water temperature at 15 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 8]. Of the 60 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Table 8. Water Temperature Data Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (°C)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	14.3 - 23.6	Not Applicable	5
27-ASH	5	12.3 - 21.2	N/A	5
24A-ASH	5	14.4 - 24.2	N/A	5
23-ASH	5	12.6 - 20.9	N/A	5
20A-ASH	5	13.5 - 23.1	N/A	5
18-ASH	5	14.7 - 23.7	N/A	5
16A-ASH	1	19.3	N/A	1
16-ASH	5	13.6 - 22.2	N/A	5
15M-ASH	2	18.2 - 21	N/A	2
15J-ASH	1	18.1	N/A	1
02B-ASH	1	18.4	N/A	1
02-SBA	5	12.6 - 22.2	N/A	5
15-ASH	5	14.0 - 23.6	N/A	5
07-ASH	5	14.2 - 22.8	N/A	5
01-ASH	5	12.8 - 24	N/A	5
Total	60		N/A	60

Figure 6 shows the results of instantaneous water temperature measurements taken at 15 stations in the Ashuelot River watershed. The average water temperature varied from 18.0 °C. to 20.1 °C.

Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and the activity of bacteria in the water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation along the shoreline, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and the influence of groundwater.

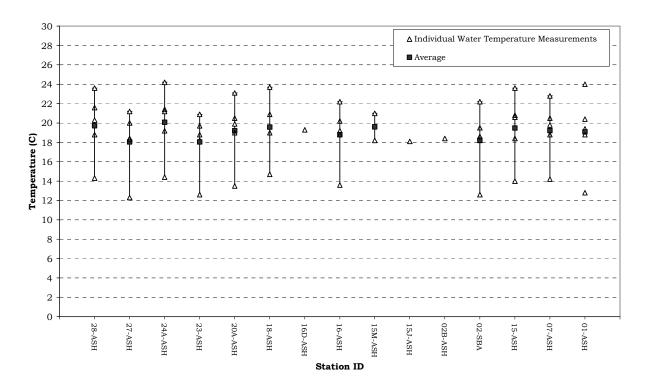


Figure 6. Water Temperature Statistics for the Ashuelot River Watershed
May 17 - September 15, 2008, NHDES VRAP

Recommendations

Continue collecting water temperature data via both instantaneous reading and long-term deployment of dataloggers.

4.6 Escherichia coli/Bacteria

Between one and four samples were taken for *Escherichia coli* (*E. coli*) at 15 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 9). Of the 49 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

Class B New Hampshire surface water quality standards for *E.coli* are as follows:

≤406 cts/100 ml, based on any single sample or ≤126 cts/100 ml, based on a geometric mean calculated from three samples collected within a 60-day period.

Table 9. E.coli Data Summary - Ashuelot River, 2008

Station ID	Samples Collected	Data Range (cts/100ml)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	4	8 - 285	0	4
27-ASH	4	9 - 248	0	4
24A-ASH	4	44 - 236	0	4
23-ASH	4	112 - 727	1	4
20A-ASH	4	28 - 461	1	4
18-ASH	4	65 - 770	2	4
16A-ASH	1	166	0	1
16-ASH	4	128 - 2000	2	4
15M-ASH	2	162 - 228	0	2
15J-ASH	1	276	0	1
02B-ASH	1	411	1	1
02-SBA	4	231 - 866	2	4
15-ASH	4	38 - 291	0	4
07-ASH	4	59 - 1553	1	4
01-ASH	4	99 - 308	0	4
Total	49		10	49

Seven stations had one or more *E.coli* measurements that failed to meet the state of New Hampshire Class B surface water quality standard (Figure 7). Several measurements were particularly elevated on 6/23/08 and 7/21/08. Intermittent rain on both dates, as well as rain three days prior to both dates were noted on the VRAP Field Data Sheets and may have contributed to the higher *E.coli* levels due to stormwater runoff and the flushing of wetland areas.

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife (e.g., birds), and the presence of septic systems along the river

In order to fully determine whether a waterbody is meeting surface water standards for *E.coli* a geometric mean must be calculated. A geometric mean is calculated using three samples collected within a 60-day period. At 11 stations two geometric means were calculated. Of the 22 geometric means calculated 14 failed to meet the state of New Hampshire Class B geometric mean standard of 126 cts/100ml (Table 10).

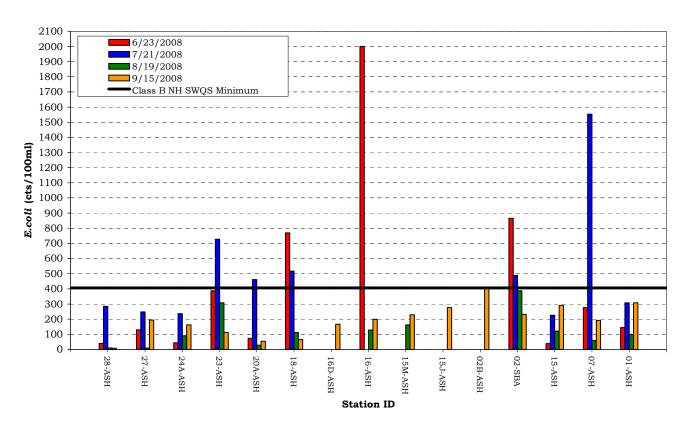


Figure 7. Escherichia coli Statistics for the Ashuelot River Watershed June 23 - September 15 2008, NHDES VRAP

Table 10. E. coli Geometric Mean Data Summary - Ashuelot River, 2008

Station ID	Geometric Means Calculated	Geometric Mean 6/23/08 - 8/19/08	Geometric Mean 7/21/08 - 9/15/08	Geometric Means Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	2	48	28	0	2
27-ASH	2	66	76	0	2
24A-ASH	2	98	152	1	2
23-ASH	2	443	293	2	2
20A-ASH	2	98	89	0	2
18-ASH	2	354	155	2	2
16-ASH	2	831	385	2	2
02-SBA	2	547	352	2	2
15-ASH	2	101	199	1	2
07-ASH	2	294	260	2	2
01-ASH	2	164	211	2	2
Total	22			14	22

Recommendations

- Continue collecting three samples within any 60-day period during the summer to allow for determination of geometric means. Samples need only be collected during the critical period of May 24 to September 15 for assessment purposes. This coincides with the peak contact recreation season.
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling).
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling). At stations with particularly high bacteria levels volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated bacteria levels. Those sampling should also look for any potential sources of bacteria such as emission pipes, failed septic systems, farm animals, pet waste, wildlife and waterfowl.

4.7 Total Phosphorus

Between one and four samples were taken for total phosphorus at 15 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 11). Of the 49 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

There is no numeric standard for total phosphorus for Class B waters. The narrative standard states that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses." The NHDES "level of concern" for total phosphorous is 0.05 mg/L.

Table 11. Total Phosphorus Data Summary - Ashuelot River, 2008

Station ID	Samples Collecte d	Data Range (mg/L)	Acceptable Samples Exceeding NHDES Level of Concern	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	4	0.0064 - 0.011	0	4
27-ASH	4	0.008 - 0.013	0	4
24A-ASH	4	0.0079 - 0.013	0	4
23-ASH	4	0.0095 - 0.020	0	4
20A-ASH	4	0.0091 - 0.030	0	4
18-ASH	4	0.012 - 0.030	0	4
16A-ASH	1	0.015 - 0.015	0	1
16-ASH	4	0.024 - 0.140	2	4
15M-ASH	2	0.037 - 0.048	0	2
15J-ASH	1	0.026 - 0.026	0	1
02B-ASH	1	0.029 - 0.029	0	1
02-SBA	4	0.020 - 0.060	1	4
15-ASH	4	0.026 - 0.090	2	4
07-ASH	4	0.025 - 0.060	1	4
01-ASH	4	0.024 - 0.060	2	4
Total	49		8	49

Five stations had one or more total phosphorus levels that above the NHDES "level of concern" (Figure 8). In general, total phosphorus measurements tended to be higher in the mid to lower portion of the watershed.

Under undisturbed natural conditions phosphorus is at very low levels in aquatic ecosystems. Of the three nutrients critical for aquatic plant growth; potassium, nitrogen, and phosphorus, it is usually phosphorus that is the limiting factor to plant growth. When the supply of phosphorus is increased due to human activity, algae respond with significant growth.

A major source of excessive phosphorus concentrations in aquatic ecosystems can be wastewater treatment facilities, as sewage typically contains relatively high levels of phosphorus detergents. However, fertilizers used on lawns and agricultural areas can also contribute significant amounts of phosphorus.

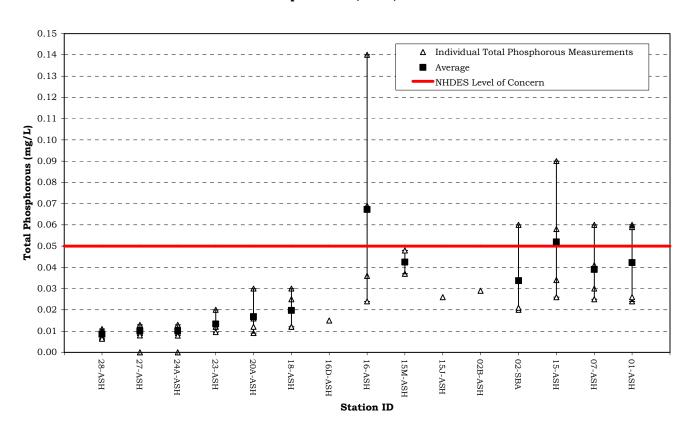


Figure 8. Total Phosphorous Statistics for the Ashuelot River Watershed
June 23 - September 15, 2008, NHDES VRAP

Recommendations

Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.

4.8 Chloride

One sample was taken for chloride at four stations in the Ashuelot River watershed from Washington to Hinsdale (Table 12). Of the four samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for chloride is as follows:

Freshwater chronic criterion 230 mg/l Freshwater acute criterion 860 mg/l

Table 12. Chloride Data Summary - Ashuelot River Watershed, 2008

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
16D-ASH	1	61	0	1
16A-ASH	1	18	0	1
15J-ASH	1	24	0	1
15M-ASH	1	16	0	1
Total	4		0	4

All measurements were below the state of New Hampshire Class B chronic surface water quality standard (Figure 9).

Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. Road salt readily dissolves and enters aquatic environments in ionic forms. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans. Additional human sources of chloride can come from fertilizers, septic systems, and underground water softening systems.

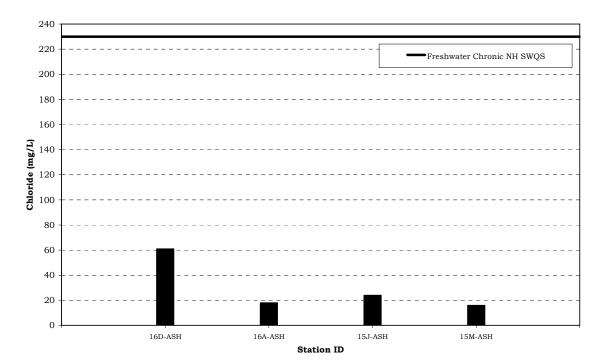


Figure 9. Chloride Statistics for the Ashuelot River Watershed December 10, 2008, NHDES VRAP

Recommendations

■ Continue collecting chloride samples during both low-flow summer months and during snowmelt period in winter and early spring. It is critical that specific conductance be recorded when chloride samples are collected.

4.9 Cadmium

Five samples were collected for cadmium at 11 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 13). Of the 55 samples collected, all met quality assurance/quality control (QA/QC) requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standards for cadmium are dependent on the hardness of the water. As in this case where station and date specific hardness values are not available, the 8 digit hydrologic unit code hardness median shall be used to calculate the hardness dependent critieria. The regional median hardness value for the Ashuelot River watershed is 15.9 mg/L.

Freshwater chronic criterion 0.00058 mg/l Freshwater acute criterion: 0.00058 mg/L

The conventional methods used to collect these and most metal samples can be influenced by sample contamination. Sample contamination occurs from trace amounts of metals impacting and elevating the levels of a measurement. Sources of contamination include laboratory and sampling equipment, air and soil contamination, and residue from the individuals handling the samples.

NHDES takes into account a common contamination factor when comparing non-clean samples to the criteria threshold concentrations for the commonly contaminated metals. Using calculations outlined in the 2008 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology (CALM) we thus make a likely contamination adjustment to criteria for determining the freshwater criteria for cadmium using "non-clean" techniques:

Freshwater chronic criterion + Common Contamination Factor: 0.0083 mg/L Freshwater acute criterion + Common Contamination Factor: 0.0084 mg/L

Table 13. Cadmium Data Summary - Ashuelot River Watershed, 2008

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	<0.00025	0	5
27-ASH	5	<0.00025	0	5
24A-ASH	5	<0.00025	0	5
23-ASH	5	<0.00025	0	5
20A-ASH	5	<0.00025	0	5
18-ASH	5	<0.00025 - 0.00070	0	5
16-ASH	5	<0.00025 - 0.00040	0	5
02-SBA	5	<0.00025	0	5
15-ASH	5	<0.00025	0	5
07-ASH	5	<0.00025	0	5
01-ASH	5	<0.00025 - 0.00030	0	5
Total	55	_	0	55

Using the standard water quality criteria for cadmium, two samples at 18-ASH exceeded the freshwater acute water quality standard for cadmium. In all other cases the samples were below the laboratory detection limit and this detection limit was below the standard.

As these samples were collected without clean techniques NHDES will use the standard water quality criteria plus a common contamination factor to determine if the samples are exceeding the freshwater standard for cadmium. Those samples (such as at 18-ASH) between the standard criteria and the standard criteria plus the common contamination factor are flagged as "potentially not supporting".

Cadmium is found naturally in small quantities in air, water and soil. It can also me released into the air when household or industrial wastes are burned, from car exhaust, and from certain manufacturing processes.

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends.
- NHDES and ARLAC should seek to sample those stations with measurements that exceed the standard criteria using clean techniques. The NHDES laboratory now has the ability to analyze metals samples collected using clean techniques.

4.10 Copper

Either four or five samples were collected for copper at 11 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 14). Of the 54 samples collected, all met quality assurance/quality control (QA/QC) requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standards for copper are dependent on the hardness of the water. As in this case where station and date specific hardness values are not available, the 8 digit hydrologic unit code hardness median shall be used to calculate the hardness dependent critieria. The regional median hardness value for the Ashuelot River watershed is 15.9 mg/L.

Freshwater chronic criterion: 0.0019 mg/l Freshwater acute criterion: 0.0025 mg/L

The conventional methods used to collect these and most metal samples can be influenced by sample contamination. Sample contamination occurs from trace amounts of metals impacting and elevating the levels of a measurement. Sources of contamination include laboratory and sampling equipment, air and soil contamination, and residue from the individuals handling the samples.

NHDES takes into account a common contamination factor when comparing non-clean samples to the criteria threshold concentrations for the commonly contaminated metals. Using calculations outlined in the 2008 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology (CALM) we thus make a likely contamination adjustment to criteria for determining the freshwater criteria for cadmium using "non-clean" techniques:

Freshwater chronic criterion + Common Contamination Factor: 0.0157 mg/L Freshwater acute criterion + Common Contamination Factor: 0.0166 mg/L

Table 14. Copper Data Summary - Ashuelot River Watershed, 2008

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	<0.0025	0	5
27-ASH	5	<0.0025	0	5
24A-ASH	5	<0.0025 - 0.0026	0	5
23-ASH	5	<0.0025 - 0.0028	0	5
20A-ASH	5	<0.0025	0	5
18-ASH	4	<0.0025- 0.0046	0	4
16-ASH	5	<0.0025 - 0.0046	0	5
02-SBA	5	<0.0025 - 0.0028	0	5
15-ASH	5	<0.0025	0	5
07-ASH	5	<0.0025 - 0.0025	0	5
01-ASH	5	<0.0025 - 0.0041	0	5
Total	54		0	54

Using the standard water quality criteria for copper, stations 18-ASH, 16-ASH, 07-ASH and 01-ASH had at least one copper measurement that exceeded the freshwater acute water quality standard (Table 14). The laboratory detection limit for the standard method used to process these samples was 0.0025 mg/L. Since this detection limit is the same as the acute standard, any sample above the detection limit was also above the acute standard for copper. Those samples reported as less than the detection limit cannot be used for assessment purposes because the detection limit is at or above the water quality criteria.

As these samples were collected without clean techniques NHDES will use the standard water quality criteria plus a common contamination factor to determine if the samples are exceeding the freshwater standard for copper. Those samples between the standard criteria and the standard criteria plus the common contamination factor are flagged as "potentially not supporting".

Potential sources of elevated copper levels are the corrosion of plumbing, erosion of natural deposits, some mining activities, industrial pollution, and some domestic wastewaters.

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends.
- NHDES and ARLAC should seek to sample those stations with measurements that exceed the standard criteria using clean techniques. The NHDES laboratory now has the ability to analyze metals samples collected using clean techniques.

4.13 Lead

Five samples were collected for lead at 11 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 15). Of the 55 samples collected, all met quality assurance/quality control (QA/QC) requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standards for lead are dependent on the hardness of the water. As in this case where station and date specific hardness values are not available, the 8 digit hydrologic unit code hardness median shall be used to calculate the hardness dependent critieria. The regional median hardness value for the Ashuelot River watershed is 15.9 mg/L.

Freshwater chronic criterion: 0.0003 mg/L Freshwater acute criterion: 0.0079 mg/L

The conventional methods used to collect these and most metal samples can be influenced by sample contamination. Sample contamination occurs from trace amounts of metals impacting and elevating the levels of a measurement. Sources of contamination include laboratory and sampling equipment, air and soil contamination, and residue from the individuals handling the samples.

NHDES takes into account a common contamination factor when comparing non-clean samples to the criteria threshold concentrations for the commonly contaminated metals. Using calculations outlined in the 2008 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology (CALM) we thus make a likely contamination adjustment to criteria for determining the freshwater criteria for cadmium using "non-clean" techniques:

Freshwater "non-clean" chronic criterion: 0.0048 mg/l Freshwater "non-clean" acute criterion: 0.0182 mg/L

Table 15. Lead Data Summary - Ashuelot River Watershed, 2008

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Not Meeting NH Class B Standards for Clean and Non- Clean Techniques	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	<0.003	0	5
27-ASH	5	<0.003	0	5
24A-ASH	5	<0.003	0	5
23-ASH	5	<0.003	0	5
20A-ASH	5	<0.003	0	5
18-ASH	5	<0.003	0	5
16-ASH	5	<0.003	0	5
02-SBA	5	<0.003	0	5
15-ASH	5	<0.003	0	5
07-ASH	5	<0.003	0	5
01-ASH	5	<0.003	0	5
Total	55		0	55

All stations had lead measurements that were below the detection limit on all occasions. However, this detection limit is above the standard chronic criteria for lead so no determinations can be made regarding water quality standards.

Potential sources of elevated lead levels are the erosion of natural deposits, industrial discharges, and presence of lead in the streambed from sources such as fishing lures or lead ammunition.

Recommendations

Continue sampling at all stations, in order to develop a long-term data set to better understand trends as time goes on.

4.14 Zinc

Five samples were collected for zinc at 11 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 16). Of the 55 samples collected, all met quality assurance/quality control (QA/QC) requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standards for zinc are dependent on the hardness of the water. As in this case where station and date specific hardness values are not available, the 8 digit hydrologic unit code hardness median shall be used to calculate the hardness dependent critieria. The regional median hardness value for the Ashuelot River watershed is 15.9 mg/L.

Freshwater chronic criterion: 0.025 mg/l Freshwater acute criterion: 0.025 mg/L

The conventional methods used to collect these and most metal samples can be influenced by sample contamination. Sample contamination occurs from trace amounts of metals impacting and elevating the levels of a measurement. Sources of contamination include laboratory and sampling equipment, air and soil contamination, and residue from the individuals handling the samples.

NHDES takes into account a common contamination factor when comparing non-clean samples to the criteria threshold concentrations for the commonly contaminated metals. Using calculations outlined in the 2008 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology (CALM) we thus make a likely contamination adjustment to criteria for determining the freshwater criteria for cadmium using "non-clean" techniques:

Freshwater "non-clean" chronic criterion: 0.074 mg/l Freshwater "non-clean" acute criterion: 0.074 mg/L

Table 16. Zinc Data Summary - Ashuelot River Watershed, 2008

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	<0.009 – 0.010	0	5
27-ASH	5	<0.009 - 0.011	0	5
24A- ASH	5	<0.009 – 0.010	0	5
23-ASH	5	<0.009 – 0.024	0	5
20A- ASH	5	<0.009 – 0.010	0	5
18-ASH	5	<0.009 - 0.011	0	5
16-ASH	5	<0.009 - 0.017	0	5
02-SBA	5	<0.009	0	5
15-ASH	5	<0.009	0	5
07-ASH	5	<0.009 – 0.009	0	5
01-ASH	5	<0.009	0	5
Total	55		0	55

Using the standard water quality criteria for zinc, all stations at all times were below the freshwater chronic water quality standard (Table 16). Station 23-ASH was 0.001 mg/L below the standard chronic criteria for zinc.

Potential sources of zinc are runoff from smelting and refining operations, industrial discharges, and weathering of bedrock. Zinc can also enter surface water via airborne sources such as atmospheric deposition as automobiles and fuel combustion.

Recommendations

- Continue sampling at all stations in order to develop a long-term dataset to better understand trends as time going on.
- NHDES and ARLAC should seek to sample those stations with measurements that are close to the standard criteria using clean techniques. The NHDES laboratory now has the ability to analyze metals samples collected using clean techniques.

APPENDIX A: 2008 ASHUELOT RIVER WATERSHED VRAP DATA

Measurements not meeting New Hampshire surface water quality standards

Total Phosphorous measurements exceeding NHDES level of concern

Turbidity measuremets potentially not meeting New Hampshire surface water quality standards

Metal samples listed as "potentially not supporting"

Measurements not meeting NHDES quality assurance/quality control standards

28-ASH, Ashuelot River, Route 31, Washington

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	07:43	9.51	92.4	4.37	0.6	25.8	14.3				<0.00025	<0.0025	<0.0030	0.01
06/23/08	07:40	7.82	86.4	4.96	1.2	27.9	20.3	40		0.011	<0.00025	<0.0025	<0.0030	<0.009
07/21/08	07:35	7.21	84.9	5.40	1.4	28.9	23.6	285		0.010	<0.00025	<0.0025	<0.0030	<0.009
08/19/08	00:00	7.72	87.5	4.77	0.9	20.4	21.6	10	48	0.007	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	07:46	8.50	91.2	5.06	0.9	23.8	18.8	8	28	0.006	<0.00025	<0.0025	<0.0030	<0.009

27-ASH, Ashuelot River, Mountain Road, Lempster

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(µS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} ^B mg/L	<0.025 ^{A,B} mg/L
05/17/08	08:42	9.85	92.1	4.38	0.5	30.7	12.3				< 0.00025	< 0.0025	< 0.0030	0.009
06/23/08	08:20	8.02	85.7	4.81	1.0	33.2	18.4	130		0.013	<0.00025	<0.0025	<0.0030	<0.009
07/21/08	08:05	7.64	87.1	5.31	1.6	32.2	21.2	248		< 0.010	< 0.00025	< 0.0025	<0.0030	0.011
08/19/08	00:00	7.95	87.4	4.86	1.0	25.3	20.0	9	66	0.009	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	08:10	8.45	89.5	4.49	1.0	32.6	18.3	194	76	0.008	<0.00025	<0.0025	<0.0030	<0.009

24A-ASH, Ashuelot River, Route 10, Marlow

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:15	9.25	90.4	4.63	1.4	37.8	14.4				<0.00025	< 0.0025	<0.0030	0.01
06/23/08	09:12	7.75	85.7	5.14	1.2	43.9	21.2	44		0.013	<0.00025	<0.0025	<0.0030	<0.009
07/21/08	08:40	7.39	88.0	5.48	1.0	39.4	24.2	236		< 0.010	<0.00025	<0.0025	<0.0030	<0.009
08/19/08	00:00	7.99	90.3	4.85	1.1	34.4	21.4	91	98	0.010	< 0.00025	< 0.0025	<0.0030	< 0.009
09/15/08	08:48	8.69	94.0	4.89	0.9	30.8	19.2	162	152	0.008	< 0.00025	< 0.0025	<0.0030	< 0.009

A Hardness dependent metal. The water quality standard is caluculated based on hardness value. As in this case where site/date specific hardness values are not available, the 8 digit HUC hardness median shall be used to calulate the hardness dependent critieria. Regional median hardness value for the Ashuelot River watershed is 15.9 mg/L.

^B Chronic water quality standard

23-ASH, Asheulot River, Route 10, Gilsum

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:38	10.39	97.3	5.12	0.7	47.7	12.6				<0.00025	<0.0025	<0.0030	<0.009
06/23/08	09:44	8.70	92.2	5.79	1.9	71.9	18.2	387		0.012	<0.00025	0.0028	<0.0030	0.024
07/21/08	09:20	8.45	94.7	5.82	2.3	49.3	20.9	727		0.020	<0.00025	<0.0025	<0.0030	<0.009
08/19/08	00:00	8.59	94.1	5.42	2.1	41.3	19.7	308	443	0.012	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	09:25	9.01	96.7	5.34	0.7	33.3	18.8	112	293	0.010	<0.00025	<0.0025	<0.0030	<0.009

20A-ASH, Ashuelot River, Stone Arch Bridge, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	08:00	9.06	87.2	6.31	1.3	57.5	13.5				< 0.00025	< 0.0025	<0.0030	< 0.009
06/23/08	07:30	7.80	81.2	6.40	1.7	78.5	19.9	73		0.016	<0.00025	< 0.0025	<0.0030	0.01
07/21/08	07:15	6.49	76.0	6.08	3.9	64.6	23.1	461		0.030	<0.00025	< 0.0025	<0.0030	<0.009
08/19/08	00:00	7.20	88.2	5.78	1.3	50.5	20.5	28	98	0.009	<0.00025	< 0.0025	<0.0030	<0.009
09/15/08	08:30	8.53	92.0	5.68	1.9	46.8	19.0	55	89	0.012	<0.00025	< 0.0025	<0.0030	< 0.009

18-ASH, Ashuelot River, Route 101, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:07	9.11	90.0	6.55	1.9	106.6	14.7				<0.00025	0.0046	<0.0030	0.011
06/23/08	08:10	7.63	83.3	6.50	4.0	175.0	19.6	770		0.025	0.00070		<0.0030	0.011
07/21/08	07:42	6.72	79.5	6.33	2.8	128.5	23.7	517		0.030	0.00040	< 0.0025	<0.0030	< 0.009
08/19/08	00:00	7.66	88.6	5.79	1.6	80.7	20.9	111	354	0.012	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	09:10	8.37	90.2	5.85	1.6	63.6	19.0	65	155	0.012	<0.00025	<0.0025	<0.0030	<0.009

16AD-ASH, 50 Feet Upstream of Keene WWTF, Swanzey

Date	Time of Sample	Chloride (mg/L)					
Standard	NA	230B					
12/10/08	9:15	61					

16A-ASH, Ashuelot River, 10' Downstream of Confluence with South Branch Ashuelot River

	Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	Total Phosphorus (mg/L)	Chloride (mg/L)
	Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	NA	230 ^B
[09/15/08	12:50	8.97	97.4	_6 .50	2.2	72.4	19.3	166	0.015	18

16-ASH, Ashuelot River, Cresson Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	10:05	9.15	88.0	6.56	3.3	126.2	13.6				<0.00025	< 0.0025	<0.0030	0.010
06/23/08	09:12	7.45	80.8	6.52	4.1	156.0	19.2	2000		0.069	<0.00025	0.0045	<0.0030	< 0.009
07/21/08	09:00	6.50	74.5	6.31	26.0	142.6	22.2	2241		0.140	0.00040	0.0046	0.0048	0.017
08/19/08	00:00	7.25	80.5	5.91	2.4	108.9	20.2	128	831	0.036	<0.00025	< 0.0025	<0.0030	<0.009
09/15/08	09:45	8.28	88.8	5.90	2.6	78.6	18.8	199	385	0.024	<0.00025	< 0.0025	<0.0030	< 0.009

15M-ASH, Ashuelot River, Intersection of Route 10 and Winchester Street, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	NA	230 ^B
08/19/08	09:31	7.83	87.8	5.99	1.6	100.6	21.0	162	0.037	
09/15/08	08:54	8.44	89.7	_5 .91	2.3	88.1	18.2	228	0.048	
12/10/08										16

15J-ASH, Ashuelot River, Upstream of Faulkner's Garden, Swanzev

100 11011,	50-ASH, ASHACIOC RIVEL, Opsiliam of Faurkiel's Galucii, Swanzey									
Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(µS/cm as chloride surrogate)	NA	<406	NA	230 ^B
09/15/08	08:00	8.70	92.3	_6 .19	2.5	79.5	18.1	276	0.026	
12/10/08	9:35									24

02B-SBA, South Branch Ashuelot River, Upstream of Monadnock Regional High School, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	Total Phosphorus (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	NA
09/15/08	09:35	8.39	89.3	5.86	2.1	95.8	18.4	411	0.029

02-SBA, South Branch Ashuelot River, Route 32 Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:35	9.35	87.9	6.51	1.5	79.3	12.6				<0.00025	<0.0025	<0.0030	<0.009
06/23/08	08:50	8.24	87.6	6.49	4.4	93.3	18.2	866		0.034	<0.00025	0.0028	<0.0030	<0.009
07/21/08	08:15	7.35	84.4	6.53	4.6	98.5	22.2	488		0.060	<0.00025	<0.0025	<0.0030	<0.009
08/19/08	00:00	7.80	80.0	5.75	3.0	77.7	19.5	387	547	0.020	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	10:30	8.11	86.8	5.66	2.5	58.5	18.6	231	352	0.021	<0.00025	<0.0025	<0.0030	<0.009

15-ASH, Ashuelot River, Thompson Bridge, West Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:45	9.72	94.4	5.86	1.7	126.5	14.0				<0.00025	< 0.0025	< 0.0030	<0.009
06/23/08	10:25	7.39	82.5	6.01	2.4	166.3	20.6	38		0.058	<0.00025	<0.0025	<0.0030	<0.009
07/21/08	09:35	6.36	74.0	5.92	3.3	175.2	23.6	225		0.090	<0.00025	< 0.0025	<0.0030	< 0.009
08/19/08	00:00	7.32	83.7	5.87	2.1	105.2	20.8	121	101	0.034	<0.00025	< 0.0025	<0.0030	< 0.009
09/15/08	09:25	8.36	89.3	5.90	3.0	83.0	18.4	291	199	0.026	< 0.00025	< 0.0025	<0.0030	< 0.009

07-ASH, Ashuelot River, Route 119, Winchester

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Water Temp. (°C)	Specific Conductance (uS/cm)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	09:10	9.87	95.9	5.88	1.6	122.4	14.2				<0.00025	0.0025	<0.0030	0.009
06/23/08	09:30	7.96	87.4	6.20	2.8	135.7	19.8	276		0.041	< 0.00025	< 0.0025	<0.0030	< 0.009
07/21/08	08:40	6.87	79.8	5.91	3.4	131.8	22.8	1553		0.060	<0.00025	< 0.0025	<0.0030	< 0.009
08/19/08	00:00	7.56	81.6	5.96	2.4	98.8	20.5	59	294	0.030	<0.00025	<0.0025	<0.0030	<0.009
09/15/08	08:50	8.50	92.0	6.04	2.4	84.3	18.8	192	260	0.025	<0.00025	<0.0025	<0.0030	<0.009

01-ASH, Ashuelot River, 147 River Street, Hinsdale

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Cadmium	Copper	Lead	Zinc
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	<0.00058 ^{A,B} mg/L	<0.0019 ^{A,B} mg/L	<0.00031 ^{A,} B mg/L	<0.025 ^{A,B} mg/L
05/17/08	07:40	10.16	96.3	6.20	1.6	116.2	12.8				< 0.00025	< 0.0025	<0.0030	0.009
06/23/08	08:34	8.84	96.1	6.78	2.3	150.3	19.4	145		0.059	0.00030	< 0.0025	<0.0030	< 0.009
07/21/08	08:05	8.03	95.4	6.61	2.6	145.8	24.0	308		0.060	< 0.00025	0.0041	<0.0030	<0.009
08/19/08	00:00	8.21	92.0	6.45	2.1	91.3	20.4	99	164	0.024	< 0.00025	<0.0025	<0.0030	<0.009
09/15/08	08:15	9.36	100.2	6.39	2.1	75.2	18.8	308	211	0.026	<0.00025	< 0.0025	<0.0030	< 0.009

APPENDIX B: Interpreting VRAP Water Quality Monitoring Parameters

Chemical Parameters

Dissolved Oxygen (DO)

- **Unit of Measurement:** concentration in milligrams per liter (mg/L) and percent saturation (%).
- **Description:** A measure of the amount of oxygen in the water: Concentration is a measure of the amount of oxygen in a volume of water; saturation is a measurement of the amount of oxygen in the water compared to the amount of oxygen the water can actually hold at full saturation. Both of these measurements are necessary to accurately determine whether New Hampshire surface water quality standards are met.
- **Importance**: Oxygen is dissolved into the water from the atmosphere, aided by wind and wave action, or by rocky, steep, or uneven stream beds. The presence of dissolved oxygen is vital to bottom-dwelling organisms as well as fish and amphibians. Aquatic plants and algae produce oxygen in the water during the day, and consume oxygen during the night. Bacteria utilize oxygen both day and night when they process organic matter into smaller and smaller particles.

Class A NH Surface Water Quality Standard: 6 mg/L at any place or time, or 75% minimum daily average – (unless naturally occurring).

Class B NH Surface Water Quality Standard: 5 mg/L at any place or time or 75% minimum daily average – (unless naturally occurring).

Several measurements of oxygen saturation taken in a 24-hour period must be averaged to compare to the 75 percent daily average saturation standard. The concentration of dissolved oxygen is dependent on many factors including temperature and sunlight, and tends to fluctuate throughout the day. Saturation values are averaged because a reading taken in the morning may be low due to respiration, while a measurement that afternoon may show that the saturation has recovered to acceptable levels. Water can become saturated with more than 100 percent dissolved oxygen.

pН

- **Unit of Measurement:** units (no abbreviation).
- **Description:** A measure of hydrogen ion activity in water, or, in general terms, the acidity of water. pH is measured on a logarithmic scale of 0 to 14, with 7 being neutral. A high pH indicates alkaline (or basic) conditions and a low pH indicates acidic conditions. pH is influenced by geology and soils, organic acids (decaying leaves and other matter), and human-induced acids from acid rain (which typically has a pH of 3.5 to 5.5).
- Importance: pH affects many chemical and biological processes in the water and this is important to the survival and reproduction of fish and other aquatic life. Different organisms flourish within different ranges of pH. Measurements outside of an organism's preferred range can limit growth and reproduction and lead to physiological stress. Low pH can also affect the toxicity of aquatic compounds such as ammonia and certain metals by making them more "available" for uptake by aquatic plants and animals. This can produce conditions that are toxic to aquatic life.

1

Class A NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring). Class B NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring).

Sometimes, readings that fall below this range are determined to be naturally occurring. This is often a result of wetlands near the sample station. Wetlands can lower pH because the tannic and humic acids released by decaying plants can cause water to become more acidic.

pH Units	Category
<5.0	High Impact
5.0 – 5.9	Moderate to High Impact
6.0 – 6.4	Normal; Low Impact
6.5 – 8.0	Normal;
6.1 – 8.0	Satisfactory

Specific Conductance or Conductivity

- Unit of Measurement: micromhos per centimeter (umhos/cm) or microsiemens per centimeter (uS/cm).
- **Description:** The numerical expression of the ability of water to carry an electrical current at 25° C and a measure of free ion (charged particles) content in the water. These ions can come from natural sources such as bedrock, or human sources such as stormwater runoff. Specific conductance can be used to indicate the presence of chlorides, nitrates, sulfates, phosphates, sodium, magnesium, calcium, iron, and aluminum ions. There is a difference between conductivity and specific conductance. Specific conductance measures the free ion content of water at a *specific* water temperature, whereas conductivity measures the free ion content of water at 25° C. VRAP uses the term "specific conductance" because our conductivity measurements account for temperature. In some studies and programs, the term "conductivity" is used. This term should only be used when the measurement *does not* adjust to a specific temperature.
- Importance: Specific conductance readings can help locate potential pollution sources because polluted water usually has a higher specific conductance than unpolluted waters. High specific conductance values often indicate pollution from road salt, septic systems, wastewater treatment plants, or urban/agricultural runoff. Specific conductance can also be related to geology. In unpolluted rivers and streams, geology and groundwater are the primary influences on specific conductance levels.

Class A NH Surface Water Quality Standard: No numeric standard.
Class B NH Surface Water Quality Standard: No numeric standard.

Although there is no formal standard for specific conductance, data collect by VRAP groups and NHDES indicated a very close relationship between specific conductance levels and chloride. In some cases NHDES can use specific conductance measurements as a surrogate for chloride levels. The data collected by NHDES indicate that the chronic chloride standard is correlated with a specific conductance level of approximately $850~\mu S/cm$.

Specific Conductance	Category
(uS/cm)	
0 – 100	Normal
101 – 200	Low Impact
201 – 500	Moderate Impact
> 501	High Impact
> 850	Likely exceeding chronic chloride standard

Turbidity

- Unit of Measurement: Nephelometric Turbidity Units (abbreviated at NTU).
- **Description:** A measurement of the amount of suspended material in the water. This material, which is comprised of particles such as clay, silt, algae, suspended sediment, and decaying plant material, causes light to be scattered and absorbed, rather than transmitted in straight lines through the water.
- Importance: Higher turbidity increases water temperatures because suspended particles absorb more heat. This, in turn, reduces dissolved oxygen (DO) concentrations because warm water holds less DO than cold water. Higher turbidity also reduces the amount of light that can penetrate the water, which reduces photosynthesis and DO production. Suspended materials can clog fish gills, reducing disease resistance, lowering growth rates, and affecting egg and larval development. As the particles settle, they can blanket the stream bottom, especially in slower waters, and smother fish eggs and benthic macroinvertebrates. Clean waters are generally associated with low turbidity, but there is a high degree of natural variability involved. Rain events can increase turbidity in surface waters by flushing sediment, organic matter and other materials into the water. Human activities such as vegetation removal and soil disruption can also lead to dramatic increases in turbidity levels.

Class A NH Surface Water Quality Standard: As naturally occurs.

Class B NH Surface Water Quality Standard: Shall not exceed naturally occurring conditions by more than 10 NTU.

Physical Parameters

Temperature

- Unit of Measurement: Degrees Celsius (° C)
- Importance: Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and bacteria activity in water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and groundwater.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Chlorophyll-a (Chlor a)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** An indicator of the biomass, or abundance, of planktonic algae in the river. The technical term "biomass" is used to represent "amount by weight." Chlorophyll-a can be strongly influenced by phosphorus, which is derived by natural and human activities.

Importance: Because algae is a plant and contains the green pigment chlorophyll-a, the concentration of chlorophyll-a found in the water gives an estimation of the concentration of algae. If the chlorophyll-a concentration increases, this indicates an increase in the algal population.

Class A NH Surface Water Quality Standard: No numeric standard.

Class B NH Surface Water Quality Standard: No numeric standard.

Chlorophyll-a (mg/L)	Category
< 3	Excellent
3 - 7	Good
7 – 15	Less than desirable
> 15	Nuisance

Total Phosphorus (TP)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** A measure of all forms of phosphorus in the water, including inorganic and organic forms. There are many sources of phosphorus, both natural and human. These include soil and rocks, sewage, animal manure, fertilizer, erosion, and other types of contamination.
- Importance: Phosphorus is a nutrient that is essential to plants and animals. However, excess amounts can cause rapid increases in the biological activity in water. Phosphorus is usually the "limiting nutrient" in freshwater streams, which means relatively small amounts can increase algae and chlorophyll-a levels. Algal blooms and/or excessive aquatic plant growth can decrease oxygen levels and make water unattractive. Phosphorus can indicate the presence of septic systems, sewage, animal waste, lawn fertilizer, road and construction erosion, other types of pollution, or natural wetlands and atmospheric deposition.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses.

Total Phosphorus (mg/L)	Category
< 0.010	Ideal
0.011 - 0.025	Average
0.026 - 0.050	More than desirable
> 0.051	Excessive (potential nuisance concentration)

Total Kjeldahl Nitrogen (TKN)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** A measure of the amount of ammonia and organic nitrogen in the water.
- **Importance:** High nitrogen levels can increase algae and chlorophyll-a levels in the river, but is generally less of a concern in fresh water than phosphorus. Nitrogen can indicate the presence of sewage, animal waste, fertilizer, erosion, or other types of pollution.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no nitrogen in such concentrations that would impair any existing or designated uses.

TKN (mg/L)	Category
< 0.25	Ideal
0.26 - 0.40	Average
0.41 - 0.50	More than desirable
> 0.51	Excessive (potential nuisance concentration)

Other Parameters

Chloride

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** The chloride ion (Cl-) is found naturally in some surface waters and groundwater. It is also found in high concentrations in seawater. Higher-than-normal chloride concentrations in freshwater is detrimental to water quality. In New Hampshire, applying road salt for winter accident prevention is a large source of chloride to the environment. Unfortunately, this has increased over time due to road expansion and increased vehicle traffic. Road salt (most often sodium chloride) readily dissolves and enters aquatic environments in ionic forms. Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Sodium chloride is also used on foods as table salt, and consequently is present in human waste. Thus, sometimes chloride in water can indicate sewage pollution. Saltwater intrusion can also elevate groundwater chlorides in drinking water wells near coastlines. Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans.
- Importance: Research shows elevated chloride levels can be toxic to freshwater aquatic life. Among the species tested, freshwater aquatic plants and invertebrates tend to be the most sensitive to chloride. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria.

Acute Standard: 860 mg/L.

Chronic Standard: 230 mg/L.

Escherichia Coliform Bacteria (E. coli)

- Unit of Measurement: Counts per 100 milliliter (cts/100 mL).
- **Description:** An indicator of the potential presence of pathogens in fresh water. *E. coli* bacteria is a normal component in the large intestines of humans and other warm-blooded animals, and can be excreted in their fecal material. Organisms causing infections or disease (pathogens) are often excreted in the fecal material of humans and other warm-blooded animals.
- **Importance:** *E.coli* bacteria is a good indicator of fecal pollution and the possible presence of pathogenic organisms. In freshwater, *E. coli* concentrations help determine if the water is safe for recreational uses such as swimming.

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife, and the presence of septic systems along the river.

Class A NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 47 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 153 *E.coli* cts/100 mL in any one sample.

Class B NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 126 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 406 *E.coli* cts/100 mL in any one sample.

Metals

Depending on the metal concentration, its form (dissolved or particulate), and the hardness of the water, trace metals can be toxic to aquatic life. Metals in dissolved form are generally more toxic than metals in the particulate form. The dissolved metal concentration is dependent on pH, as well as the presence of solids and organic matter that can bind with the metal to render it less toxic.

Hardness is primarily a measure of the calcium and magnesium ion concentrations in water, expressed as calcium carbonate. The hardness concentration affects the toxicity of certain metals. New Hampshire water quality regulations include numeric criteria for a variety of metals. Since dissolved metals are typically found in extremely low concentrations, the potential contamination of samples collected for trace metals analyses has become a primary concern of water quality managers. To prevent such contamination and to ensure reliable results, the use of "clean techniques" is becoming more and more frequent when sampling for dissolved metals. Because of this, sampling for metals may be more costly and require additional effort than in the past.

New Hampshire Volunteer River Assessment Program

29 Hazen Drive – PO Box 95 Concord, NH 03302-0095 p (603) 271-0699 – f (603) 271-7894 www.des.nh.gov

2008

APPENDIX C:

2008 VRAP Field Audit

On August 19, 2008 VRAP staff visited volunteers from the Ashuelot River VRAP group to conduct a field audit. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group is notified of the result of the verification visit. During the visit, volunteers were assessed in the following five categories:

1) Overall Sampling Procedures

Appropriate storage of meters, sample collection, laboratory sample collection and transportation, beginning and end of day meter checks, collecting a field replicate, performing QA/QC Meter Checks, and ensuring that all calibration and sampling data are properly documented on the 2008 VRAP Field Data Sheet and the Laboratory Services Login & Custody Sheet.

2) Turbidity

Inspecting and cleaning of glass turbidity vials prior to measurement of standards and samples, performing the *Initial Turbidity Meter Check*, calibrating the meter to a known standard at the beginning of the sampling day, recording the value of the DI turbidity blank (QA/QC Meter Check) once during the sampling day, and performing the End of the Day Meter Check at the conclusion of the sampling day.

3) pH

Inspecting the pH electrode prior to sampling, calibrating to both pH 7.0 and 4.0 buffers prior to each measurement, rinsing and wiping the pH electrode probe prior to and after the measurement of standards and samples, allowing the pH measurement to stabilize prior to recording the measurement, and recording the value of the 6.0 buffer (QA/QC Meter Check) once during the sampling day.

4) Water Temperature/Dissolved Oxygen

Ensuring that the meter is allowed an adequate time to stabilize prior to the first calibration, the meter is calibrated prior to each measurement, the calibration value is properly recorded, the chamber reading is properly recorded, that sufficient time is allowed for readings to stabilize, and that a zero oxygen check (QA/QC Meter Check) is completed during the sampling day.

5) Specific Conductance

Performing the *Initial Conductivity Meter Check* using a known standard, allowing for the meter to properly stabilize before recording measurements, properly cleaning the probe between stations, and performing the *End of the Day Meter Check* at the conclusion of the sampling day.

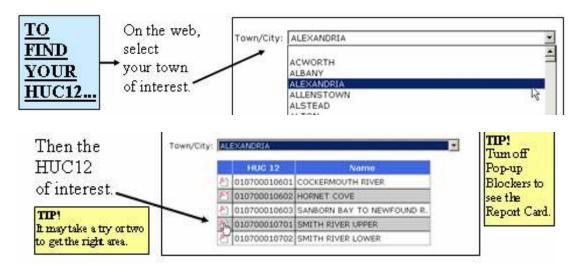
During the field sampling procedures assessment, VRAP staff offered important reminders and suggestions to ensure proper sampling techniques and re-trained volunteers in the areas needing improvement. Afterwards, the volunteers were sent a follow-up e-mail providing written reminders and suggestions of the methods that need improvement. Overall, the Ashuelot River VRAP group did an excellent job. It is important to ensure that all volunteers attend an annual VRAP training workshop prior to the sampling season and to familiarize themselves with proper sampling techniques. Please remember to schedule an annual field audit in 2009.

APPENDIX D:

New Hampshire Watershed Report Cards Built from the 2008 305(b)/303(d) Surface Water Quality Reports

305(b)/303(d) Integrated Report Background

http://des.nh.gov/organization/divisions/water/wmb/swqa/


The Surface Water Quality Assessment Program produces two surface water quality documents every two years, the "305(b) Report" and the "303(d) List". As the two documents use the same data and assessment methodology, the 305(b) Report and 303(d) List were combined into one Integrated Report. The Integrated Report describes the quality of New Hampshire's surface waters and an analysis of the extent to which all such waters provide for the protection and propagation of a balanced population of shellfish, fish, and wildlife, and allow recreational activities in and on the water.

Each Watershed Report Card covers a single 12 digit Hydrologic Unit Code (HUC12), on average a 34 square mile area. Each Watershed Report Card has three components;

- 1. **Report Card:** A one page card that summarizes the overall use support for Aquatic Life, Primary Contact (i.e. Swimming), and Secondary Contact (i.e. Boating) Designated Uses on every Assessment Unit ID (AUID) within the HUC12.
- 2. **HUC 12 Map:** A map of the watershed with abbreviated labels for each AUID within the HUC12.
- 3. **Assessment Details:** Anywhere from one to forty pages with the detailed assessment information for each and every AUID in the Report Card and Map.

How to Find Your HUC12 Watershed Report Card:

http://des.nh.gov/organization/divisions/water/wmb/swqa/report_cards.htm then go to: http://www2.des.nh.gov/SWQA

What are Assessment Units?

Each waterbody is divided into smaller segments called Assessment Units (AUs). In general, AUs are the basic unit of record for conducting and reporting the results of all water quality assessments. AUs are intended to be representative of homogenous segments: consequently, sampling stations within an AU can be assumed to be representative of the segment. Many factors can influence the homogeneity of a segment. Factors used to establish homogenous

AUs for assessments include: waterbody type, HUC12 boundaries, water quality standards, pollutant sources, Maximum AU size for rivers and streams, major changes in land use, stream order/location of major tributaries, public water supplies, outstanding resource waters, shellfish program categories, designated beaches, and cold water fish spawning areas.

Assessment Unit IDs (AUIDs) for each of the stations your group monitored in 2008 can be found in the sampling station table in this year's VRAP report. Similarly, a list of all current and historic sampling stations for your group can be found on the VRAP webpage at http://des.nh.gov/organization/divisions/water/wmb/vrap/index.htm.

How are the Surface Water Quality Assessment Determinations Made?

All readily available data with reliable Quality Assurance/Quality Control is used in the biennial surface water quality assessments. For a full understanding of how the Surface Water Quality Standards (Env-Wq 1700) are translated into surface water quality assessments we urge the reader to review the 2008 Consolidated Assessment and Listing Methodology (CALM) at

http://des.nh.gov/organization/divisions/water/wmb/swqa/2008/index.htm (Appendices 4 & 5)

Where Can I find More Advanced Resources?

Additional resources including GIS shapefiles (Appendix 12) of all AUIDs in a sortable EXCEL file (Appendix 22) of the detailed assessments are available at http://des.nh.gov/organization/divisions/water/wmb/swga/2008/index.htm.

How Are Assessments Coded in the Report Card?

Assessment outcomes are displayed on a color scale as well as an alpha numeric scale that provides additional distinctions for the designated use and Parameter level assessments as outlined in the table below.

		Severe	Poor	Likely Bad	No Data	Likely Good	Marginal	Good
		Not Supporting, Severe	Not Supporting, Marginal	Insufficient Information – Potentially Not Supporting	No Data	Insufficient Information – Potentially Full Supporting	Full Support, Marginal	Full Support, Good
Category	Description							
*Category 2	Meets standards						2-M or 2-OBS	2-G
Category 3	Insufficient Information			3-PNS	3-ND	3-PAS		
Category 4	Does not Meet Standards;							
4A	TMDL^ Completed	4A-P	4A-M or 4A-T					
4B	Other enforceable measure will correct the issue.	4B-P	4B-M or 4B-T					
4C	Non-pollutant (i.e. exotic weeds)	4C-P	4C-M					
Category 5	TMDL^ Needed	5-P	5-M or 5-T					

[&]quot;Category 1" only exists at the Assessment Unit Level.

For More Information:

Ken Edwardson, NHDES Surface Water Quality Assessment Program Coordinator (603) 271-8864 - Kenneth.Edwardson@des.nh.gov

[^] TMDL stands for Total Maximum Daily Load studies (http://des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm)

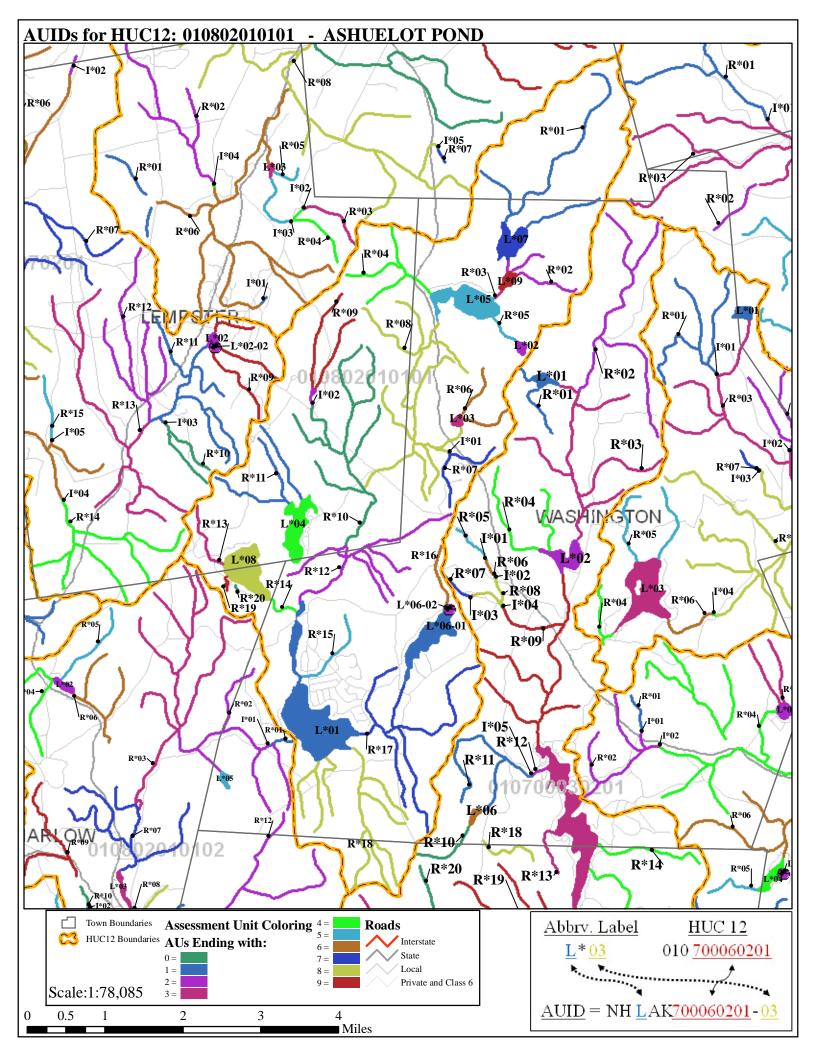
HUC 12 010802010101

HUC 12 NAME ASHUELOT POND

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe



			el.	26.		
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010101-01	I*01	UNKNOWN RIVER - SAUNDERS DAM	3-ND	3-MD	3-MD	4A-M
NHIMP802010101-02	I*02	RICHARDSON BROOK - RICHARDSON BROOK POND	3-N0	3-ND	3-ND	4A-M
NHLAK802010101-01	L*01	ASHUELOT POND	5-M	2-G	2-G	4A-M
NHLAK802010101-02	L*02	BACON POND	3-MD	3-ND	3-ND	4A-M
NHLAK802010101-03	L*03	FLETCHER POND	3-MD	3-ND	3-ND	4A-M
NHLAK802010101-04	L*04	LONG POND	4A-P	2-G	2-G	4A-M
NHLAK802010101-05	L*05	MAY POND	4A-P	2-G	2-G	4A-M
NHLAK802010101-06-01	L*06-01	MILLEN POND	4A-P	2-G	2-G	4A-M
NHLAK802010101-06-02	L*06-02	MILLEN POND - TOWN BEACH	5-M	5-P	2-G	4A-M
NHLAK802010101-07	L*07	NORTH POND	3-PAS	2-G	2-G	4A-M
NHLAK802010101-08	L*08	SAND POND	4A-P	2-G	2-G	4A-M
NHLAK802010101-09	L*09	MILL POND	3-PNS	3-PAS	3-MD	4A-M
NHRIV802010101-01	R*01	ASHUELOT RIVER	3-ND	3-MD	3-MD	4A-M
NHRIV802010101-02	R*02	ASHUELOT RIVER	3-MD	3-ND	3-ND	4A-M
NHRIV802010101-03	R*03	ASHUELOT RIVER	5-P	3-PAS	3-PAS	4A-M
NHRIV802010101-04	R*04	UNNAMED BROOKS - TO BUTTERFIELD POND	3-N0	3-ND	3-ND	4A-M
NHRIV802010101-05	R*05	UNNAMED BROOK - FROM BACON POND TO MAY POND	3-N0	3-ND	3-ND	4A-M
NHRIV802010101-06	R*06	UNNAMED BROOK - TO FLETCHER POND	3-N0	3-ND	3-ND	4A-M
NHRIV802010101-07	R*07	UNNAMED BROOKS - TO SAUNDERS DAME	3-WD	3-ND	3-ND	4A-M
NHRIV802010101-08	R*08	ASHUELOT RIVER	5-P	5-P	2-M	4A-M
NHRIV802010101-09	R*09	RICHARDSON BROOK	3-WD	3-ND	3-ND	4A-M
NHRIV802010101-10	R*10	ASHUELOT RIVER - RICHARDSON BROOK	3-N0	3-ND	3-ND	4A-M
NHRIV802010101-11	R*11	UNNAMED BROOKS - TO LONG POND	5-P	3-PAS	3-PAS	4A-M
NHRIV802010101-12	R*12	ASHUELOT RIVER	3-WD	3-ND	3-ND	4A-M
NHRIV802010101-13	R*13	UNNAMED BROOK - TO SAND POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010101-14	R*14	UNNAMED BROOK - FROM SAND POND TO ASHUELOT POND	5 -M	3-ND	3-ND	4A-M
NHRIV802010101-15	R*15	UNNAMED BROOK - TO ASHUELOT POND	5-P	3-100	3-MD	4A-M
NHRIV802010101-16	R*16	UNNAMED BROOK - TO MILLEN LAKE	5-P	3-ND	3-ND	4A-M
NHRIV802010101-17	R*17	UNNAMED BROOKS - TO ASHUELOT LAKE	5-P	3+WD	3-40	4A-M

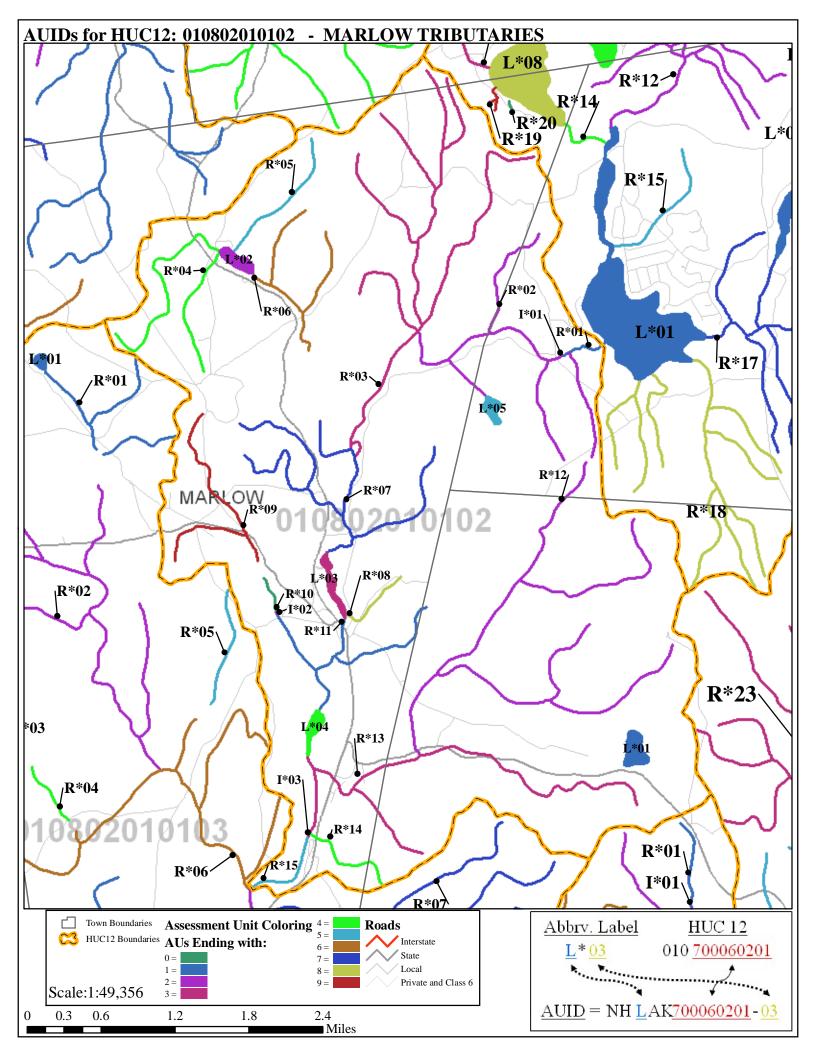
HUC 12 010802010102

HUC 12 NAME MARLOW TRIBUTARIES

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe



			Executive			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010102-01	I*01	ASHUELOT RIVER	3-MD	3-ND	3-ND	4A-M
NHIMP802010102-02	I*02	UNKNOWN RIVER - PAUL COLSMANN DAM I	3-ND	3-ND	3-ND	4A-M
NHIMP802010102-03	I*03	ASHUELOT RIVER - NASH MILL	3-ND	3-ND	3-ND	4A-M
NHLAK802010102-01	L*01	COLD SPRING POND	4A-M	2-G	2-G	4A-M
NHLAK802010102-02	L*02	STONE POND	3-PAS	2-G	2-G	4A-M
NHLAK802010102-03	L*03	VILLAGE POND	3-ND	3-ND	3-ND	4A-M
NHLAK802010102-04	L*04	BIG POND	3-ND	3-ND	3-ND	4A-M
NHLAK802010102-05	L*05	BARRETT POND	4A-P	2-G	2-G	4A-M
NHRIV802010102-01	R*01	ASHUELOT RIVER	5-P	3-ND	3-ND	4A-M
NHRIV802010102-02	R*02	ASHUELOT RIVER	3-MD	3-ND	3-ND	4A-M
NHRIV802010102-03	R*03	ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-04	R*04	GEE BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-05	R*05	UNNAMED BROOK - TO STONE POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-06	R*06	GEE BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-07	R*07	ASHUELOT RIVER - GEE BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-08	R*08	UNNAMED BROOK - FROM UNNAMED POND TO VILLAGE POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-09	R*09	BUTLER BROOK - UNNAMED BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-10	R*10	BUTLER BROOK - TO PHELPS POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-11	R*11	ASHUELOT RIVER	5-P	2-M	2-G	4A-M
NHRIV802010102-12	R*12	ABBOTT BROOK - JEFTS BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010102-13	R*13	ASHUELOT RIVER - ABBOTT BROOK	3-MD	3-ND	3-MD	4A-M
NHRIV802010102-14	R*14	UNNAMED BROOK - TO ASHUELOT RIVER	3-ND	3-ND	3-MD	4A-M
NHRIV802010102-15	R*15	ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M

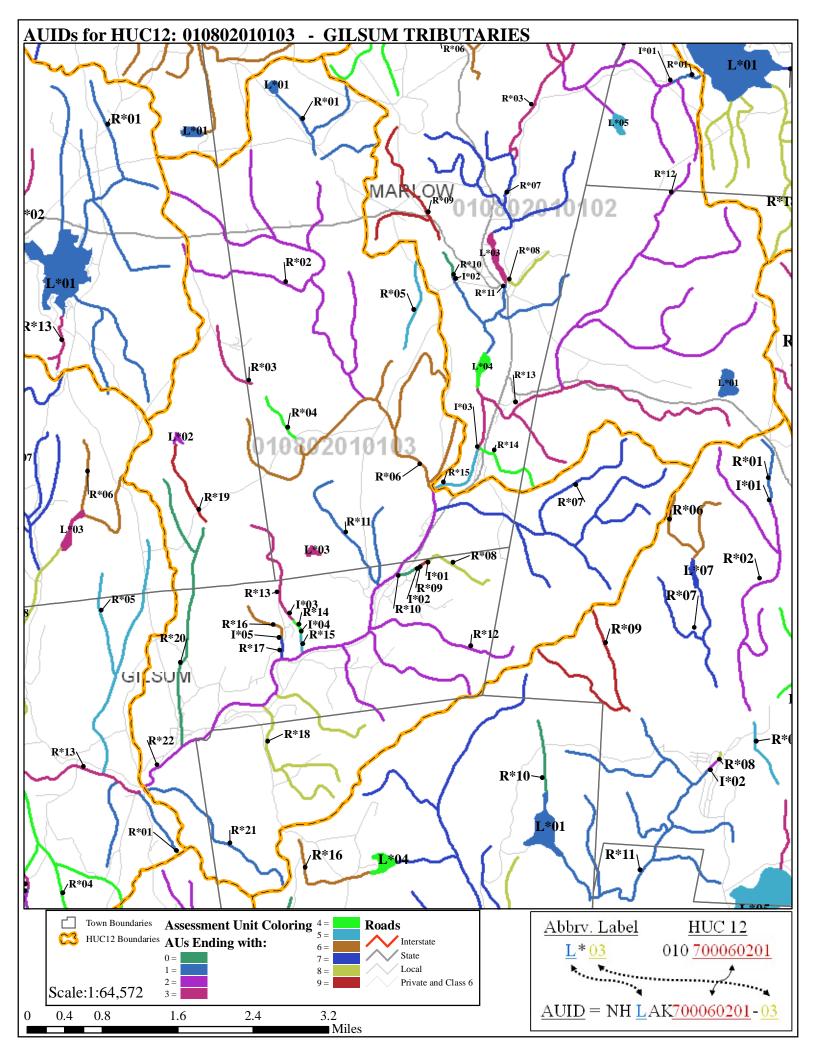
HUC 12 010802010103

HUC 12 NAME GILSUM TRIBUTARIES

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal



			Company.			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010103-01	I*01	EMERSON BROOK	3-ND	3-ND	3-ND	4A-M
NHIMP802010103-02	I*02	EMERSON BROOK	3-ND	3-WD	3-00	4A-M
NHIMP802010103-03	I*03	UNKNOWN RIVER - SPOONS POND	3-100	3-ND	3-MD	4A-M
NHIMP802010103-04	I*04	UNKNOWN RIVER - CHARLIES POOL DAM	3-100	3-ND	3-MD	4A-M
NHIMP802010103-05	I*05	UNKNOWN RIVER - AUDETS BROOK DAM	3-100	3-ND	3-MD	4A-M
NHLAK802010103-01	L*01	GUSTIN POND	3-PAS	3-WD	3-00	4A-M
NHLAK802010103-02	L*02	LILY POND	3-100	3-ND	3-MD	4A-M
NHLAK802010103-03	L*03	WILDLIFE POND	3-100	3-ND	3-MD	4A-M
NHRIV802010103-01	R*01	GRASSY BROOK	3-100	3-ND	3-MD	4A-M
NHRIV802010103-02	R*02	GRASSY BROOK - HALE BROOK	3-PAS	3-ND	3-ND	4A-M
NHRIV802010103-03	R*03	WHITTEMORE BROOK	3-100	3-ND	3-MD	4A-M
NHRIV802010103-04	R*04	WHITTEMORE BROOK	3-100	3-ND	3-MD	4A-M
NHRIV802010103-05	R*05	UNNAMED BROOK - TO UNNAMED POND	3-100	3-ND	3-MD	4A-M
NHRIV802010103-06	R*06	GRASSY BROOK - WHITTEMORE BROOK	3-WD	3-WD	3-ND	4A-M
NHRIV802010103-07	R*07	DOWNING BROOK - UNNAMED BROOKS - TO ASHUELOT RIVER	3-100	3-ND	3-ND	4A-M
NHRIV802010103-08	R*08	EMERSON BROOK	3-100	3-ND	3-MD	4A-M
NHRIV802010103-09	R*09	EMERSON BROOK	3-100	3-ND	3-MD	4A-M
NHRIV802010103-10	R*10	EMERSON BROOK - TO ASHUELOT RIVER	3-100	3-ND	3-MD	4A-M
NHRIV802010103-11	R*11	UNNAMED BROOKS - TO ASHUELOT RIVER	3-ND	3-WD	3-00	4A-M
NHRIV802010103-12	R*12	TROUT BROOK	3-ND	3-WD	3-00	4A-M
NHRIV802010103-13	R*13	CONVERSE BROOK	3-ND	3-WD	3-00	4A-M
NHRIV802010103-14	R*14	CONVERSE BROOK - FROM CHARLIES POOL DAM	3-100	3-ND	3-ND	4A-M
NHRIV802010103-15	R*15	CONVERSE BROOK - TO ASHUELOT RIVER	3-ND	3-ND	3-100	4A-M
NHRIV802010103-16	R*16	AUDETS BROOK - TO AUDETS BROOK DAM	3-ND	3-WD	3-00	4A-M
NHRIV802010103-17	R*17	AUDETS BROOK - FROM AUDETS BROOK DAM TO ASHUELOT RIVER	3-ND	3-30	3-00	4A-M
NHRIV802010103-18	R*18	THORNTON BROOK - UNNAMED BROOK - TO ASHUELOT RIVER	3-ND	3-30	3-00	4A-M
NHRIV802010103-19	R*19	HAYWARD BROOK	3-ND	3-MD	3-MD	4A-M
NHRIV802010103-20	R*20	HAYWARD BROOK	3-ND	3-MD	3-MD	4A-M
NHRIV802010103-21	R*21	WHITE BROOK	3-ND	3-ND	3-ND	4A-M

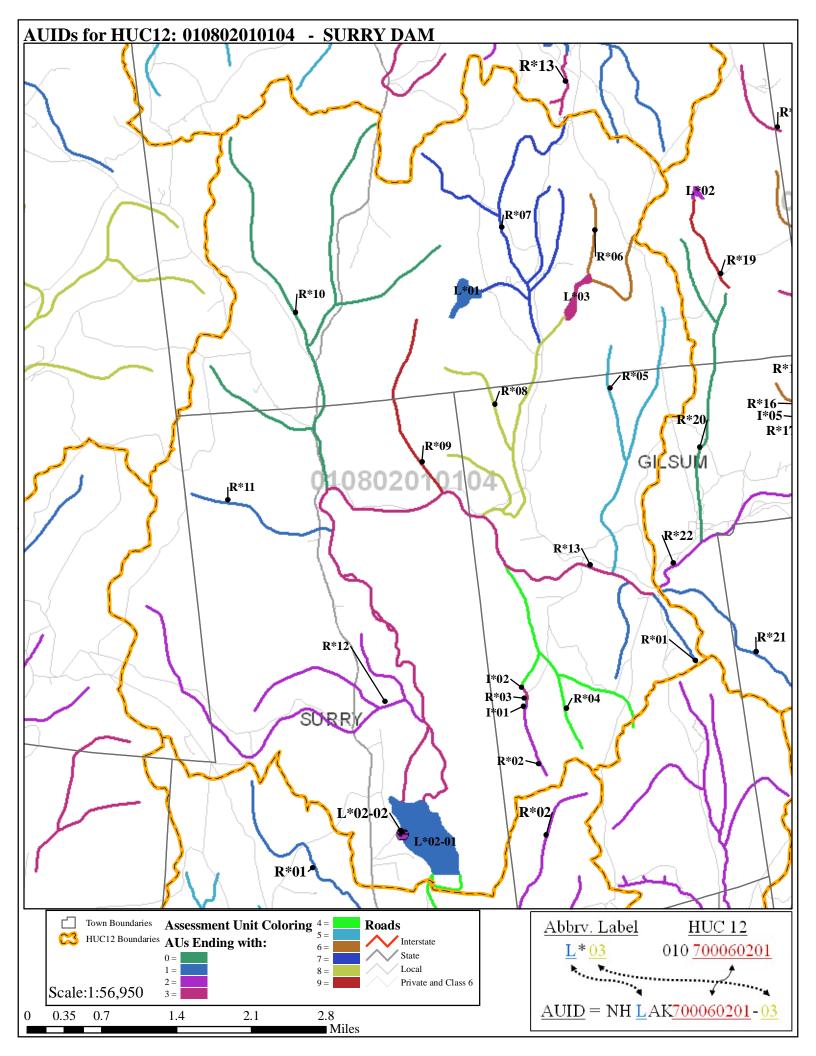
HUC 12 010802010104

HUC 12 NAME SURRY DAM

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe



			The same			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010104-01	I*01	UNKNOWN RIVER - WILDLIFE POND	S-ND	3-ND	3-ND	4A-M
NHIMP802010104-02	I*02	HAMMOND BROOK - TRIB TO ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M
NHLAK802010104-01	L*01	CALDWELL POND	4A-M	2-G	2-G	4A-M
NHLAK802010104-02-01	L*02-01	SURRY MOUNTAIN RESERVOIR	3-PNS	3-PAS	3-PAS	4A-M
NHLAK802010104-02-02	L*02-02	SURRY MOUNTAIN RESERVOIR - REC AREA BEACH	3-PNS	5-P	2-G	4A-M
NHLAK802010104-03	L*03	CRANBERRY POND	4A-M	2-G	2-G	4A-M
NHRIV802010104-01	R*01	UNNAMED BROOKS - TO ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-02	R*02	HAMMOND BROOK - TO WILDLIFE POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-03	R*03	HAMMOND BROOK - FROM WILDLIFE POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-04	R*04	HAMMOND BROOK - UNNAMED BROOKS	3-ND	3-100	3-ND	4A-M
NHRIV802010104-05	R*05	MAY BROOK	3-ND	3-ND	3-MD	4A-M
NHRIV802010104-06	R*06	UNNAMED BROOKS - TO CRANBERRY POND FROM CRANE & KIDDERS PONDS	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-07	R*07	DART BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-08	R*08	DART BROOK	5-P	3-ND	3-ND	4A-M
NHRIV802010104-09	R*09	CANNON BROOK	3-PNS	3-ND	3-ND	4A-M
NHRIV802010104-10	R*10	THOMPSON BROOK	3-PNS	3-ND	3-ND	4A-M
NHRIV802010104-11	R*11	UNNAMED BROOK - TO ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-12	R*12	MERRIAM BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010104-13	R*13	ASHUELOT RIVER	3-PAS	3-ND	3-ND	4A-M

HUC 12 010802010201

HUC 12 NAME OTTER BROOK RESERVOIR

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe

			Execute			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010201-01	I*01	ROBINSON BROOK - ANDORRA POND	3-00	3-ND	3-100	4A-M
NHIMP802010201-02	I*02	OTTER BROOK - OTTER BROOK AT WOODS MILL	3-ND	3-ND	3-ND	4A-M
NHIMP802010201-03	I*03	UNKNOWN RIVER - WILDLIFE POND	3-ND	3-ND	3-ND	4A-M
NHIMP802010201-04	I*04	UNKNOWN RIVER - FIRE POND	3-ND	3-ND	3-ND	4 <i>A</i> - <i>M</i>
NHIMP802010201-05	I*05	FERRY BROOK	3-ND	3-ND	3-ND	4 <i>A</i> - <i>M</i>
NHLAK802010201-01	L*01	BOLSTER POND	5-M	3-PAS	3-ND	4A-M
NHLAK802010201-02	L*02	CENTER POND	4 A - M	3-PAS	3-ND	4A-M
NHLAK802010201-03	L*03	CENTER POND	3-PAS	2-M	2-G	4 <i>A</i> - <i>M</i>
NHLAK802010201-04	L*04	CHAPMAN POND	3-ND	3-ND	3-ND	4A-M
NHLAK802010201-05	L*05	GRANITE LAKE	4A-P	5-M	2-G	4A-M
NHLAK802010201-06-01	L*06-01	OTTER BROOK POOL	3-ND	3-ND	3-ND	4A-M
NHLAK802010201-06-02	L*06-02	OTTER BROOK - OTTER BROOK PK BEACH	3-ND	5-P	2-G	4A-M
NHLAK802010201-07	L*07	DEER POND	3-ND	3-ND	3-MD	4A-M
NHRIV802010201-01	R*01	ROBINSON BROOK	3-ND	3-ND	3-ND	4 <i>A</i> - <i>M</i>
NHRIV802010201-02	R*02	ROBINSON BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-03	R*03	UNNAMED BROOKS - TO CENTER POND	5-P	3-PAS	3-PAS	4A-M
NHRIV802010201-04	R*04	OTTER BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-05	R*05	UNNAMED BROOK - TO CHANDLER MEADOW	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-06	R*06	UNNAMED BROOKS - TO DEER POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-07	R*07	DAVIS BROOK - UNNAMED BROOK - TO CHANDLER MEADOW	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-08	R*08	OTTER BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-09	R*09	UNNAMED BROOKS - TO TAYLOR POND	3-ND	3-ND	3-ND	4 <i>A</i> - <i>M</i>
NHRIV802010201-10	R*10	BOLSTER BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-11	R*11	OTTER BROOK - BOLSTER BROOK	3-PNS	3-ND	3-ND	4A-M
NHRIV802010201-12	R*12	UNNAMED BROOK - TO WILDLIFE POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010201-13	R*13	ROARING BROOK	5-P	3-PAS	3-PAS	4A-M
NHRIV802010201-14	R*14	UNNAMED BROOKS	3-WD	3-ND	3-ND	4A-M
NHRIV802010201-15	R*15	ROARING BROOK	5-P	3-ND	3-ND	4A-M
NHRIV802010201-16	R*16	UNNAMED BROOK - TO CHAPMAN POND	3-ND	3-ND	3-MD	4 A - M

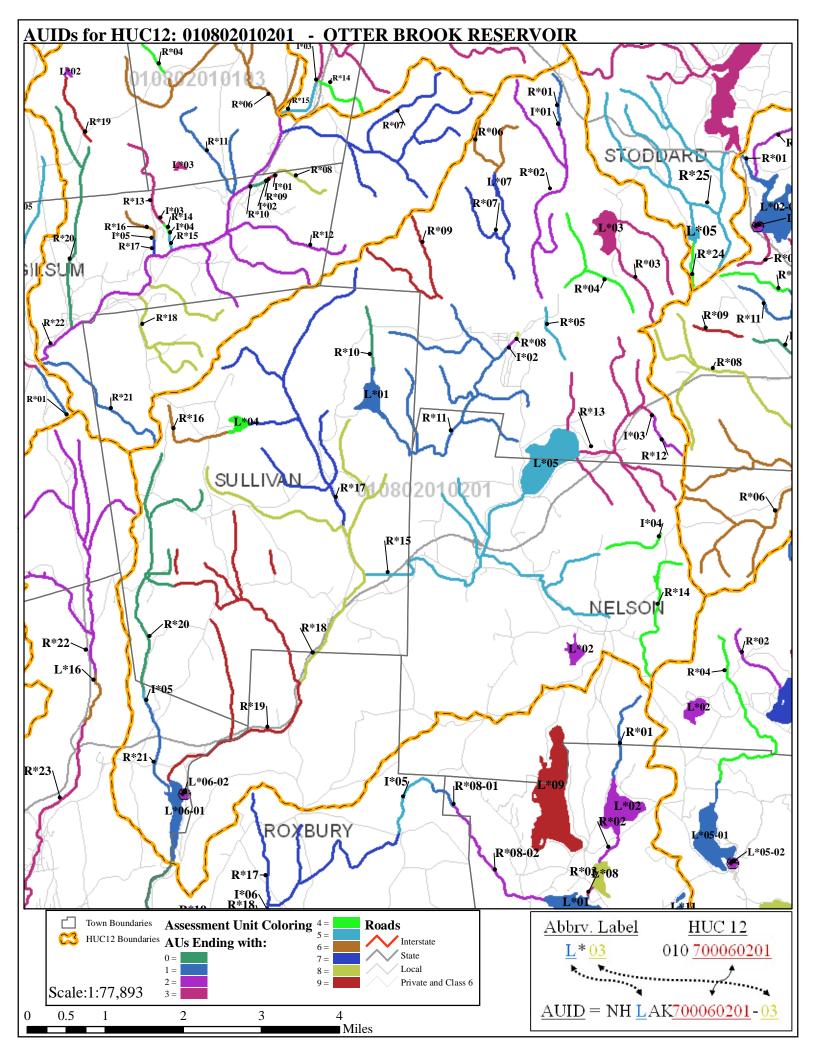
HUC 12 010802010201

HUC 12 NAME OTTER BROOK RESERVOIR

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

ibbebbiene cycle 2000				
Good	Full Support Good			
Marginal	Full Support Marginal			
Likely Good	Insufficient Information - Potentially Full Support			
No Data	No Data			
Likely Bad	Insufficient Information - Potentially Not Support			
Poor	Not Support Marginal			



					A	
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHRIV802010201-20	R*20	FERRY BROOK	3-ND		3+MD	4A-M
NHRIV802010201-21	R*21	FERRY BROOK	3-ND	3-ND	3+ND	4A-M

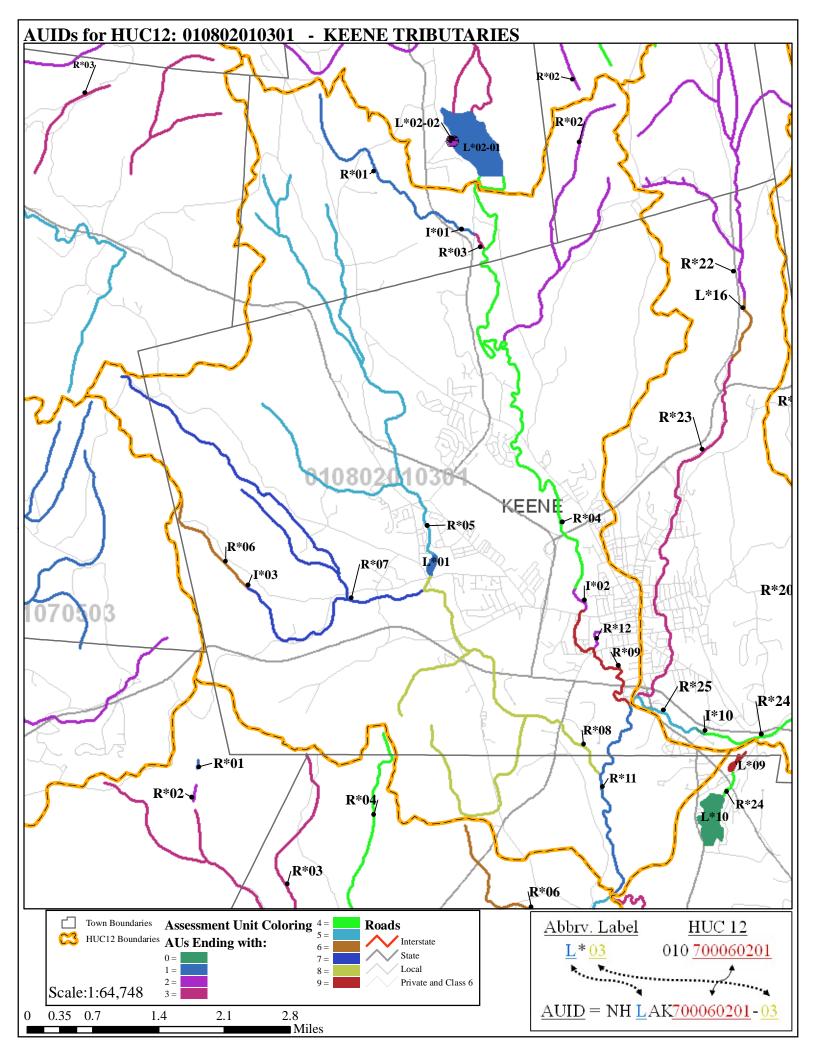
HUC 12 010802010301

HUC 12 NAME KEENE TRIBUTARIES

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good		
Marginal	Full Support Marginal		
Likely Good	Insufficient Information - Potentially Full Support		
No Data	No Data		
Likely Bad	Insufficient Information - Potentially Not Support		
Poor	Not Support Marginal		
Severe	Not Support Severe		



			" where			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010301-01	I*01	UNKNOWN RIVER - RODGERS POND	3-MD	3-ND	3-ND	4A-M
NHIMP802010301-02	I*02	ASHUELOT RIVER DAM POND	5-P	3-PNS	3-PNS	4A-M
NHIMP802010301-03	I*03	GRIMES BROOK - RECREATION POND	3-ND	3-MD	3-ND	4A-M
NHLAK802010301-01	L*01	WILSON POND	3-ND	3-MD	3-ND	4A-M
NHRIV802010301-01	R*01	JOHN BRITTON BROOK - TO ROGERS POND	3-100	3-ND	3-ND	4A-M
NHRIV802010301-02	R*02	STURTEVANT BROOK	3-100	3-MD	3-ND	4A-M
NHRIV802010301-03	R*03	JOHN BRITTON BROOK - FROM ROGERS POND TO ASHUELOT RIVER	3-ND	3-MD	3-ND	4A-M
NHRIV802010301-04	R*04	ASHUELOT RIVER - ACOE DAM TO ASHUELOT RIVER DAM POND	5-M	3-PNS	2-G	4A-M
NHRIV802010301-05	R*05	ASH SWAMP BROOK - DICKINSON BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010301-06	R*06	GRIMES BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010301-07	R*07	GRIMES BROOK - HURRICANE BROOK	3-ND	3-MD	3-ND	4A-M
NHRIV802010301-08	R*08	ASH SWAMP BROOK	3-PNS	3-PAS	3-ND	4A-M
NHRIV802010301-09	R*09	ASHUELOT RIVER - ASHUELOT RIVER DAM POND TO OTTER BR	5-M	5-P	2-M	4A-M
NHRIV802010301-11	R*11	ASHUELOT RIVER - OTTER BR TO SOUTH BRANCH	5-M	3-PAS	3-ND	4A-M
NHRIV802010301-12	R*12	MILL CREEK	5-M	3-ND	3-ND	4A-M

HUC 12 010802010303

HUC 12 NAME SOUTH BRANCH ASHUELOT RIVER

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe

			Enerth Marie			0 000	
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.	
NHIMP802010303-01	I*01	SOUTH BRANCH ASHUELOT RIVER - TROY SEWAGE LAGOONS	3-ND	3-ND	3-MD	4A-M	
NHIMP802010303-02	I*02	UNKNOWN RIVER - RECREATION POND	3-ND	3-ND	3-ND	4A-M	
NHIMP802010303-03	I*03	UNKNOWN RIVER - SILICA POND	3-ND	3-ND	3-ND	4A-M	
NHIMP802010303-04-01	I*04-01	UNKNOWN RIVER - VILLAGE POND	3-ND	3-ND	3-ND	4A-M	
NHIMP802010303-04-02	I*04-02	UNKNOWN RIVER - SAND DAM VILLAGE POND TOWN BEACH	3-ND	4A-P	2-G	4A-M	
NHLAK802010303-01	L*01	BOWKER POND	3-ND	3-ND	3-ND	4A-M	
NHLAK802010303-02	L*02	MEETINGHOUSE POND	5-M	3-PAS	3-ND	4A-M	
NHLAK802010303-03	L*03	PERKINS POND	3-ND	3-ND	3-ND	4A-M	
NHLAK802010303-04	L*04	ROCKWOOD POND	4A-P	3-PAS	3-ND	4A-M	
NHLAK802010303-05-01	L*05-01	STONE POND	4A-M	3-PAS	3-ND	4A-M	
NHLAK802010303-05-02	L*05-02	STONE POND - TOWN BEACH	4A-M	2-G	2-G	4A-M	
NHLAK802010303-06	L*06	QUARRY POND	3-PNS	2-G	2-G	4A-M	
NHLAK802010303-07	L*07	SAND POND	4A-M	3-PAS	3-ND	4A-M	
NHLAK802010303-08	L*08	WEST HILL RESERVOIR	3-ND	3-NO	3-ND	4A-M	
NHLAK802010303-09	L*09	UPPER WILSON POND	3-ND	3-ND	3-ND	4A-M	
NHLAK802010303-10	L*10	WILSON POND	5-M	3-PAS	3-ND	4A-M	
NHRIV802010303-01	R*01	ROCKWOOD BROOK - UNNAMED BROOK	5-M	3-PNS	2-M	4A-M	
NHRIV802010303-02	R*02	UNNAMED BROOK - TO WEST HILL RESERVOIR	3-ND	3-ND	3-ND	4A-M	
NHRIV802010303-03	R*03	NESTER BROOK - TO WEST HILL RESERVOIR	3-10	3-ND	3-MD	4A-M	
NHRIV802010303-04	R*04	QUARRY BROOK	3-ND	3-ND	3-MD	4A-M	
NHRIV802010303-05	R*05	FASSETT BROOK	3-ND	3-ND	3-ND	4A-M	
NHRIV802010303-06	R*06	QUARRY BROOK	3-ND	3-ND	3-ND	4A-M	
NHRIV802010303-07	R*07	QUARRY BROOK	3-NO	3-ND	3-MD	4A-M	
NHRIV802010303-08	R*08	NESTER BROOK - FROM WEST HILL RESERVOIR	3-ND	3-ND	3-MD	4A-M	
NHRIV802010303-09	R*09	NESTER BROOK - FROM SILICA POND	3-ND	3-ND	3-ND	4A-M	
NHRIV802010303-10	R*10	ROCKWOOD BROOK - FROM SAND POND	3-ND	3-ND	3ND	4A-M	
NHRIV802010303-11	R*11	SOUTH BRANCH ASHUELOT RIVER - QUARRY BROOK	5-P	5-P	2-M	4A-M	
NHRIV802010303-12	R*12	SOUTH BRANCH ASHUELOT RIVER	3-ND	5-M	3ND	4A-M	
NHRIV802010303-13	R*13	SOUTH BRANCH ASHUELOT RIVER	3-PAS	3-PAS	3-MD	4A-M	

Watershed Report Page 1 Date: 12/22/08

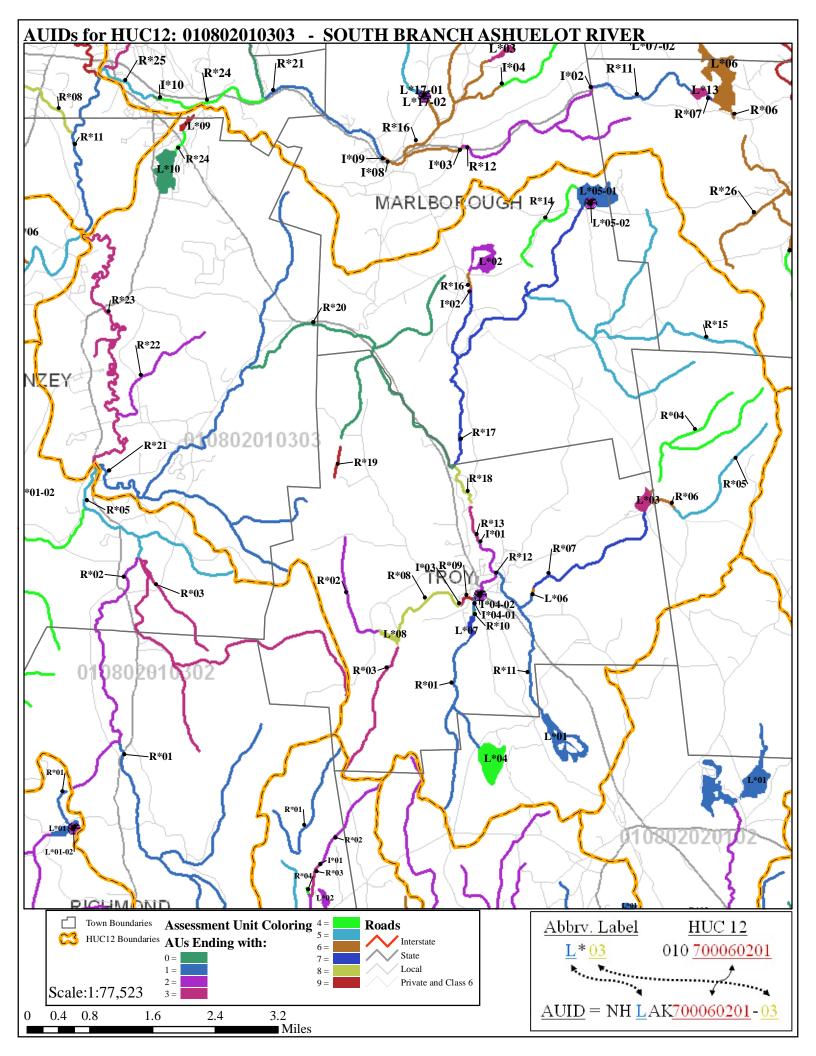
HUC 12 010802010303

HUC 12 NAME SOUTH BRANCH ASHUELOT RIVER

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal
Severe	Not Support Severe



			- Value			
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHRIV802010303-17	R*17	SHAKER BROOK	5-M	3-ND	3-MD	4A-M
NHRIV802010303-18	R*18	SOUTH BRANCH ASHUELOT RIVER	5-M	5-P	2-M	4A-M
NHRIV802010303-19	R*19	UNNAMED BROOK - FROM CUMMINGS POND TO CAREY POND	3-100	3-ND	3-MD	4A-M
NHRIV802010303-20	R*20	SOUTH BRANCH ASHUELOT RIVER	3-PAS	5-P	2-M	4A-M
NHRIV802010303-21	R*21	SOUTH BRANCH ASHUELOT RIVER - BRIDGE BROOK - FORBUSH BROOK	3-PAS	3-PAS	3-ND	4A-M
NHRIV802010303-22	R*22	UNNAMED BROOK - TO SOUTH ASHUELOT RIVER	3-ND	3-ND	3-MD	4A-M
NHRIV802010303-23	R*23	SOUTH BRANCH ASHUELOT RIVER	5-M	5-M	2-G	4A-M
NHRIV802010303-24	R*24	UNNAMED BROOK - UPPER TO LOWER WILSON POND	5-M	3-PNS	3-PAS	4A-M

Watershed Report Page 2 Date: 12/22/08

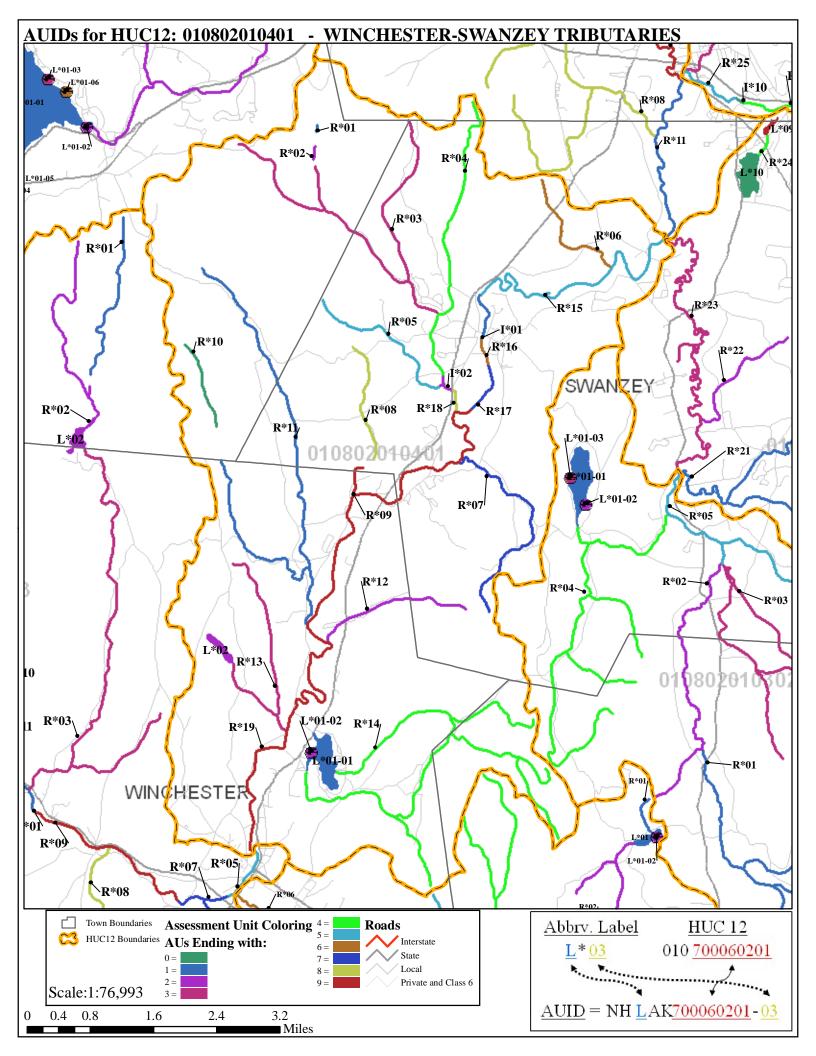
HUC 12 010802010401

HUC 12 NAME WINCHESTER-SWANZEY TRIBUTARIES

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal



			Emer#			0 00
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010401-01	I*01	ASHUELOT RIVER - HOMESTEAD WOOLEN MILL DAM	5-M	5-P	2-G	4A-M
NHIMP802010401-02	I*02	CALIFORNIA BROOK	3-ND	3-MD	3-ND	4A-M
NHLAK802010401-01-01	L*01-01	FOREST LAKE	4 <i>C</i> -M	5-M	2-G	4A-M
NHLAK802010401-01-02	L*01-02	FOREST LAKE - TOWN BEACH	4C-M	2-G	2-G	4A-M
NHLAK802010401-02	L*02	SPOT MEADOW POND	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-01	R*01	UNNAMED BROOK - TRIB TO CALIFORNIA BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010401-02	R*02	UNNAMED BROOK - TRIB TO CALIFORNIA BROOK	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-03	R*03	CALIFORNIA BROOK	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-04	R*04	CALIFORNIA BROOK - BAILEY BROOK	3-PNS	3-MD	3-ND	4A-M
NHRIV802010401-05	R*05	UNNAMED BROOK - TO CALIFORNIA BROOK	-ND	3-ND	3-ND	4A-M
NHRIV802010401-06	R*06	UNNAMED BROOK - TO ASHUELOT RIVER	3-ND	3-ND	3-MD	4A-M
NHRIV802010401-07	R*07	INDIAN BROOK	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-08	R*08	UNNAMED BROOK - TO UNNAMED POND	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-09	R*09	UNNAMED BROOK - FROM UNNAMED POND TO ASHUELOT RIVER	3-ND	3-MD	3-ND	4A-M
NHRIV802010401-10	R*10	RIXFORD BROOK	3-ND	3-ND	3-ND	4A-M
NHRIV802010401-11	R*11	WHEELOCK BROOK - RIXFORD BROOK	5-P	3-ND	3-ND	4A-M
NHRIV802010401-12	R*12	UNNAMED BROOK - TO ASHUELOT RIVER	3-ND	3-ND	3-ND	4A-M
NHRIV802010401-13	R*13	SPOT MEADOW BROOK	3-ND	3-ND	3-MD	4A-M
NHRIV802010401-14	R*14	UNNAMED BROOKS - TO FOREST LAKE	5-M	3-ND	3-ND	4A-M
NHRIV802010401-15	R*15	ASHUELOT RIVER - SOUTH BRANCH TO HOMESTEAD DAM	5-P	5-P	2-M	4A-M
NHRIV802010401-16	R*16	ASHUELOT RIVER - HOMESTEAD DAM TO 300 FT US OF SWANZEY WWTF	5-M	3-PAS	3-MD	4A-M
NHRIV802010401-17	R*17	ASHUELOT RIVER - 300 FT US OF SWANZEY WWTF TO 3000 FT DS OF WWTF	S-ND	3-MD	3-ND	4A-M
NHRIV802010401-18	R*18	CALIFORNIA BROOK	3-MD	3-ND	3-ND	4A-M
NHRIV802010401-19	R*19	ASHUELOT RIVER - 3000 FT DS OF SWANZEY WWTF TO OLD WINCHESTER DAM	5-M	5-P	3-ND	4A-M

Watershed Report Page 1 Date: 12/22/08

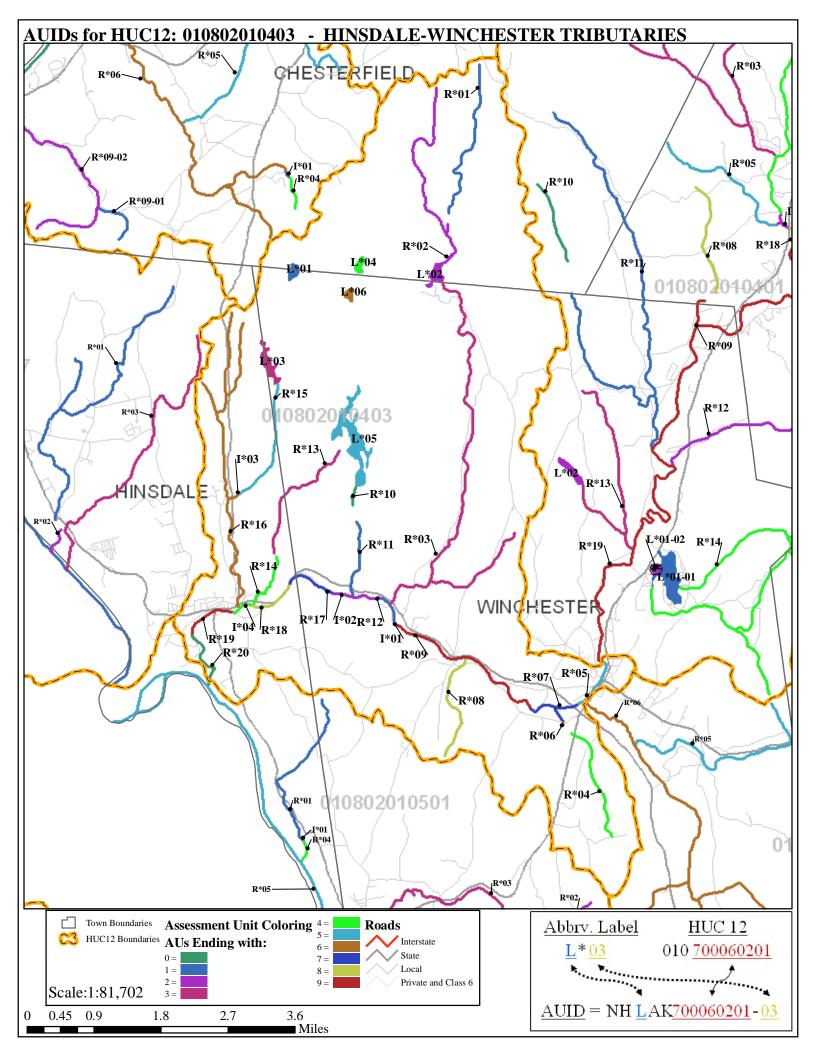
HUC 12 010802010403

HUC 12 NAME HINSDALE-WINCHESTER TRIBUTARIES

(Locator map on next page only applies to this HUC12)

Assessment Cycle 2008

Good	Full Support Good
Marginal	Full Support Marginal
Likely Good	Insufficient Information - Potentially Full Support
No Data	No Data
Likely Bad	Insufficient Information - Potentially Not Support
Poor	Not Support Marginal



			e B	26.	À	
ASSESSMENT UNIT ID	MAP LABEL	ASSESSMENT UNIT NAME	AQUATIC LIFE	SWIMMING	BOATING	FISH CONSUMP.
NHIMP802010403-01	I*01	ASHUELOT RIVER - LOWER ROBERTSON DAM	3-PNS	2-M	2-G	4A-M
NHIMP802010403-02	I*02	ASHUELOT RIVER - ASHUELOT PAPER	3-NO	3-ND	3-ND	4A-M
NHIMP802010403-03	I*03	KILBURN BROOK - KILBURN BROOK III	3-NO	3-ND	3-ND	4A-M
NHIMP802010403-04	I*04	ASHUELOT RIVER - FISK MILL HYDRO	5-P	3-ND	3-ND	4A-M
NHLAK802010403-01	L*01	BAKER POND	3-ND	3-ND	3-ND	4A-M
NHLAK802010403-02	L*02	FULLAM POND	3-ND	3=ND	3-MD	4A-M
NHLAK802010403-03	L*03	KILBURN POND	3-ND	3=ND	3-MD	4A-M
NHLAK802010403-04	L*04	LILY POND	3-NO	3-ND	3-ND	4A-M
NHLAK802010403-05	L*05	PISGAH RESERVOIR	3-ND	3-ND	3-ND	4A-M
NHLAK802010403-06	L*06	NORTH ROUND POND	3-ND	3-ND	3-ND	4A-M
NHRIV802010403-01	R*01	UNNAMED BROOK - TO UNNAMED POND	3-ND	3-MD	3-ND	4A-M
NHRIV802010403-02	R*02	BROAD BROOK	3-PNS	3-MD	3-ND	4A-M
NHRIV802010403-03	R*03	BROAD BROOK	3-ND	3-MD	3-ND	4A-M
NHRIV802010403-04	R*04	SNOW BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010403-05	R*05	ASHUELOT RIVER - OLD WINCHESTER DAM TO 300FT US OF WINCHESTER WWTF	3-100	3-ND	3-ND	4A-M
NHRIV802010403-06	R*06	SNOW BROOK - TO ASHUELOT RIVER	3-100	3-ND	3-ND	4A-M
NHRIV802010403-07	R*07	ASHUELOT RIVER - 300FT US OF WINCHESTER WWTF TO 3000FT DS OF WWTF	5-M	5-M	2-M	4A-M
NHRIV802010403-08	R*08	UNNAMED BROOK - TO ASHUELOT RIVER	3-100	3-ND	3-ND	4A-M
NHRIV802010403-09	R*09	ASHUELOT RIVER - 3000FT DS OF WINC WWTF TO LOWER ROBERTSON DAM	3-100	2-M	2-G	4A-M
NHRIV802010403-10	R*10	TUFTS BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010403-11	R*11	TUFTS BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010403-12	R*12	ASHUELOT RIVER - LOWER ROBERTSON TO ASHUELOT PAPER	3-100	3-ND	3-ND	4A-M
NHRIV802010403-13	R*13	HOG TONGUE BROOK	3-300	3-ND	3-ND	4A-M
NHRIV802010403-14	R*14	HOG TONGUE BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010403-15	R*15	KILBURN BROOK	3-100	3-ND	3-ND	4A-M
NHRIV802010403-16	R*16	KILBURN BROOK	3-102	3-ND	3-ND	4A-M
NHRIV802010403-17	R*17	ASHUELOT RIVER - ASHUELOT PAPER TO US OF OLD MCGOLDRICK DAM	3-107	2-M	2-G	4A-M
NHRIV802010403-18	R*18	ASHUELOT RIVER - US OF OLD MCGOLDRICK DAM TO FISK MILL HYDRO	3-102	3-20	3-MD	4A-M
NHRIV802010403-19	R*19	ASHUELOT RIVER - FISK MILL HYDRO TO 300FT US OF HINSDALE WWTF	5-M	3-PNS	2-M	4A-M

Watershed Report Page 1 Date: 12/22/08

New Hampshire Volunteer River Assessment Program 2009 Ashuelot River Watershed Water Quality Report

January 2010

New Hampshire Volunteer River Assessment Program 2009 Ashuelot River Watershed Water Quality Report

State of New Hampshire
Department of Environmental Services
Water Division
Watershed Management Bureau
P.O. Box 95
29 Hazen Drive
Concord, New Hampshire 03302-0095
www.des.nh.gov

Thomas S. Burack Commissioner

Harry T. Stewart Water Division Director

Prepared By:

Ted Walsh, VRAP Program Manager

Jen Drociak, VRAP Coordinator

Sabrina Kliman, VRAP Assistant

Cover Photo: Ashuelot River, 07-ASH, Winchester

January 2010

TABLE OF CONTENTS

1.	INTRODUCTION5
1.1 1.2	Purpose of Report
2.	PROGRAM OVERVIEW7
2.1 2.2 2.3 2.4 2.5 2.6 2.7	What is VRAP?
3.	METHODS11
4.	RESULTS & RECOMMENDATIONS
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Dissolved Oxygen.13pH.16Turbidity.18Specific Conductance.20Water Temperature.22Escherichia coli/Bacteria.24Total Phosphorus27Chloride.29
	List of Figures and Tables
Figure Figure Figure Figure Figure Figure Figure Figure	2:pH Statistics173:Turbidity Statistics194:Specific Conductance Statistics215:Water Temperature Statistics236:Escherichia coli/Bacteria Statistics267:Total Phosphorus Statistics28
Table	2:Sampling and Analysis Methods
	List of Appendices
Append Append Append	lix B: Interpreting VRAP Water Quality Parameters

ACKNOWLEDGEMENTS

The New Hampshire Department of Environmental Services Volunteer River Assessment Program extends sincere thanks to the volunteers of the Ashuelot River Local Advisory Committee for their efforts during 2009. This report was created solely from the data collected by the volunteers listed below. Their time and dedication is an expression of their genuine concern for local water resources and has significantly contributed to our knowledge of river and stream water quality in New Hampshire.

2009 Ashuelot River Volunteers

Adam Black

Jeffrey Brooks

Gabriella Cebada-Mora

Paul Daniello

Patrick Eggleston

Penny Eggleston

Linda Fuererder

David Hoitt

Jim Holley

Sue Holley

LouDonna Johnson

Bob Lamoy

Carolyn MacDonald

Mike Morrison

Sherry Morrison

Carl Shephardson

Marge Shepardson

Barbara Skuly

Steve Stepenuck

Ann Sweet

Roger Sweet

Bob Thompson

1.0 INTRODUCTION

1.1. Purpose of Report

Each year the New Hampshire Volunteer River Assessment Program (VRAP) prepares and distributes a water quality report for each volunteer river monitoring group that is based solely on the water quality data collected by that group during a specific year. The reports summarize and interpret the data, particularly as they relate to New Hampshire's surface water quality standards, and serve as a teaching tool and guidance document for future monitoring activities by the individual volunteer groups.

1.2. Report Format

Each report includes the following:

Volunteer River Assessment Program Overview

This section includes a description of the history of VRAP, the technical support, training and guidance provided by NHDES, and how data is transmitted to the volunteers and used in surface water quality assessments.

Monitoring Program Description

This section provides a description of the volunteer group's monitoring program including monitoring objectives as well as a table and map showing sample station locations.

Results and Recommendations

Water quality data collected during the year are summarized on a parameter-by-parameter basis using: (1) a data summary table, which includes the number of samples collected, data ranges, the number of samples meeting New Hampshire water quality standards, and the number of samples adequate for water quality assessments at each station; (2) a discussion of the data; (3) a river graph showing the range of measured values at each station; and (4) a list of applicable recommendations.

Sample results reported as less than the detection limit were assumed equal to one-half the detection limit on the river graphs. This approach simplifies the understanding of the parameter of interest, and specifically helps one to visualize how the river or watershed is functioning from upstream to downstream. In addition, this format allows the reader to better understand potential pollution areas and target those areas for additional sampling or environmental enhancements. Where applicable, the river graph also shows New Hampshire surface water quality standards or levels of concern for comparison purposes.

Appendix A – Water Quality Data

This appendix includes a spreadsheet detailing the data results and additional information such as data results which do not meet New Hampshire surface water quality standards, and data that is unusable for assessment purposes due to quality control requirements.

Appendix B – Interpreting VRAP Water Quality Parameters

This appendix provides a brief description of water quality parameters typically sampled by VRAP volunteers and their importance, as well as applicable state water quality criteria or levels of concern.

Appendix C – VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audits)

This appendix provides an overview of the VRAP Volunteer Monitor Field Sampling Procedures Assessment (field audit) process with respect to programmatic quality assurance/quality control (QA/QC) guidelines.

PROGRAM OVERVIEW

2.1 What is VRAP?

In 1998, the New Hampshire Volunteer River Assessment Program was established to promote awareness and education of the importance of maintaining water quality in New Hampshire's rivers and streams. VRAP aims to educate people about river and stream water quality and ecology and to improve water quality monitoring coverage for the protection of water resources.

Today, VRAP loans water quality monitoring equipment, provides technical support, and facilitates educational programs to volunteer groups on numerous rivers and watersheds throughout the state. VRAP volunteers conduct water quality monitoring on an ongoing basis and increase the amount of river water quality information available to local, state and federal governments, which allows for better watershed planning.

2.2 Why is VRAP Important?

VRAP establishes a regular volunteer-driven water sampling program to assist NHDES in evaluating water quality throughout the state. VRAP empowers volunteers with information about the health of New Hampshire's rivers and streams. Regular collection of water quality data allows for early detection of water quality changes allowing NHDES to trace potential problems to their source. Data collected by VRAP volunteers are directly contributing to New Hampshire's obligations under the Clean Water Act. Measurements taken by volunteers are used in assessing the water quality of New Hampshire's river and streams, and are included in reporting to the US Environmental Protection Agency.

2.3 How Does VRAP Work?

VRAP is a cooperative program between NHDES, river groups, local advisory committees, watershed associations, and individuals working to protect New Hampshire's rivers and streams. Volunteers are trained by VRAP staff in the use of water quality monitoring equipment at an annual training workshop. VRAP works with each group to establish monitoring stations and develop a sampling plan.

During the summer months, VRAP receives water quality data from trained volunteers. The data are reviewed for quality assurance, and are entered into the environmental monitoring database at NHDES. During the off-season, VRAP interprets the data and compiles the results into an annual report for each river. VRAP volunteers can use the data as a means of understanding the details of water quality, as well as guide future sampling efforts. NHDES can use the data for making surface water quality assessments, provided that the data met certain quality assurance/quality control guidelines.

2.4 Equipment and Sampling Schedule

VRAP frequently lends and maintains water quality monitoring equipment kits to VRAP groups throughout the state. The kits contain meters and supplies for routine water quality parameter measurements of turbidity, pH, dissolved oxygen, water temperature and specific conductance (conductivity). Other parameters such as nutrients, metals, and *E. coli* can also be studied, although VRAP does not always provide funds to cover laboratory analysis costs. Thus, VRAP encourages groups to pursue other fundraising activities such as association membership fees, special events, in-kind services (non-monetary contributions from individuals and organizations), and grant writing.

Each year, volunteers design and arrange a sampling schedule in cooperation with VRAP staff. Project designs are created through a review and discussion of existing water quality information, such as known and perceived problem areas or locations of exceptional water quality. The interests, priorities, and resources of the partnership determine monitoring locations, parameters, and frequency. VRAP typically recommends sampling every other week from May through September, and VRAP groups are encouraged to organize a long-term sampling program in order to begin to determine trends in river conditions.

2.5 Training and Technical Support

Each VRAP volunteer attends an annual training workshop to receive a demonstration of monitoring protocols and sampling techniques and the calibration and use of water quality monitoring equipment. During the training, volunteers have an opportunity for hands-on use of the equipment and receive instruction in the collection of samples for laboratory analysis.

VRAP groups conduct sampling according to a prearranged monitoring schedule and VRAP protocols. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group's monitoring coordinator is notified of the result of the verification visit. VRAP groups forward water quality results to NHDES for incorporation into an annual report and state water quality assessment activities.

2.6 Data Usage

Annual Water Quality Reports

Water quality measurements repeated over time create a picture of the fluctuating conditions in rivers and streams and help to determine where improvements, restoration or preservation may benefit the river and the communities it supports. All data collected by volunteers are summarized in water quality reports that are prepared and distributed after the conclusion of the sampling period. VRAP groups can use the reports and data as a means of understanding the details of water quality, guiding future sampling efforts, or determining restoration activities.

New Hampshire Surface Water Quality Assessments

Along with data collected from other water quality programs, specifically the State Ambient River Monitoring Program, applicable volunteer data are used to support periodic NHDES surface water quality assessments. VRAP data are entered into NHDES's environmental monitoring database and are ultimately uploaded to the EPA database. Assessment results and the methodology used to assess surface waters are published by NHDES every two years (i.e., Section 305(b) Water Quality Reports) as required by the federal Clean Water Act. The reader is encouraged to log on to the NHDES web page to review the assessment methodology and list of impaired waters http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm.

2.7 Quality Assurance/Quality Control

In order for VRAP data to be used in the assessment of New Hampshire's surface waters, the data must meet quality control guidelines as outlined in the VRAP Quality Assurance Project Plan (QAPP). The VRAP QAPP was approved by NHDES and reviewed by EPA in the summer of 2003. The QAPP is reviewed annually and is officially updated and approved every five years. The VRAP quality assurance/quality control (QA/QC) measures include a six-step approach to ensuring the accuracy of the equipment and consistency in sampling efforts.

- **Calibration:** Prior to each measurement, the pH and DO meters must be calibrated. Conductivity and turbidity meters are checked against a known standard before the first measurement and after the last one.
- **Replicate Analysis:** A second measurement by each meter is taken from the original sample at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the replicate analysis should be conducted at different stations. Replicates should be measured within 15 minutes of the original measurements.
- **6.0 pH Standard:** A reading of the pH 6.0 buffer is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the 6.0 pH standard check should be conducted at different stations.
- **Zero Oxygen Solution:** A reading of a zero oxygen solution is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the zero oxygen standard check should be conducted at different stations.
- **DI (De-Ionized) Turbidity Blank**: A reading of the DI blank is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the blank check should be conducted at different stations.
- **End of the Day Conductivity and Turbidity Meter Check:** At the conclusion of each sampling day, the conductivity and turbidity meters are re-checked against a known standard.

2.7.1 Measurement Performance Criteria

Precision is calculated for field and laboratory measurements through measurement replicates (instrumental variability) and is calculated for each sampling day. The use of VRAP data for assessment purposes is contingent on compliance with a parameter-specific relative percent difference (RPD) as derived from equation 1, below. Any data exceeding the limits of the individual measures are disqualified from surface water quality assessments. All data that exceeds the limits defined by the VRAP QAPP are acknowledged in the data tables with an explanation of why the data was unusable. Table 1 shows typical parameters studied under VRAP and the associated quality control procedures.

(Equation 1. Relative Percent Difference)

$$RPD = \frac{|x_1 - x_2|}{\frac{x_1 + x_2}{2}} \times 100 \%$$

where x_1 is the original sample and x_2 is the replicate sample

Table 1. Field Analytical Quality Controls

Water Quality Parameter	QC Check	QC Acceptance Limit	Corrective Action	Person Responsible for Corrective Action	Data Quality Indicator
Temperature	Measurement Replicate	RPD < 10% or Absolute Difference <0.8 C.	Repeat Measurement	Volunteer Monitors	Precision
Dissolved	Measurement Replicate	RPD < 10%	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Oxygen	Known Buffer (Zero O ₂ Sol.)	RPD < 10% or Absolute Difference <0.4 mg/L	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Relative Accuracy
nН	Measurement Replicate	Absolute Difference <0.3 pH units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
рН	Known Buffer (pH = 6.0)	± 0.1 std units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Specific	Measurement Replicate	RPD < 10% or Absolute Difference <5µS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Conductance	Method Blank (Zero Air Reading)	± 5.0 μS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Turbidity	Measurement Replicate	RPD < 10% or Absolute Difference <1.0 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Turbidity	Method Blank (DI Water)	± 0.1 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Laboratory Parameters	Measurement Replicate	RPD < 20% or Absolute Difference less than ½ the mean value of the parameter in NHDES's Environmental Monitoring Database	Repeat Measurement	Volunteer Monitors	Precision

3.0 METHODS

In 2001, volunteers from the Ashuelot River Local Advisory Committee began monitoring water quality on the Ashuelot River. The goal of this effort was to provide water quality data from the Ashuelot River relative to surface water quality standards and to allow for the assessment of the river for support of aquatic life and primary contact recreation (swimming). The establishment of a long-term monitoring program allows for an understanding of the river's dynamics, or variations on a station-by-station and year-to-year basis. The data can also serve as a baseline from which to determine any water pollution problems in the river and/or watershed. The Volunteer River Assessment Program has provided field training, equipment, financial assistance for laboratory costs, and technical assistance.

During 2009, trained volunteers from the Ashuelot River Local Advisory Committee monitored water quality at 14 stations in the Ashuelot River watershed from its upper limits in Washington to just upstream of its confluence with the Connecticut River in Hinsdale (Table 3)

Stations IDs are designated using a three-letter code to identify the waterbody name plus a number indicating the relative position of the station. The higher the station number the more upstream the station is in the watershed. All stations monitored in 2009 are designated as Class B waters. This classification is used to apply the appropriate water quality standard.

Water quality monitoring was conducted monthly from May to September. Insitu measurements of pH, water temperature, dissolved oxygen, and specific conductance were taken using handheld meters. Turbidity samples were collected in the field, brought to a central location and measured the same day. Samples for *E.coli*, total phosphorous, and chloride were taken using sterile and/or preserved bottles and were stored on ice during transport from the field to the NHDES laboratory or EAI Analytical Laboratory. Table 2 summarizes the parameters measured, laboratory standard methods, and equipment used.

Table 2. Sampling and Analysis Methods

Parameter	Sample Type	Standard Method	Equipment Used	Laboratory
Dissolved Oxygen	In-Situ	SM 4500 O G	YSI 55 YSI 95	
рН	In-Situ	SM 4500 H+	Orion 210A	
Turbidity	In-Situ	EPA 180.1	LaMotte 2020	
Specific Conductance	In-Situ	SM 2510	YSI 30	
Temperature	In-Situ	SM 2550	YSI 95	
E.coli	Bottle (Sterile)	EPA 1103.1		EAI Analytical Labs
Total Phosphorus	Bottle (w/ Preservative)	EPA 365.3		NHDES
Chloride	Bottle	SM D512C		NHDES Limnology Ctr.

Table 3. Sampling Stations for the Ashuelot River, NHDES VRAP, 2009

Station ID & AUID	Class	Waterbody Name	Location	Town	Elevation (Rounded to the Nearest 100 Feet)
28-ASH NHRIV802010101-08	В	Ashuelot River	Route 31	Washington	1600
27-ASH NHRIV802010101-08	В	Ashuelot River	Mountain Road	Lempster	1500
24A-ASH NHRIV802010102-11	В	Ashuelot River	Route 10	Marlow	1100
23-ASH NHRIV802010103-22	В	Ashuelot River	Route 10	Gilsum	800
20A-ASH NHRIV802010301-04	В	Ashuelot River	Stone Arch Bridge	Keene	500
18-ASH NHRIV802010301-09	В	Ashuelot River	Route 101	Keene	500
16D-ASH NHRIV802010301-11	В	Ashuelot River	40' Upstream of Keene WWTF	Swanzey	500
16A-ASH NHRIV802010301-11	В	Ashuelot River	Mouth of the South Branch	Swanzey	500
16-ASH NHRIV802010401-15	В	Ashuelot River	Cresson Bridge	Swanzey	500
02B-SBA NHRIV600030608-15	В	South Branch Ashuelot River	Upstream of Monadnock Regional High School	Swanzey	500
02-SBA NHRIV802010303-23	В	South Branch Ashuelot River	Route 32 Bridge	Swanzey	500
15-ASH NHIMP802010401-01	В	Ashuelot River	Thompson Covered Bridge	West Swanzey	400
07-ASH NHRIV802010403-07	В	Ashuelot River	Route 119	Winchester	400
01-ASH NHRIV802010403-20	В	Ashuelot River	147 River Street	Hinsdale	200

RESULTS AND RECOMMENDATIONS

Results and recommendations for each monitored parameter are presented in the following sections. For a description of the importance of each parameter and pertinent water quality criteria for these and other parameters, please see Appendix B, "Interpreting VRAP Water Quality Parameters."

4.1 Dissolved Oxygen

Five measurements were taken in the field for dissolved oxygen concentration at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 4). Of the 70 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for dissolved oxygen includes a minimum concentration of 5.0 mg/L **and** a minimum daily average of 75 percent of saturation. In other words, there are criteria for both concentration and saturation that must be met before the river can be assessed as meeting dissolved oxygen standards. Table 4 reports only dissolved oxygen concentration as more detailed analysis is required to determine if instantaneous dissolved oxygen saturation measurements are above or below water quality standards.

Table 4. Dissolved Oxygen Concentration (mg/L) Summary – Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	7.01 - 8.31	0	5
27-ASH	5	7.42 - 8.96	0	5
24A-ASH	5	7.38 - 8.50	0	5
23-ASH	5	8.22 - 9.78	0	5
20A-ASH	5	7.02 - 8.08	0	5
18-ASH	5	7.89 - 8.49	0	5
16D-ASH	5	7.13 - 8.87	0	5
16A-ASH	5	6.84 - 8.93	0	5
16-ASH	5	6.52 - 8.73	0	5
02B-SBA	5	7.55 - 9.15	0	5
02-SBA	5	7.98 - 8.85	0	5
15-ASH	5	6.75 - 8.38	0	5
07-ASH	5	7.20 - 8.69	0	5
01-ASH	5	8.02 - 9.24	0	5
Total	70		0	70

Dissolved oxygen concentration levels were above the New Hampshire Class B surface water quality standard at all stations and on all occasions with the average ranging from 7.56 mg/L to 8.89 mg/L (Figure 1). Levels of dissolved oxygen sustained above the standards are considered adequate for the support of aquatic life and other desirable water quality conditions.

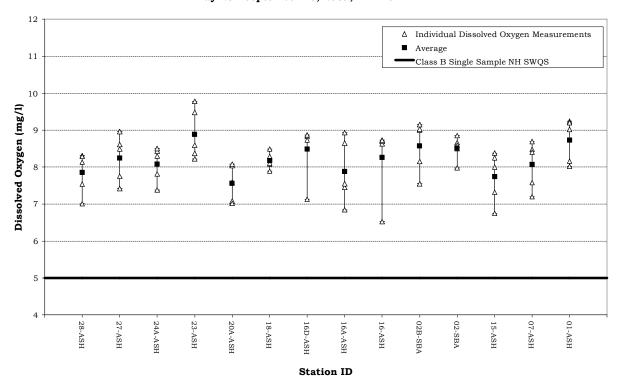


Figure 1. Dissolved Oxygen Concentration Statistics for the Ashuelot River Watershed
May 26 - September 15, 2009, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- If possible, take measurements between 5 a.m. and 10 a.m., which is when dissolved oxygen is usually the lowest, and between 2 p.m. and 7 p.m. when dissolved oxygen is usually the highest. In general, dissolved oxygen levels are lowest in the early morning when there is low photosynthetic activity and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Peak dissolved oxygen levels occur when photosynthetic activity is at its peak. The greater the amount of photosynthetic activity the greater the production of oxygen as a byproduct of photosynthesis.
- Consider incorporating the use of in-situ dataloggers to automatically record dissolved oxygen saturation levels during a period of several days.

4.2 pH

Either four or five measurements were taken in the field for pH at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 5]. Of the 68 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard is 6.5 - 8.0, unless naturally occurring.

Table 5. pH Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (standard units)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	4.61 - 5.17	5	5
27-ASH	5	4.77 - 5.19	5	5
24A-ASH	5	4.92 - 5.16	5	5
23-ASH	5	5.36 - 5.66	5	5
20A-ASH	4	5.64 - 6.66	3	4
18-ASH	5	5.92 - 6.74	5	5
16D-ASH	5	5.94 - 6.24	5	5
16A-ASH	5	5.87 - 6.28	5	5
16-ASH	5	5.86 - 6.12	0	5
02B-SBA	4	6.10 - 6.76	1	4
02-SBA	5	6.08 - 6.73	1	5
15-ASH	5	6.23 - 6.59	2	5
07-ASH	5	6.40 - 6.68	1	5
01-ASH	5	6.77 - 7.32	0	5
Total	68		43	68

All but two stations had one or more pH measurements that were below the New Hampshire surface water quality standard minimum (Figure 2). In general, stations in the upper portions of the watershed had lower pH measurements than stations in the lower portions of the watershed.

Lower pH measurements are likely the result of natural conditions such as the soils, geology, or the presence of wetlands in the area. Rain and snow falling in New Hampshire is relatively acidic, which can also affect pH levels; after the spring melt or significant rain events, surface waters will generally have a lower pH.

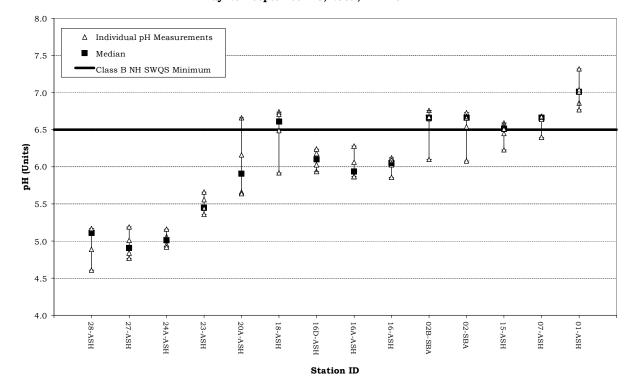


Figure 2. pH Statistics for the Ashuelot River Watershed May 26 - September 15, 2009, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider sampling for pH in some of the tributaries and wetland areas that are influencing the pH of stations with measurements below state standards. Site conditions are considered along with pH measurements because of the narrative portion of the pH standard. RSA 485-A:8 states that pH of Class B waters shall be between 6.5 and 8.0, except when due to natural causes. Wetlands can lower the pH of a river naturally by releasing tannic and humic acids from decaying plant material. If the sampling location is influenced by wetlands or other natural conditions, then the low pH measurements are not considered a violation of water quality standards. It is important to note that the New Hampshire water quality standard for pH is fairly conservative, thus pH levels slightly below the standard are not necessarily harmful to aquatic life. In this case, additional information about factors influencing pH levels is needed.

4.3 Turbidity

Either four or five measurements were taken in the field for turbidity at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 6]. Of the 70 measurements taken, 63 met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for turbidity is less than 10 NTU above natural background.

Table 6. Turbidity Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (NTU)	Acceptable Samples Potentially Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	0.00 - 1.80	0	5
27-ASH	5	0.00 - 2.50	0	5
24A-ASH	5	0.10 - 2.10	0	5
23-ASH	5	0.10 - 1.80	0	5
20A-ASH	5	0.55 - 4.10	0	4
18-ASH	5	1.10 - 3.80	0	4
16D-ASH	5	1.30 - 3.90	0	5
16A-ASH	5	1.50 - 4.30	0	5
16-ASH	5	1.20 - 4.90	0	5
02B-SBA	5	1.60 - 3.80	0	4
02-SBA	5	1.50 - 3.30	0	4
15-ASH	5	1.40 - 4.00	0	4
07-ASH	5	1.30 - 3.70	0	4
01-ASH	5	1.00 - 3.70	0	4
Total	70		0	63

Turbidity levels were low at all stations and on all occassions with the average ranging from 0.50 NTU to 2.75 NTU (Figure 3).

Although clean waters are associated with low turbidity there is a high degree of natural variability involved. Precipitation often contributes to increased turbidity by flushing sediment, organic matter and other materials from the surrounding landscape into surface waters. However, human activities such as removal of vegetation near surface waters and disruption of nearby soils can lead to dramatic increases in turbidity levels. In general it is typical to see a rise in turbidity in more developed areas due to increased runoff.

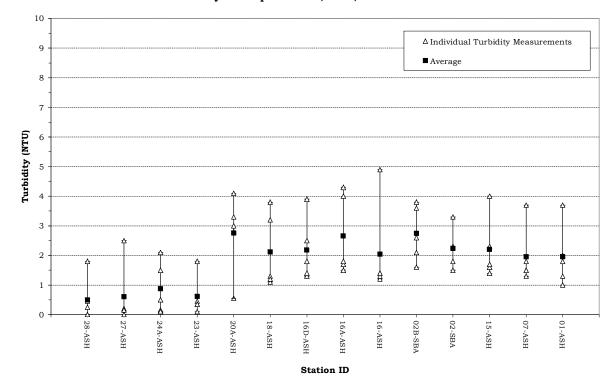


Figure 3. Turbidity Statistics for the Ashuelot River Watershed May 26 - September 15, 2009, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Collect samples during wet weather. This will help us to understand how the river responds to runoff and sedimentation.
- If a higher than normal turbidity measurement occurs, volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated turbidity levels. In addition, take good field notes and photographs. If human activity is suspected or verified as the source of elevated turbidity levels, volunteers should contact NHDES.

4.4 Specific Conductance

Five measurements were taken in the field for specific conductance at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 7]. Of the 70 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

New Hampshire surface water quality standards do not contain numeric criteria for specific conductance although in many fresh surface waters, specific conductance can be used as a surrogate to predict compliance with numeric water quality criteria for chloride.

Table 7. Specific Conductance Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (μS/cm)	Acceptable Samples Not Meeting NH Class B Standards (µS/cm as chloride surrogate)	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	19.1 - 25.9	0	5
27-ASH	5	23.3 - 30.4	0	5
24A-ASH	5	27.6 - 34.1	0	5
23-ASH	5	33.7 - 47.8	0	5
20A-ASH	5	44.2 - 62.5	0	5
18-ASH	5	59.0 - 119.1	0	5
16D-ASH	5	76.5 - 132.1	0	5
16A-ASH	5	71.7 - 116.5	0	5
16-ASH	5	78.8 - 133.9	0	5
02B-SBA	5	60.3 - 90.3	0	5
02-SBA	5	61.7 - 91.5	0	5
15-ASH	5	80.6 - 132.4	0	5
07-ASH	5	76.9 - 126.3	0	5
01-ASH	5	75.0 - 126.1	0	5
Total	70		0	70

Specific conductance levels were variable with the average ranging from 21.9 $\mu S/cm$ in the upper portion of the watershed to 109.0 $\mu S/cm$ in the lower portion of the watershed (Figure 4). Higher specific conductance levels can be indicative of pollution from sources such as urban/agricultural runoff, road salt, failed septic systems, or groundwater pollution. The variable specific conductance levels generally indicate low pollutant levels at some stations and higher levels at others.

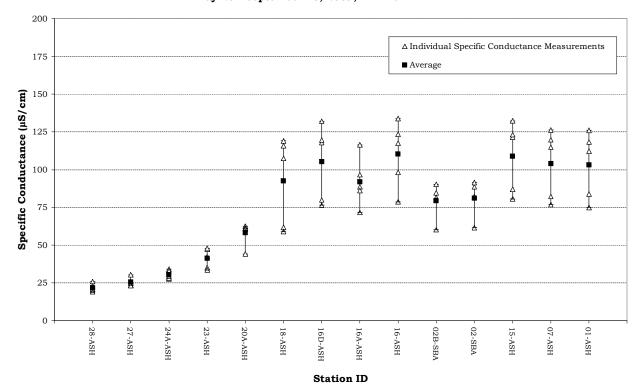


Figure 4. Specific Conductance Statistics for the Ashuelot River Watershed May 26 - September 15, 2009, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider collecting chloride samples at the same time that specific conductance is measured. During the late winter/early spring snowmelt, higher specific conductance levels are often seen due to elevated concentrations of chloride in the runoff. Specific conductance levels are very closely correlated to chloride levels. Simultaneously measuring chloride and specific conductance will allow for a better understanding of their relationship.
- Consider incorporating the use of in-situ dataloggers to automatically determine specific conductance levels during rain events, snowmelt, and baseline dry weather conditions. The use of these instruments is dependent upon availability, and requires coordination with NHDES.

4.5 Water Temperature

Five measurements were taken in the field for water temperature at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 8]. Of the 70 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Table 8. Water Temperature Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (°C)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	16.3 - 23.4	Not Applicable	5
27-ASH	5	13.6 - 21.7	N/A	5
24A-ASH	5	17.2 - 24.3	N/A	5
23-ASH	5	13.3 - 21.7	N/A	5
20A-ASH	5	14.7 - 21.7	N/A	5
18-ASH	5	16.5 - 22.8	N/A	5
16D-ASH	5	14.0 - 22.8	N/A	5
16A-ASH	5	14.7 - 21.5	N/A	5
16-ASH	5	14.4 - 21.8	N/A	5
02B-SBA	5	14.6 - 21.3	N/A	5
02-SBA	5	14.5 - 21.7	N/A	5
15-ASH	5	16.7 - 23.4	N/A	5
07-ASH	5	16.1 - 23.0	N/A	5
01-ASH	5	16.2 - 22.9	N/A	5
Total	70		N/A	70

Figure 5 shows the results of instantaneous water temperature measurements taken at 15 stations in the Ashuelot River watershed. The average water temperature varied from 17.4 °C. to 19.4 °C.

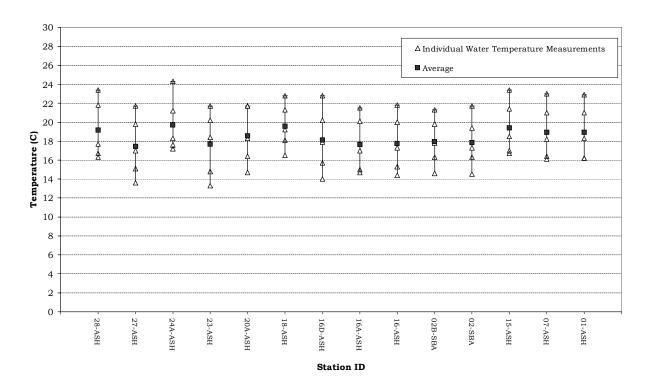


Figure 5. Water Temperature Statistics for the Ashuelot River Watershed May 26 - September 15, 2009, NHDES VRAP

Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and the activity of bacteria in the water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation along the shoreline, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and the influence of groundwater.

Recommendations

Continue collecting water temperature data via both instantaneous reading and long-term deployment of dataloggers.

4.6 Escherichia coli/Bacteria

Three samples were taken for *Escherichia coli* (*E. coli*) at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 9). Of the 56 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

Class B New Hampshire surface water quality standards for *E.coli* are as follows:

≤406 cts/100 ml, based on any single sample or ≤126 cts/100 ml, based on a geometric mean calculated from three samples collected within a 60-day period.

Table 9. E.coli Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (cts/100ml)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	4	1 - 3	0	4
27-ASH	4	12 - 19	0	4
24A-ASH	4	24 - 32	0	4
23-ASH	4	13 - 165	0	4
20A-ASH	4	26 - 66	0	4
18-ASH	4	56 - 69	0	4
16D-ASH	4	53 - 130	0	4
16A-ASH	4	53 - 104	0	4
16-ASH	4	74 - 162	0	4
02B-SBA	4	74 - 144	0	4
02-SBA	4	43 - 165	0	4
15-ASH	4	60 - 89	0	4
07-ASH	4	33 - 50	0	4
01-ASH	4	33 - 56	0	4
Total	56		0	56

All measurements taken for *E.coli* met the state of New Hampshire Class B surface water quality standard (Figure 6).

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife (e.g., birds), and the presence of septic systems along the river.

In order to fully determine whether a waterbody is meeting surface water standards for *E.coli* a geometric mean must be calculated. A geometric mean is calculated using three samples collected within a 60-day period.

At all 14 stations two geometric means were calculated. All stations met the state of New Hampshire Class B geometric mean standard of 126 cts/100ml (Table 10).

Table 10. E. coli Geometric Mean Data Summary - Ashuelot River Watershed, 2009

Station ID	Number of Geometric Means Calculated	Geometric Mean 6/23/09 - 8/18/09	Geometric Mean 7/21/09 - 9/15/09	Geometric Means Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	2	2	2	0	2
27-ASH	2	14	13	0	2
24A-ASH	2	28	22	0	2
23-ASH	2	24	38	0	2
20A-ASH	2	29	38	0	2
18-ASH	2	62	21	0	2
16D-ASH	2	100	78	0	2
16A-ASH	2	94	76	0	2
16-ASH	2	104	93	0	2
02B-SBA	2	122	98	0	2
02-SBA	2	121	77	0	2
15-ASH	2	74	78	0	2
07-ASH	2	42	40	0	2
01-ASH	2	45	41	0	2
Total	28			0	28

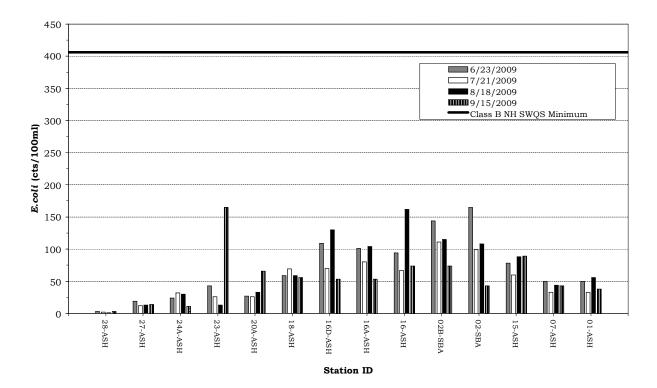


Figure 6. Escherichia coli Statistics for the Ashuelot River Watershed
June 23 - September 15, 2009, NHDES VRAP

Recommendations

- Continue collecting three samples within any 60-day period during the summer to allow for determination of geometric means. Samples need only be collected during the critical period of May 24 to September 15 for assessment purposes. This coincides with the peak contact recreation season.
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling).
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling). At stations with particularly high bacteria levels volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated bacteria levels. Those sampling should also look for any potential sources of bacteria such as emission pipes, failed septic systems, farm animals, pet waste, wildlife and waterfowl.

4.7 Total Phosphorus

Three samples were taken for total phosphorus at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 11). Of the 41 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

There is no numeric standard for total phosphorus for Class B waters. The narrative standard states that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses." The NHDES "level of concern" for total phosphorous is 0.05 mg/L.

Table 11. Total Phosphorus Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (mg/L)	Acceptable Samples Exceeding NHDES Level of Concern	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	3	0.0075 - 0.015	0	3
27-ASH	3	0.012 - 0.016	0	3
24A-ASH	3	0.011 - 0.015	0	3
23-ASH	3	0.011 - 0.014	0	3
20A-ASH	2	0.014 - 0.023	0	2
18-ASH	3	0.014 - 0.024	0	3
16D-ASH	3	0.019 - 0.025	0	3
16A-ASH	3	0.027 - 0.047	0	3
16-ASH	3	0.018 - 0.032	0	3
02B-SBA	3	0.025 - 0.052	1	3
02-SBA	3	0.026 - 0.028	0	3
15-ASH	3	0.022 - 0.028	0	3
07-ASH	3	0.019 - 0.027	0	3
01-ASH	3	0.021 - 0.027	0	3
Total	41		0	41

One measurement (at station 02B-SBA) was above the NHDES "level of concern" (Figure 7).

Under undisturbed natural conditions phosphorus is at very low levels in aquatic ecosystems. Of the three nutrients critical for aquatic plant growth;

potassium, nitrogen, and phosphorus, it is usually phosphorous that is the limiting factor to plant growth. When the supply of phosphorus is increased due to human activity, algae respond with significant growth.

A major source of excessive phosphorus concentrations in aquatic ecosystems can be wastewater treatment facilities, as sewage typically contains relatively high levels of phosphorus detergents. However, fertilizers used on lawns and agricultural areas can also contribute significant amounts of phosphorus.

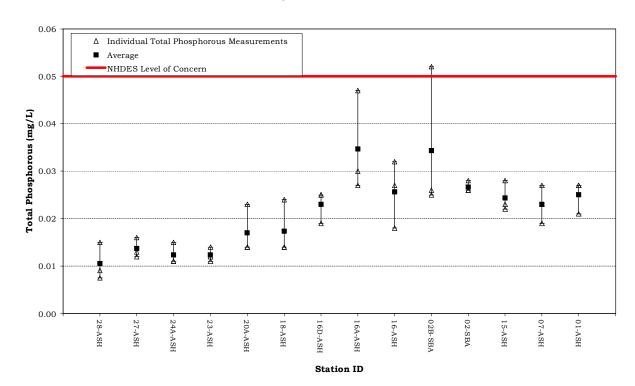


Figure 7. Total Phosphorous Statistics for the Ashuelot River Watershed June 23 - August 18, 2009, NHDES VRAP

Recommendations

Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.

4.8 Chloride

Five samples were taken for chloride at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 12). Of the 70 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2010 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for chloride is as follows:

Freshwater chronic criterion 230 mg/l Freshwater acute criterion 860 mg/l

Table 12. Chloride Data Summary - Ashuelot River Watershed, 2009

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2010 NH Surface Water Quality Assessment
28-ASH	5	2.5 - 2.5	0	5
27-ASH	5	2.5 - 2.5	0	5
24A-ASH	5	2.5 - 2.5	0	5
23-ASH	5	5.1 - 7.2	0	5
20A-ASH	5	6.3 - 8.7	0	5
18-ASH	5	9.8 - 24	0	5
16D-ASH	5	15 - 28	0	5
16A-ASH	5	13 - 30	0	5
16-ASH	5	11 - 30	0	5
02B-SBA	5	10 - 16	0	5
02-SBA	5	10 - 16	0	5
15-ASH	5	15 - 27	0	5
07-ASH	5	13 - 23	0	5
01-ASH	5	10 - 24	0	5
Total	70		0	70

All measurements were below the state of New Hampshire Class B chronic surface water quality standard (Figure 8).

Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. Road salt readily dissolves and enters aquatic environments in ionic forms. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans. Additional human sources of chloride can come from fertilizers, septic systems, and underground water softening systems.

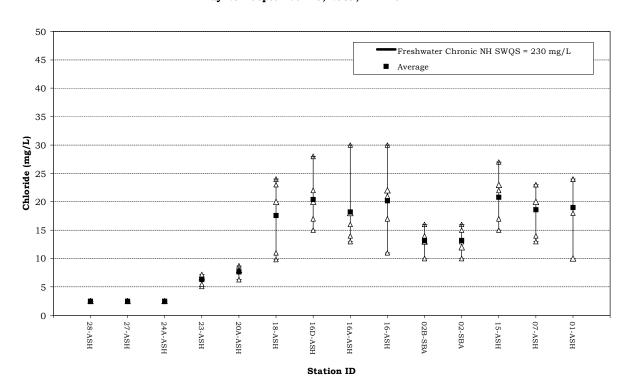


Figure 8. Chloride Statistics for the Ashuelot River Watershed May 26 - September 15, 2009, NHDES VRAP

Recommendations

Continue collecting chloride samples during both low-flow summer months and during snowmelt period in winter and early spring. It is critical that specific conductance be recorded when chloride samples are collected.

APPENDIX A: 2009 ASHUELOT RIVER WATERSHED VRAP DATA REPORT

Measurements not meeting New Hampshire surface water quality standards
Total Phosphorous measurements exceeding NHDES level of concern
Measurements not meeting NHDES quality assurance/quality control standards

28-ASH, Ashuelot River, Route 31, Washington

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	07:05	8.13	83.1	4.61	0.45	25.9	16.3				<5
6/23/2009	07:42	8.31	87.0	4.89	0.25	19.1	17.7	3		0.015	<5
7/21/2009	07:21	7.54	85.5	5.11	0.00	20.3	21.8	2		0.008	<5
8/18/2009	07:58	7.01	82.3	5.16	1.80	21.0	23.4	1	2	0.009	<5
9/15/2009	07:21	8.29	85.3	5.17	0.00	23.1	16.7	3	2		<5

27-ASH, Ashuelot River, Mountain Road, Lempster

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(µS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	07:48	8.96	86.1	4.77	0.20	30.4	13.6				<5
6/23/2009	08:22	8.49	87.9	4.84	0.00	25.0	17.0	19		0.016	<5
7/21/2009	07:56	7.75	84.8	4.91	0.15	23.6	19.8	12		0.012	<5
8/18/2009	08:28	7.42	84.5	5.01	2.50	23.3	21.7	13	14	0.013	<5
9/15/2009	07:56	8.61	85.3	5.19	0.15	25.8	15.1	14	13		<5

24A-ASH, Ashuelot River, Route 10, Marlow

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	08:50	8.30	87.1	5.01	1.50	34.1	17.6				<5
6/23/2009	09:18	8.43	89.5	4.95	0.50	29.7	18.3	24		0.011	<5
7/21/2009	08:36	7.81	88.1	5.06	0.15	27.6	21.2	32		0.011	<5
8/18/2009	09:04	7.38	87.3	4.92	2.10	28.3	24.3	30	28	0.015	<5
9/15/2009	08:33	8.50	88.3	5.16	0.10	32.9	17.2	11	22		<5

^A Chronic water quality standard

23-ASH, Asheulot River, Route 10, Gilsum

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	09:26	9.78	93.4	5.56	0.45	47.5	13.3				6.7
6/23/2009	09:44	8.59	91.8	5.44	0.35	33.7	18.4	43		0.011	5.1
7/21/2009	09:13	8.37	92.4	5.45	0.35	35.1	20.2	26		0.012	5.5
8/18/2009	09:31	8.22	93.5	5.66	1.80	42.4	21.7	13	24	0.014	7.0
9/15/2009	09:03	9.48	93.3	5.36	0.10	47.8	14.8	165	38		7.2

20A-ASH, Ashuelot River, Stone Arch Bridge, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	08:15	8.04	79.4	6.16	2.80	60.7	14.7				8.0
6/23/2009	07:30	8.08	86.2	6.66	3.30	44.2	18.3	27		0.014	6.3
7/21/2009	07:30	7.77	87.2	6.44	0.85	44.1	20.9	26			5.8
8/18/2009	08:12	7.02	79.8	5.64	4.10	62.5	21.7	33	29	0.023	8.7
9/15/2009	08:15	7.59	79.2		0.55	61.3	16.4	66	38		7.7

18-ASH, Ashuelot River, Route 101, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	09:15	8.29	85.1	6.49	1.10	107.5	16.5				20
6/23/2009	08:40	8.08	88.0	6.74	3.20	59.0	19.2	59		0.014	9.8
7/21/2009	08:25	7.89	89.6	6.61	1.30	61.8	21.3	69		0.014	11
8/18/2009	09:27	8.49	98.5	5.92	3.80	115.8	22.8	59	62	0.024	24
9/15/2009	09:30	8.11	85.8	6.71	1.20	119.1	18.1	56	21		23

16D-ASH, Ashuelot River, 40 Feet Upstream of Keene WWTF, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	<i>E.coli</i> Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^B
5/26/2009	08:45	8.83	85.5	6.10	1.30	118.0	14.0				20
6/23/2009	09:35	8.87	93.5	6.18	1.80	76.5	17.9	109		0.019	15
7/21/2009	10:37	8.73	90.0	5.94	2.50	80.0	20.2	70		0.025	17
8/18/2009	10:25	7.13	82.8	6.24	3.90	132.1	22.8	130	100	0.025	28
9/15/2009	09:34	8.87	89.3	6.03	1.40	119.7	15.7	53	78		22

16A-ASH, Mouth of South Branch Ashuelot River, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	10:24	7.45	73.1	5.87	1.70	116.5	14.7				18
6/23/2009	08:40	7.55	78.2	5.87	4.00	71.7	17.0	101		0.047	14
7/21/2009	09:13	8.65	84.8	5.94	1.80	88.6	20.1	80		0.030	16
8/18/2009	09:50	6.84	77.9	6.28	4.30	96.7	21.5	104	94	0.027	30
9/15/2009	08:50	8.93	88.7	6.06	1.50	86.3	15.0	53	76		13

16-ASH, Ashuelot River, Cressen Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^B
5/26/2009	09:32	8.73	85.5	6.03	1.40	123.5	14.4				22
6/23/2009	08:05	8.63	89.9	6.12	1.20	78.8	17.3	94		0.018	11
7/21/2009	08:20	8.70	86.9	6.05	1.30	98.3	20.0	67		0.032	17
8/18/2009	08:20	6.52	75.0	6.09	4.90	133.9	21.8	162	104	0.027	30
9/15/2009	08:13	8.72	87.1	5.86	1.40	117.5	15.3	74	93		21

02B-SBA, South Branch Ashuelot River, Upstream of Monadnock Regional High School, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	10:55	9.00	88.4	6.65	1.60	84.7	14.6				13
6/23/2009	10:25	9.03	95.1	6.67	2.10	60.3	17.8	144		0.025	10
7/21/2009	08:55	8.15	89.4	6.76	2.60	81.6	19.8	111		0.052	14
8/18/2009	10:40	7.55	85.4	6.10	3.80	90.3	21.3	115	122	0.026	16
9/15/2009	12:05	9.15	98.0		3.60	80.0	16.3	74	98		13

02-SBA, South Branch Ashuelot River, Route 32 Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	10:05	8.85	86.7	6.73	1.80	88.6	14.5				12
6/23/2009	09:30	8.66	90.5	6.66	2.30	61.7	17.3	165		0.026	10
7/21/2009	08:55	7.98	87.3	6.68	2.30	82.0	19.4	99		0.028	15
8/18/2009	10:00	8.59	97.8	6.08	3.30	91.5	21.7	108	121	0.026	16
9/15/2009	10:15	8.50	90.2	6.54	1.50	82.1	16.3	43	77		13

15-ASH, Ashuelot River, Thompson Covered Bridge, West Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	09:26	8.00	83.2	6.55	1.40	121.5	17.0				23
6/23/2009	09:20	8.25	87.8	6.45	2.30	80.6	18.5	78		0.023	15
7/21/2009	10:33	7.32	82.8	6.59	1.60	87.1	21.4	60		0.022	17
8/18/2009	09:55	6.75	79.2	6.51	4.00	132.4	23.4	88	74	0.028	27
9/15/2009	08:55	8.38	86.1	6.23	1.70	123.2	16.7	89	78		22

07-ASH, Ashuelot River, Route 119, Winchester

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Water Temp. (°C)	Specific Conductance (uS/cm)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	08:55	8.48	86.5	6.66	1.50	114.9	16.1				20
6/23/2009	08:35	8.69	92.2	6.64	1.80	76.9	18.2	50		0.023	13
7/21/2009	09:48	7.58	85.3	6.67	1.50	82.3	21.0	33		0.019	14
8/18/2009	09:15	7.20	83.8	6.68	3.70	119.8	23.0	44	42	0.027	23
9/15/2009	08:25	8.40	86.1	6.40	1.30	126.3	16.4	43	40		23

01-ASH, Ashuelot River, 147 River Street, Hinsdale

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	(μS/cm as chloride surrogate)	NA	<406	<126	NA	230 ^A
5/26/2009	07:55	9.24	94.5	7.32	1.30	112.3	16.2				18
6/23/2009	07:50	9.02	96.7	7.01	2.00	75.0	18.3	50		0.027	13
7/21/2009	08:34	8.16	91.6	6.86	1.80	83.9	21.0	33		0.021	17
8/18/2009	08:30	8.02	93.8	7.04	3.70	118.3	22.9	56	45	0.027	24
9/15/2009	07:45	9.20	93.9	6.77	1.00	126.1	16.2	38	41		24

APPENDIX B: Interpreting VRAP Water Quality Monitoring Parameters

Chemical Parameters

Dissolved Oxygen (DO)

- **Unit of Measurement:** concentration in milligrams per liter (mg/L) and percent saturation (%).
- **Description:** A measure of the amount of oxygen in the water: Concentration is a measure of the amount of oxygen in a volume of water; saturation is a measurement of the amount of oxygen in the water compared to the amount of oxygen the water can actually hold at full saturation. Both of these measurements are necessary to accurately determine whether New Hampshire surface water quality standards are met.
- **Importance**: Oxygen is dissolved into the water from the atmosphere, aided by wind and wave action, or by rocky, steep, or uneven stream beds. The presence of dissolved oxygen is vital to bottom-dwelling organisms as well as fish and amphibians. Aquatic plants and algae produce oxygen in the water during the day, and consume oxygen during the night. Bacteria utilize oxygen both day and night when they process organic matter into smaller and smaller particles.

Class A NH Surface Water Quality Standard: 6 mg/L at any place or time, or 75% minimum daily average – (unless naturally occurring).

Class B NH Surface Water Quality Standard: 5 mg/L at any place or time or 75% minimum daily average – (unless naturally occurring).

Several measurements of oxygen saturation taken in a 24-hour period must be averaged to compare to the 75 percent daily average saturation standard. The concentration of dissolved oxygen is dependent on many factors including temperature and sunlight, and tends to fluctuate throughout the day. Saturation values are averaged because a reading taken in the morning may be low due to respiration, while a measurement that afternoon may show that the saturation has recovered to acceptable levels. Water can become saturated with more than 100 percent dissolved oxygen.

pН

- **Unit of Measurement:** units (no abbreviation).
- **Description:** A measure of hydrogen ion activity in water, or, in general terms, the acidity of water. pH is measured on a logarithmic scale of 0 to 14, with 7 being neutral. A high pH indicates alkaline (or basic) conditions and a low pH indicates acidic conditions. pH is influenced by geology and soils, organic acids (decaying leaves and other matter), and human-induced acids from acid rain (which typically has a pH of 3.5 to 5.5).
- Importance: pH affects many chemical and biological processes in the water and this is important to the survival and reproduction of fish and other aquatic life. Different organisms flourish within different ranges of pH. Measurements outside of an organism's preferred range can limit growth and reproduction and lead to physiological stress. Low pH can also affect the toxicity of aquatic compounds such as ammonia and certain metals by making them more "available" for uptake by aquatic plants and animals. This can produce conditions that are toxic to aquatic life.

1

Class A NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring). Class B NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring).

Sometimes, readings that fall below this range are determined to be naturally occurring. This is often a result of wetlands near the sample station. Wetlands can lower pH because the tannic and humic acids released by decaying plants can cause water to become more acidic.

pH Units	Category
<5.0	High Impact
5.0 – 5.9	Moderate to High Impact
6.0 – 6.4	Normal; Low Impact
6.5 – 8.0	Normal;
6.1 – 8.0	Satisfactory

Specific Conductance or Conductivity

- Unit of Measurement: micromhos per centimeter (umhos/cm) or microsiemens per centimeter (uS/cm).
- Description: The numerical expression of the ability of water to carry an electrical current at 25° C and a measure of free ion (charged particles) content in the water. These ions can come from natural sources such as bedrock, or human sources such as stormwater runoff. Specific conductance can be used to indicate the presence of chlorides, nitrates, sulfates, phosphates, sodium, magnesium, calcium, iron, and aluminum ions. There is a difference between conductivity and specific conductance. Specific conductance measures the free ion content of water at a *specific* water temperature, whereas conductivity measures the free ion content of water at 25° C. VRAP uses the term "specific conductance" because our conductivity measurements account for temperature. In some studies and programs, the term "conductivity" is used. This term should only be used when the measurement *does not* adjust to a specific temperature.
- Importance: Specific conductance readings can help locate potential pollution sources because polluted water usually has a higher specific conductance than unpolluted waters. High specific conductance values often indicate pollution from road salt, septic systems, wastewater treatment plants, or urban/agricultural runoff. Specific conductance can also be related to geology. In unpolluted rivers and streams, geology and groundwater are the primary influences on specific conductance levels.

Class A NH Surface Water Quality Standard: No numeric standard.
Class B NH Surface Water Quality Standard: No numeric standard.

Although there is no formal standard for specific conductance, data collect by VRAP groups and NHDES indicated a very close relationship between specific conductance levels and chloride. In some cases NHDES can use specific conductance measurements as a surrogate for chloride levels. The data collected by NHDES indicate that the chronic chloride standard is correlated with a specific conductance level of approximately $850~\mu S/cm$.

Specific Conductance	Category
(uS/cm)	
0 – 100	Normal
101 – 200	Low Impact
201 – 500	Moderate Impact
> 501	High Impact
> 850	Likely exceeding chronic chloride standard

Turbidity

- Unit of Measurement: Nephelometric Turbidity Units (abbreviated at NTU).
- **Description:** A measurement of the amount of suspended material in the water. This material, which is comprised of particles such as clay, silt, algae, suspended sediment, and decaying plant material, causes light to be scattered and absorbed, rather than transmitted in straight lines through the water.
- Importance: Higher turbidity increases water temperatures because suspended particles absorb more heat. This, in turn, reduces dissolved oxygen (DO) concentrations because warm water holds less DO than cold water. Higher turbidity also reduces the amount of light that can penetrate the water, which reduces photosynthesis and DO production. Suspended materials can clog fish gills, reducing disease resistance, lowering growth rates, and affecting egg and larval development. As the particles settle, they can blanket the stream bottom, especially in slower waters, and smother fish eggs and benthic macroinvertebrates. Clean waters are generally associated with low turbidity, but there is a high degree of natural variability involved. Rain events can increase turbidity in surface waters by flushing sediment, organic matter and other materials into the water. Human activities such as vegetation removal and soil disruption can also lead to dramatic increases in turbidity levels.

Class A NH Surface Water Quality Standard: As naturally occurs.

Class B NH Surface Water Quality Standard: Shall not exceed naturally occurring conditions by more than 10 NTU.

Physical Parameters

Temperature

- Unit of Measurement: Degrees Celsius (° C)
- Importance: Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and bacteria activity in water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and groundwater.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Chlorophyll-a (Chlor a)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** An indicator of the biomass, or abundance, of planktonic algae in the river. The technical term "biomass" is used to represent "amount by weight." Chlorophyll-a can be strongly influenced by phosphorus, which is derived by natural and human activities.

Importance: Because algae is a plant and contains the green pigment chlorophyll-a, the concentration of chlorophyll-a found in the water gives an estimation of the concentration of algae. If the chlorophyll-a concentration increases, this indicates an increase in the algal population.

Class A NH Surface Water Quality Standard: No numeric standard.

Class B NH Surface Water Quality Standard: No numeric standard.

Chlorophyll-a (mg/L)	Category
< 3	Excellent
3 – 7	Good
7 – 15	Less than desirable
> 15	Nuisance

Total Phosphorus (TP)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** A measure of all forms of phosphorus in the water, including inorganic and organic forms. There are many sources of phosphorus, both natural and human. These include soil and rocks, sewage, animal manure, fertilizer, erosion, and other types of contamination.
- Importance: Phosphorus is a nutrient that is essential to plants and animals. However, excess amounts can cause rapid increases in the biological activity in water. Phosphorus is usually the "limiting nutrient" in freshwater streams, which means relatively small amounts can increase algae and chlorophyll-a levels. Algal blooms and/or excessive aquatic plant growth can decrease oxygen levels and make water unattractive. Phosphorus can indicate the presence of septic systems, sewage, animal waste, lawn fertilizer, road and construction erosion, other types of pollution, or natural wetlands and atmospheric deposition.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses.

Total Phosphorus (mg/L)	Category
< 0.010	Ideal
0.011 - 0.025	Average
0.026 - 0.050	More than desirable
> 0.051	Excessive (potential nuisance concentration)

Total Kjeldahl Nitrogen (TKN)

- Unit of Measurement: Milligrams per liter (mg/L).
- **Description:** A measure of the amount of ammonia and organic nitrogen in the water.
- **Importance:** High nitrogen levels can increase algae and chlorophyll-a levels in the river, but is generally less of a concern in fresh water than phosphorus. Nitrogen can indicate the presence of sewage, animal waste, fertilizer, erosion, or other types of pollution.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no nitrogen in such concentrations that would impair any existing or designated uses.

TKN (mg/L)	Category
< 0.25	Ideal
0.26 - 0.40	Average
0.41 - 0.50	More than desirable
> 0.51	Excessive (potential nuisance concentration)

Other Parameters

Chloride

- **Unit of Measurement:** Milligrams per liter (mg/L).
- **Description:** The chloride ion (Cl-) is found naturally in some surface waters and groundwater. It is also found in high concentrations in seawater. Higher-than-normal chloride concentrations in freshwater is detrimental to water quality. In New Hampshire, applying road salt for winter accident prevention is a large source of chloride to the environment. Unfortunately, this has increased over time due to road expansion and increased vehicle traffic. Road salt (most often sodium chloride) readily dissolves and enters aquatic environments in ionic forms. Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Sodium chloride is also used on foods as table salt, and consequently is present in human waste. Thus, sometimes chloride in water can indicate sewage pollution. Saltwater intrusion can also elevate groundwater chlorides in drinking water wells near coastlines. Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans.
- Importance: Research shows elevated chloride levels can be toxic to freshwater aquatic life. Among the species tested, freshwater aquatic plants and invertebrates tend to be the most sensitive to chloride. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria.

Acute Standard: 860 mg/L.

Chronic Standard: 230 mg/L.

Escherichia Coliform Bacteria (E. coli)

- Unit of Measurement: Counts per 100 milliliter (cts/100 mL).
- **Description:** An indicator of the potential presence of pathogens in fresh water. *E. coli* bacteria is a normal component in the large intestines of humans and other warm-blooded animals, and can be excreted in their fecal material. Organisms causing infections or disease (pathogens) are often excreted in the fecal material of humans and other warm-blooded animals.
- **Importance:** *E.coli* bacteria is a good indicator of fecal pollution and the possible presence of pathogenic organisms. In freshwater, *E. coli* concentrations help determine if the water is safe for recreational uses such as swimming.

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife, and the presence of septic systems along the river.

Class A NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 47 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 153 *E.coli* cts/100 mL in any one sample.

Class B NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 126 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 406 *E.coli* cts/100 mL in any one sample.

Metals

Depending on the metal concentration, its form (dissolved or particulate), and the hardness of the water, trace metals can be toxic to aquatic life. Metals in dissolved form are generally more toxic than metals in the particulate form. The dissolved metal concentration is dependent on pH, as well as the presence of solids and organic matter that can bind with the metal to render it less toxic.

Hardness is primarily a measure of the calcium and magnesium ion concentrations in water, expressed as calcium carbonate. The hardness concentration affects the toxicity of certain metals. New Hampshire water quality regulations include numeric criteria for a variety of metals. Since dissolved metals are typically found in extremely low concentrations, the potential contamination of samples collected for trace metals analyses has become a primary concern of water quality managers. To prevent such contamination and to ensure reliable results, the use of "clean techniques" is becoming more and more frequent when sampling for dissolved metals. Because of this, sampling for metals may be more costly and require additional effort than in the past.

New Hampshire Volunteer River Assessment Program

29 Hazen Drive – PO Box 95 Concord, NH 03302-0095 p (603) 271-0699 – f (603) 271-7894 www.des.nh.gov

2008

APPENDIX C:

2009 VRAP Field Audit

VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group is notified of the result of the verification visit. During the visit, volunteers were assessed in the following five categories:

1) Overall Sampling Procedures

Appropriate storage of meters, sample collection, laboratory sample collection and transportation, beginning and end of day meter checks, collecting a field replicate, performing QA/QC Meter Checks, and ensuring that all calibration and sampling data are properly documented on the VRAP Field Data Sheet and the Laboratory Services Login & Custody Sheet.

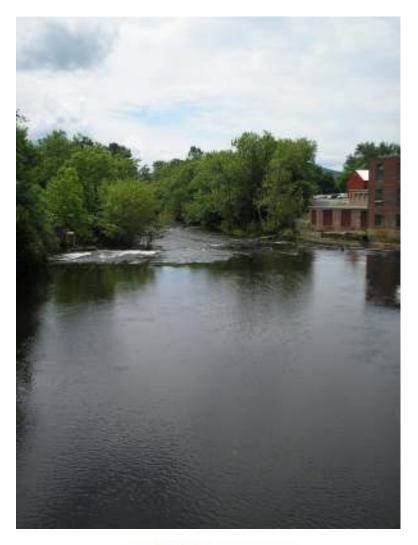
2) Turbidity

Inspecting and cleaning of glass turbidity vials prior to measurement of standards and samples, performing the *Initial Turbidity Meter Check*, calibrating the meter to a known standard at the beginning of the sampling day, recording the value of the DI turbidity blank (QA/QC Meter Check) once during the sampling day, and performing the "End of the Day Meter Check" at the conclusion of the sampling day.

3) pH

Inspecting the pH electrode prior to sampling, calibrating to both pH 7.0 and 4.0 buffers prior to each measurement, rinsing and wiping the pH electrode probe prior to and after the measurement of standards and samples, allowing the pH measurement to stabilize prior to recording the measurement, and recording the value of the 6.0 buffer (QA/QC Meter Check) once during the sampling day.

4) Water Temperature/Dissolved Oxygen


Ensuring that the meter is allowed an adequate time to stabilize prior to the first calibration, the meter is calibrated prior to each measurement, the calibration value is properly recorded, the chamber reading is properly recorded, that sufficient time is allowed for readings to stabilize, and that a zero oxygen check (QA/QC Meter Check) is completed during the sampling day.

5) Specific Conductance

Performing the *Initial Conductivity Meter Check* using a known standard, allowing for the meter to properly stabilize before recording measurements, properly cleaning the probe between stations, and performing the *End of the Day Meter Check* at the conclusion of the sampling day.

During the field audit, VRAP staff offer important reminders and suggestions to ensure proper sampling techniques and re-trained volunteers in the areas needing improvement. It is important to ensure that all volunteers attend an annual VRAP training workshop prior to the sampling season to familiarize themselves with proper sampling techniques. Please remember to schedule an annual field audit in 2010.

New Hampshire Volunteer River Assessment Program 2010 Ashuelot River Watershed Water Quality Report

February 2011

New Hampshire Volunteer River Assessment Program 2010 Ashuelot River Watershed Water Quality Report

State of New Hampshire
Department of Environmental Services
Water Division
Watershed Management Bureau
P.O. Box 95
29 Hazen Drive
Concord, New Hampshire 03302-0095
www.des.nh.gov

Thomas S. Burack Commissioner

Harry T. Stewart Water Division Director

Prepared By:

Ted Walsh, VRAP Program Manager

Jen Drociak, VRAP Coordinator

Suzanne Richardson, VRAP Assistant

Cover Photo: Ashuelot River, 15-ASH, West Swanzey

February 2011

TABLE OF CONTENTS

1.	INTRODUCTION	4
1.1	Purpose of Report	4
1.2	Report Format	4
2.	PROGRAM OVERVIEW	6
2.1	What is VRAP?	6
2.2	Why is VRAP Important?	6
2.3	How Does VRAP Work?	6
2.4	Equipment & Sampling Schedule	7
2.5	Training & Technical Support	7
2.6	Data Usage	7
2.7	Quality Assurance & Quality Control	8
3.	METHODS	10
4.	RESULTS & RECOMMENDATIONS	13
4.1	Dissolved Oxygen	13
4.2	pH	15
4.3	Turbidity	17
4.4	Specific Conductance	19
4.5	Water Temperature	22
4.6	Eschericia coli/Bacteria	24
4.7	Total Phosphorus	27
4.8	Chloride	29

List of Figures and Tables

Figure 1:	Dissolved Oxygen Concentration Statistics	14
Figure 2:	pH Statistics	16
Figure 3:	Turbidity Statistics	18
Figure 4:	Specific Conductance Statistics	21
Figure 5:	Water Temperature Statistics	23
Figure 6:	Eschericia coli/Bacteria Statistics	26
Figure 7:	Total Phosphorus Statistics	28
Figure 8:	Chloride Statistics	30
Table 1:	Field Analytical Quality Controls	9
Table 2:	Sampling and Analysis Methods	11
Table 3:	Sampling Stations for the Ashuelot River, 2010	12
Table 4:	Dissolved Oxygen Concentration Data Summary	13
Table 5:	pH Data Summary	15
Table 6:	Turbidity Data Summary	17
Table 7:	Specific Conductance Data Summary	20
Table 8:	Water Temperature Data Summary	22
Table 9:	Eschericia coli/Bacteria Data Summary	24
Table 10:	Eschericia coli/Bacteria Geometric Mean Data Summary	25
Table 11:	Total Phosphorus Data Summary	27
Table 12:	Chloride Data Summary	29

List of Appendices

Appendix A: 2010 Ashuelot River Watershed V	Vater (Quality	Data
---	---------	---------	------

Appendix B: Interpreting Water Quality Parameters

Appendix C: VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audit)

ACKNOWLEDGEMENTS

The New Hampshire Department of Environmental Services Volunteer River Assessment Program extends sincere thanks to the volunteers of the Ashuelot River Local Advisory Committee for their efforts during 2010. This report was created solely from the data collected by the volunteers listed below. Their time and dedication is an expression of their genuine concern for local water resources and has significantly contributed to our knowledge of river and stream water quality in New Hampshire.

2010 Ashuelot River Volunteers

Jeffrey Brooks

Paul Daniello

John Davis

Pat Eggleston

Linda Fuerderer

Felicity Freese

Josh Goodell

Jim Holley

Sue Holley

Bob Lamoy

Carolyn MacDonald

Mike Morrison

Mary-Kate Sheridan

Barbara Skuly

Ann Sweet

Roger Sweet

Brett Thelen

Bob Thompson

1.0 INTRODUCTION

1.1. Purpose of Report

Each year the New Hampshire Volunteer River Assessment Program (VRAP) prepares and distributes a water quality report for each volunteer river monitoring group that is based solely on the water quality data collected by that group during a specific year. The reports summarize and interpret the data, particularly as they relate to New Hampshire's surface water quality standards, and serve as a teaching tool and guidance document for future monitoring activities by the individual volunteer groups.

1.2. Report Format

Each report includes the following:

Volunteer River Assessment Program Overview

This section includes a description of the history of VRAP, the technical support, training and guidance provided by NHDES, and how data is transmitted to the volunteers and used in surface water quality assessments.

Monitoring Program Description

This section provides a description of the volunteer group's monitoring program including monitoring objectives as well as a table and map showing sample station locations.

Results and Recommendations

Water quality data collected during the year are summarized on a parameter-by-parameter basis using: (1) a data summary table, which includes the number of samples collected, data ranges, the number of samples meeting New Hampshire water quality standards, and the number of samples adequate for water quality assessments at each station; (2) a discussion of the data; (3) a river graph showing the range of measured values at each station; and (4) a list of applicable recommendations.

Sample results reported as less than the detection limit were assumed equal to one-half the detection limit on the river graphs. This approach simplifies the understanding of the parameter of interest, and specifically helps one to visualize how the river or watershed is functioning from upstream to downstream. In addition, this format allows the reader to better understand potential pollution areas and target those areas for additional sampling or environmental enhancements. Where applicable, the river graph also shows New Hampshire surface water quality standards or levels of concern for comparison purposes.

Appendix A – Water Quality Data

This appendix includes a spreadsheet detailing the data results and additional information such as data results which do not meet New Hampshire surface water quality standards, and data that is unusable for assessment purposes due to quality control requirements.

Appendix B – Interpreting VRAP Water Quality Parameters

This appendix provides a brief description of water quality parameters typically sampled by VRAP volunteers and their importance, as well as applicable state water quality criteria or levels of concern.

Appendix C – VRAP Volunteer Monitor Field Sampling Procedures Assessment (Field Audits)

This appendix provides an overview of the VRAP Volunteer Monitor Field Sampling Procedures Assessment (field audit) process with respect to programmatic quality assurance/quality control (QA/QC) guidelines.

PROGRAM OVERVIEW

2.1 What is VRAP?

In 1998, the New Hampshire Volunteer River Assessment Program was established to promote awareness and education of the importance of maintaining water quality in New Hampshire's rivers and streams. VRAP aims to educate people about river and stream water quality and ecology and to improve water quality monitoring coverage for the protection of water resources.

Today, VRAP loans water quality monitoring equipment, provides technical support, and facilitates educational programs to volunteer groups on numerous rivers and watersheds throughout the state. VRAP volunteers conduct water quality monitoring on an ongoing basis and increase the amount of river water quality information available to local, state and federal governments, which allows for better watershed planning.

2.2 Why is VRAP Important?

VRAP establishes a regular volunteer-driven water sampling program to assist NHDES in evaluating water quality throughout the state. VRAP empowers volunteers with information about the health of New Hampshire's rivers and streams. Regular collection of water quality data allows for early detection of water quality changes allowing NHDES to trace potential problems to their source. Data collected by VRAP volunteers are directly contributing to New Hampshire's obligations under the Clean Water Act. Measurements taken by volunteers are used in assessing the water quality of New Hampshire's river and streams, and are included in reporting to the US Environmental Protection Agency.

2.3 How Does VRAP Work?

VRAP is a cooperative program between NHDES, river groups, local advisory committees, watershed associations, and individuals working to protect New Hampshire's rivers and streams. Volunteers are trained by VRAP staff in the use of water quality monitoring equipment at an annual training workshop. VRAP works with each group to establish monitoring stations and develop a sampling plan.

During the summer months, VRAP receives water quality data from trained volunteers. The data are reviewed for quality assurance, and are entered into the environmental monitoring database at NHDES. During the off-season, VRAP interprets the data and compiles the results into an annual report for each river. VRAP volunteers can use the data as a means of understanding the details of water quality, as well as guide future sampling efforts. NHDES can use the data for making surface water quality assessments, provided that the data met certain quality assurance/quality control guidelines.

2.4 Equipment and Sampling Schedule

VRAP frequently lends and maintains water quality monitoring equipment kits to VRAP groups throughout the state. The kits contain meters and supplies for routine water quality parameter measurements of turbidity, pH, dissolved oxygen, water temperature and specific conductance (conductivity). Other parameters such as nutrients, metals, and *E. coli* can also be studied, although VRAP does not always provide funds to cover laboratory analysis costs. Thus, VRAP encourages groups to pursue other fundraising activities such as association membership fees, special events, in-kind services (non-monetary contributions from individuals and organizations), and grant writing.

Each year, volunteers design and arrange a sampling schedule in cooperation with VRAP staff. Project designs are created through a review and discussion of existing water quality information, such as known and perceived problem areas or locations of exceptional water quality. The interests, priorities, and resources of the partnership determine monitoring locations, parameters, and frequency. VRAP typically recommends sampling every other week from May through September, and VRAP groups are encouraged to organize a long-term sampling program in order to begin to determine trends in river conditions.

2.5 Training and Technical Support

Each VRAP volunteer attends an annual training workshop to receive a demonstration of monitoring protocols and sampling techniques and the calibration and use of water quality monitoring equipment. During the training, volunteers have an opportunity for hands-on use of the equipment and receive instruction in the collection of samples for laboratory analysis.

VRAP groups conduct sampling according to a prearranged monitoring schedule and VRAP protocols. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group's monitoring coordinator is notified of the result of the verification visit. VRAP groups forward water quality results to NHDES for incorporation into an annual report and state water quality assessment activities.

2.6 Data Usage

Annual Water Quality Reports

Water quality measurements repeated over time create a picture of the fluctuating conditions in rivers and streams and help to determine where improvements, restoration or preservation may benefit the river and the communities it supports. All data collected by volunteers are summarized in water quality reports that are prepared and distributed after the conclusion of the sampling period. VRAP groups can use the reports and data as a means of understanding the details of water quality, guiding future sampling efforts, or determining restoration activities.

New Hampshire Surface Water Quality Assessments

Along with data collected from other water quality programs, specifically the State Ambient River Monitoring Program, applicable volunteer data are used to support periodic NHDES surface water quality assessments. VRAP data are entered into NHDES's environmental monitoring database and are ultimately uploaded to the EPA database. Assessment results and the methodology used to assess surface waters are published by NHDES every two years (i.e., Section 305(b) Water Quality Reports) as required by the federal Clean Water Act. The reader is encouraged to log on to the NHDES web page to review the assessment methodology and list of impaired waters http://des.nh.gov/organization/divisions/water/wmb/swqa/index.htm.

2.7 Quality Assurance/Quality Control

In order for VRAP data to be used in the assessment of New Hampshire's surface waters, the data must meet quality control guidelines as outlined in the VRAP Quality Assurance Project Plan (QAPP). The VRAP QAPP was approved by NHDES and reviewed by EPA in the summer of 2003. The QAPP is reviewed annually and is officially updated and approved every five years. The VRAP quality assurance/quality control (QA/QC) measures include a six-step approach to ensuring the accuracy of the equipment and consistency in sampling efforts.

- **Calibration:** Prior to each measurement, the pH and DO meters must be calibrated. Conductivity and turbidity meters are checked against a known standard before the first measurement and after the last one.
- **Replicate Analysis:** A second measurement by each meter is taken from the original sample at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the replicate analysis should be conducted at different stations. Replicates should be measured within 15 minutes of the original measurements.
- **6.0 pH Standard:** A reading of the pH 6.0 buffer is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the 6.0 pH standard check should be conducted at different stations.
- **Zero Oxygen Solution:** A reading of a zero oxygen solution is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the zero oxygen standard check should be conducted at different stations.
- **DI (De-Ionized) Turbidity Blank**: A reading of the DI blank is recorded at one of the stations during the sampling day. If the same sampling schedule is used throughout the monitoring season, the blank check should be conducted at different stations.
- **End of the Day Conductivity and Turbidity Meter Check:** At the conclusion of each sampling day, the conductivity and turbidity meters are re-checked against a known standard.

2.7.1 Measurement Performance Criteria

Precision is calculated for field and laboratory measurements through measurement replicates (instrumental variability) and is calculated for each sampling day. The use of VRAP data for assessment purposes is contingent on compliance with a parameter-specific relative percent difference (RPD) as derived from equation 1, below. Any data exceeding the limits of the individual measures are disqualified from surface water quality assessments. All data that exceeds the limits defined by the VRAP QAPP are acknowledged in the data tables with an explanation of why the data was unusable. Table 1 shows typical parameters studied under VRAP and the associated quality control procedures.

(Equation 1. Relative Percent Difference)

$$RPD = \frac{|x_1 - x_2|}{\frac{x_1 + x_2}{2}} \times 100 \%$$

where x_1 is the original sample and x_2 is the replicate sample

Table 1. Field Analytical Quality Controls

Water Quality Parameter	QC Check	QC Acceptance Limit	Corrective Action	Person Responsible for Corrective Action	Data Quality Indicator
Temperature	Measurement Replicate	RPD < 10% or Absolute Difference <0.8 C.	Repeat Measurement	Volunteer Monitors	Precision
Dissolved	Measurement Replicate	RPD < 10%	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Oxygen	Known Buffer (Zero O ₂ Sol.)	RPD < 10% or Absolute Difference <0.4 mg/L	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Relative Accuracy
рН	Measurement Replicate	Absolute Difference <0.3 pH units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
pii	Known Buffer (pH = 6.0)	± 0.1 std units	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Specific	Measurement Replicate	RPD < 10% or Absolute Difference <5µS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Conductance	Known Standard	± 20% μS/cm	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Turbidity	Measurement Replicate	RPD < 10% or Absolute Difference <1.0 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Precision
Turblaity	Method Blank (DI Water)	± 0.1 NTU	Recalibrate Instrument, Repeat Measurement	Volunteer Monitors	Accuracy
Laboratory Parameters	Measurement Replicate	RPD < 20% or Absolute Difference less than ½ the mean value of the parameter in NHDES's Environmental Monitoring Database	Repeat Measurement	Volunteer Monitors	Precision

3.0 METHODS

In 2001, volunteers from the Ashuelot River Local Advisory Committee began monitoring water quality on the Ashuelot River. The goal of this effort was to provide water quality data from the Ashuelot River relative to surface water quality standards and to allow for the assessment of the river for support of aquatic life and primary contact recreation (swimming). The establishment of a long-term monitoring program allows for an understanding of the river's dynamics, or variations on a station-by-station and year-to-year basis. The data can also serve as a baseline from which to determine any water pollution problems in the river and/or watershed. The Volunteer River Assessment Program has provided field training, equipment, financial assistance for laboratory costs, and technical assistance.

During 2010, trained volunteers from the Ashuelot River Local Advisory Committee monitored water quality at 14 stations in the Ashuelot River watershed from its upper limits in Washington to just upstream of its confluence with the Connecticut River in Hinsdale (Table 3).

Stations IDs are designated using a three-letter code to identify the waterbody name plus a number indicating the relative position of the station. The higher the station number the more upstream the station is in the watershed. All stations monitored in 2010 are designated as Class B waters. This classification is used to apply the appropriate water quality standard.

Water quality monitoring was conducted monthly from May to September. Insitu measurements of pH, water temperature, dissolved oxygen, and specific conductance were taken using handheld meters. Turbidity samples were collected in the field, brought to a central location, and measured the same day. Samples for *E.coli*, total phosphorous, and chloride were taken using sterile and/or preserved bottles and were stored on ice during transport from the field to the NHDES laboratory or EAI Analytical Laboratory. Table 2 summarizes the parameters measured, laboratory standard methods, and equipment used.

Table 2. Sampling and Analysis Methods

Parameter	Sample Type	Standard Method	Equipment Used	Laboratory
Dissolved Oxygen	In-Situ	SM 4500 O G	YSI 55 YSI 95	
рН	In-Situ	SM 4500 H+	Orion 210A	
Turbidity	In-Situ	EPA 180.1	LaMotte 2020	
Specific Conductance	In-Situ	SM 2510	YSI 30	
Temperature	In-Situ	SM 2550	YSI 95	
E.coli	Bottle (Sterile)	EPA 1103.1		EAI Analytical Laboratory
Total Phosphorus	Bottle (w/ Preservative)	EPA 365.3		NHDES
Chloride	Bottle	SM D512C		NHDES Limnology Center

Table 3. Sampling Stations for the Ashuelot River, NHDES VRAP, 2010

Station ID & AUID	Class	Waterbody Name Location		Town	Elevation (Rounded to the Nearest 100 Feet)
28-ASH NHRIV802010101-08	В	Ashuelot River	Route 31	Washington	1600
27-ASH NHRIV802010101-08	В	Ashuelot River	Mountain Road	Lempster	1500
24A-ASH NHRIV802010102-11	В	Ashuelot River	Route 10	Marlow	1100
23-ASH NHRIV802010103-22	В	Ashuelot River	Route III		800
20A-ASH NHRIV802010301-04	В	Ashuelot River	Stone Arch Bridge	Keene	500
18-ASH NHRIV802010301-09	В	Ashuelot River	Route 101	Keene	500
16D-ASH NHRIV802010301-11	В	Ashuelot River	50' Upstream of Keene WWTF	Swanzey	500
16A-ASH NHRIV802010301-11	В	Ashuelot River	Mouth of the South Branch	Swanzey	500
16-ASH NHRIV802010401-15	В	Ashuelot River Cresson Bridge		Swanzey	500
02B-SBA NHRIV600030608-15	В	South Branch Ashuelot River	Upstream of Monadnock Regional High School	Swanzey	500
02-SBA NHRIV802010303-23	В	South Branch Ashuelot River	Route 32 Bridge	Swanzey	500
15-ASH NHIMP802010401-01	В	Ashuelot Thompson Covered Bridge		West Swanzey	400
07-ASH NHRIV802010403-07	В	Ashuelot River	I Rollte I I U		400
01-ASH NHRIV802010403-20	В	Ashuelot River	147 River Street	Hinsdale	200

RESULTS AND RECOMMENDATIONS

Results and recommendations for each monitored parameter are presented in the following sections. For a description of the importance of each parameter and pertinent water quality criteria for these and other parameters, please see Appendix B, "Interpreting VRAP Water Quality Parameters."

4.1 Dissolved Oxygen

Either four or five measurements were taken in the field for dissolved oxygen concentration at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 4). Of the 68 measurements taken, 65 met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for dissolved oxygen includes a minimum concentration of 5.0 mg/L **and** a minimum daily average of 75 percent of saturation. In other words, there are criteria for both concentration and saturation that must be met before the river can be assessed as meeting dissolved oxygen standards. Table 4 reports only dissolved oxygen concentration as more detailed analysis is required to determine if instantaneous dissolved oxygen saturation measurements are above or below water quality standards.

Table 4. Dissolved Oxygen (mg/L) Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	5.02 - 7.71	0	5
27-ASH	5	7.50 – 8.97	0	5
24A-ASH	5	6.91 – 8.18	0	5
23-ASH	5	7.98 – 9.60	0	5
20A-ASH	5	6.12 – 7.04	0	5
18-ASH	5	6.27 – 7.49	0	5
16D-ASH	4	6.30 – 8.47	0	4
16A-ASH	4	4.55 – 8.11	1	4
16-ASH	5	6.96 – 8.56	0	5
02B-SBA	5	6.85 – 7.90	0	5
02-SBA	5	6.95 – 7.90	0	5
15-ASH	5	6.27 – 7.92	0	4
07-ASH	5	6.77 – 8.36	0	4
01-ASH	5	7.90 – 9.57	0	4
Total	68		1	65

All but one measurement for dissolved oxygen concentration (station 16A-ASH) were above the New Hampshire Class B surface water quality standard with the average ranging from 6.23 mg/L to 8.68 mg/L (Figure 1). Levels of dissolved oxygen sustained above the standards are considered adequate for the support of aquatic life and other desirable water quality conditions.

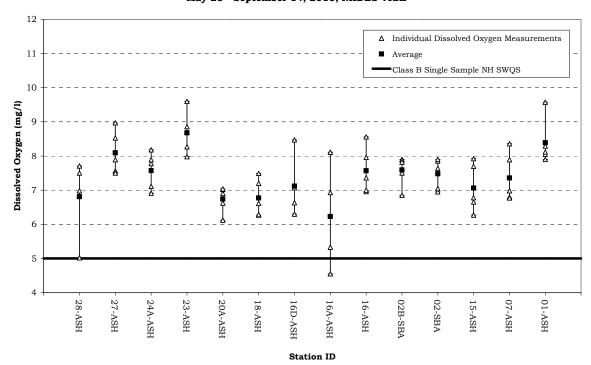


Figure 1. Dissolved Oxygen Concentration Statistics for the Ashuelot River Watershed
May 25 - September 14, 2010, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- If possible, take measurements between 5 a.m. and 10 a.m., which is when dissolved oxygen is usually the lowest, and between 2 p.m. and 7 p.m. when dissolved oxygen is usually the highest. In general, dissolved oxygen levels are lowest in the early morning when there is low photosynthetic activity and a peak in respiration from organisms throughout the water column. This is the time of least oxygen production and greatest carbon dioxide emission. Peak dissolved oxygen levels occur when photosynthetic activity is at its peak. The greater the amount of photosynthetic activity the greater the production of oxygen as a byproduct of photosynthesis.
- Consider incorporating the use of in-situ dataloggers to automatically record dissolved oxygen saturation levels during a period of several days.

4.2 pH

Either four or five measurements were taken in the field for pH at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 5]. Of the 68 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard is 6.5 - 8.0, unless naturally occurring.

Table 5. pH Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (standard units)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	5.34 - 5.68	5	5
27-ASH	5	5.26 - 5.66	5	5
24A-ASH	5	5.14 - 5.68	5	5
23-ASH	5	5.98 - 6.57	4	5
20A-ASH	5	5.29 - 6.54	4	5
18-ASH	5	5.54 - 6.60	4	5
16D-ASH	4	5.83 - 6.15	4	4
16A-ASH	4	5.55 - 5.92	4	4
16-ASH	5	5.77 - 6.22	5	5
02B-SBA	5	5.65 - 6.63	4	5
02-SBA	5	5.83 - 6.70	4	5
15-ASH	5	5.75 - 6.40	5	5
07-ASH	5	5.75 - 6.46	5	5
01-ASH	5	6.43 - 7.19	2	5
Total	68		60	68

A majority of measurements taken for pH were below the New Hampshire surface water quality standard minimum (Figure 2). In general, stations in the upper portions of the watershed had lower pH measurements than stations in the lower portions of the watershed.

Lower pH measurements are likely the result of natural conditions such as the soils, geology, or the presence of wetlands in the area. Rain and snow falling in New Hampshire is relatively acidic, which can also affect pH levels; after the spring melt or significant rain events, surface waters will generally have a lower pH.

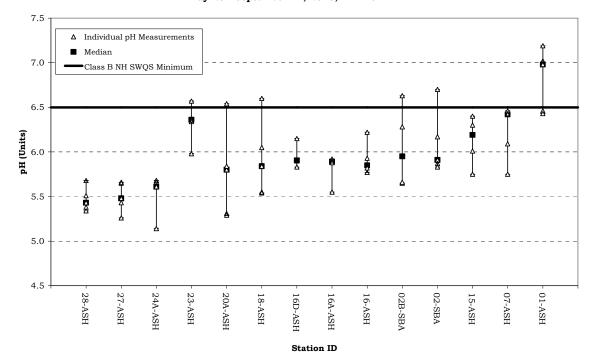


Figure 2. pH Statistics for the Ashuelot River Watershed May 25 - September 14, 2010, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider sampling for pH in some of the tributaries and wetland areas that are influencing the pH of stations with measurements below state standards. Site conditions are considered along with pH measurements because of the narrative portion of the pH standard. RSA 485-A:8 states that pH of Class B waters shall be between 6.5 and 8.0, except when due to natural causes. Wetlands can lower the pH of a river naturally by releasing tannic and humic acids from decaying plant material. If the sampling location is influenced by wetlands or other natural conditions, then the low pH measurements are not considered a violation of water quality standards. It is important to note that the New Hampshire water quality standard for pH is fairly conservative, thus pH levels slightly below the standard are not necessarily harmful to aquatic life. In this case, additional information about factors influencing pH levels is needed.

4.3 Turbidity

Either four or five measurements were taken in the field for turbidity at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 6]. Of the 68 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

The Class B New Hampshire surface water quality standard for turbidity is less than 10 NTU above natural background.

Table 6. Turbidity Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (NTU)	Acceptable Samples Potentially Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	0.10 - 1.60	0	5
27-ASH	5	0.15 - 0.60	0	5
24A-ASH	5	0.30 - 0.50	0	5
23-ASH	5	0.05 - 0.90	0	5
20A-ASH	5	0.50 - 0.85	0	5
18-ASH	5	1.20 - 2.80	0	5
16D-ASH	4	1.40 - 3.20	0	4
16A-ASH	4	1.60 - 3.30	0	4
16-ASH	5	1.50 - 2.80	0	5
02B-SBA	5	1.40 - 3.40	0	5
02-SBA	5	1.40 - 1.80	0	5
15-ASH	5	1.20 - 1.60	0	5
07-ASH	5	0.80 - 2.10	0	5
01-ASH	5	0.65 - 1.20	0	5
Total	68		0	68

Turbidity levels were low at all stations and on all occasions with the average ranging from 0.38 NTU to 2.23 NTU (Figure 3).

Although clean waters are associated with low turbidity there is a high degree of natural variability involved. Precipitation often contributes to increased turbidity by flushing sediment, organic matter and other materials from the surrounding landscape into surface waters. However, human activities such as removal of vegetation near surface waters and disruption of nearby soils can lead to dramatic increases in turbidity levels. In general it is typical to see a rise in turbidity in more developed areas due to increased runoff.

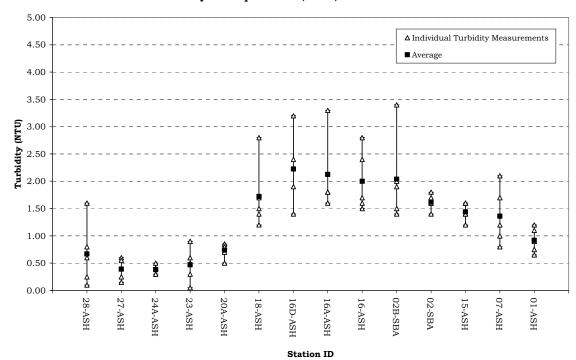


Figure 3. Turbidity Statistics for the Ashuelot River Watershed May 25 - September 14, 2010, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Collect samples during wet weather. This will help us to understand how the river responds to runoff and sedimentation.
- If a higher than normal turbidity measurement occurs, volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated turbidity levels. In addition, take good field notes and photographs. If human activity is suspected or verified as the source of elevated turbidity levels, volunteers should contact NHDES.

4.4 Specific Conductance

Either four or five measurements were taken in the field for specific conductance at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 7]. Of the 68 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

Although New Hampshire surface water quality standards do not contain numeric criteria for specific conductance, the New Hampshire Consolidated Assessment and Listing Methodology (CALM) allows for instantaneous specific conductance measurements to be used as a surrogate to predict compliance with numeric water quality criteria for chloride. NHDES has developed a statewide specific conductance to chloride relationship based on simultaneous measurement of specific conductance and chloride.

The Class B New Hampshire surface water quality standard for chloride and corresponding specific conductance measurements are as follows:

Freshwater chronic criterion 230 mg/l 835 uS/cm Freshwater acute criterion 860 mg/l 2755 uS/cm

Table 7. Specific Conductance Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (μS/cm)	Acceptable Samples Not Meeting NH Class B Standards (µS/cm as chloride surrogate)	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	17.0 - 69.2	0	5
27-ASH	5	28.8 - 39.4	0	5
24A-ASH	5	29.7 - 46.9	0	5
23-ASH	5	38.9 - 109.5	0	5
20A-ASH	5	57.3 - 118.1	0	5
18-ASH	5	92.1 - 409.1	0	5
16D-ASH	4	109.0 - 299.0	0	4
16A-ASH	4	119.0 - 196.0	0	4
16-ASH	5	121.5 - 266.8	0	5
02B-SBA	5	87.5 - 118.4	0	5
02-SBA	5	88.2 - 127.1	0	5
15-ASH	5	119.2 - 294.8	0	5
07-ASH	5	115.0 - 240.7	0	5
01-ASH	5	118.1 - 248.4	0	5
Total	68		0	68

Specific conductance levels were variable with the average ranging from 32.0 $\mu S/cm$ to 191.2 $\mu S/cm$ (Figure 4). Higher specific conductance levels can be indicative of pollution from sources such as urban/agricultural runoff, road salt, failed septic systems, or groundwater pollution. The variable specific conductance levels generally indicate low pollutant levels at some stations and higher levels at others.

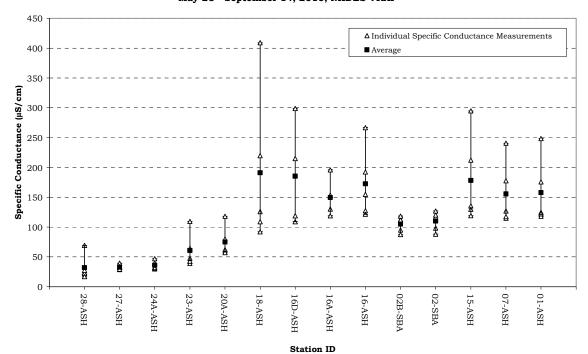


Figure 4. Specific Conductance Statistics for the Ashuelot River Watershed May 25 - September 14, 2010, NHDES VRAP

Recommendations

- Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.
- Consider collecting chloride samples at the same time that specific conductance is measured. During the late winter/early spring snowmelt, higher specific conductance levels are often seen due to elevated concentrations of chloride in the runoff. Specific conductance levels are very closely correlated to chloride levels. Simultaneously measuring chloride and specific conductance will allow for a better understanding of their relationship.
- Consider incorporating the use of in-situ dataloggers to automatically determine specific conductance levels during rain events, snowmelt, and baseline dry weather conditions. The use of these instruments is dependent upon availability, and requires coordination with NHDES.

4.5 Water Temperature

Either four or five measurements were taken in the field for water temperature at 14 stations in the Ashuelot River watershed from Washington to Hinsdale [Table 8]. Of the 68 measurements taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Table 8. Water Temperature Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (°C)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	13.7 - 24.1	Not Applicable	5
27-ASH	5	12.9 - 21.4	N/A	5
24A-ASH	5	16.6 - 24.7	N/A	5
23-ASH	5	14.8 - 22.2	N/A	5
20A-ASH	5	15.2 - 23.8	N/A	5
18-ASH	5	16.9 - 24.1	N/A	5
16D-ASH	4	14.8 - 23.0	N/A	4
16A-ASH	4	13.7 - 22.3	N/A	4
16-ASH	5	15.3 - 24.0	N/A	5
02B-SBA	5	15.3 - 22.1	N/A	5
02-SBA	5	15.4 - 22.0	N/A	5
15-ASH	5	16.3 - 24.5	N/A	5
07-ASH	5	16.3 - 24.6	N/A	5
01-ASH	5	16.7 - 24.0	N/A	5
Total	68		N/A	68

Figure 5 shows the results of instantaneous water temperature measurements taken at 14 stations in the Ashuelot River watershed. The average water temperature varied from 18.4 °C. to 21.9 °C.

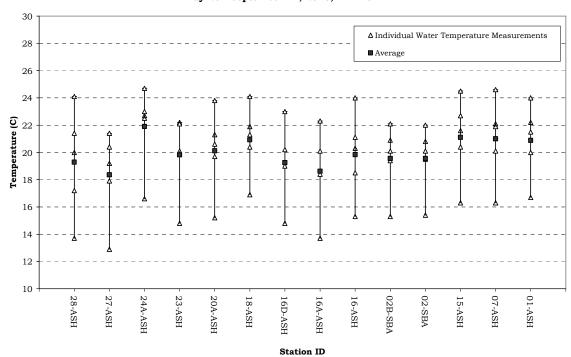


Figure 5. Water Temperature Statistics for the Ashuelot River Watershed
May 25 - September 14, 2010, NHDES VRAP

Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and the activity of bacteria in the water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertebrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation along the shoreline, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and the influence of groundwater.

Recommendations

Continue collecting water temperature data via both instantaneous reading and long-term deployment of dataloggers.

4.6 Escherichia coli/Bacteria

Between two and four samples were taken for *Escherichia coli* (*E. coli*) at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 9). Of the 53 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

Class B New Hampshire surface water quality standards for *E.coli* are as follows:

<406 cts/100 ml, based on any single sample or</p>
<106 cts/100 ml, based on a geometric mean calculated from</p>

≤126 cts/100 ml, based on a geometric mean calculated from three samples collected within a 60-day period.

Table 9. E.coli Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (cts/100m)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	4	2 - 31	0	4
27-ASH	4	4 - 105	0	4
24A-ASH	4	4 - 26	0	4
23-ASH	4	3 - 71	0	4
20A-ASH	4	45 - 113	0	4
18-ASH	4	61 - 326	0	4
16D-ASH	2	219 - 435	1	2
16A-ASH	3	36 - 93	0	3
16-ASH	4	122 - 649	1	4
02B-SBA	4	105 - 194	0	4
02-SBA	4	111 - 219	0	4
15-ASH	4	30 - 145	0	4
07-ASH	4	52 - 613	2	4
01-ASH	4	28 - 65	0	4
Total	53		4	53

All but four measurements taken for *E.coli* met the state of New Hampshire Class B surface water quality standard (Figure 6).

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife (e.g., birds), and the presence of septic systems along the river.

In order to fully determine whether a waterbody is meeting surface water standards for *E.coli* a geometric mean must be calculated. A geometric mean is calculated using three samples collected within a 60-day period.

At 12 stations two geometric means were calculated and at one station one geometric mean was calculated. Nine measurements failed to meet the state of New Hampshire Class B geometric mean standard of 126 cts/100ml (Table 10).

Table 10. E. coli Geometric Mean Data Summary - Ashuelot River Watershed, 2010

Station ID	Number of Geometric Means Calculated	Geometric Mean 6/22/10 - 8/17/10	Geometric Mean 7/20/10 - 9/14/10	Geometric Means Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	2	10	12	0	2
27-ASH	2	10	30	0	2
24A-ASH	2	9	12	0	2
23-ASH	2	59	24	0	2
20A-ASH	2	61	82	0	2
18-ASH	2	163	136	2	2
16A-ASH	1		51	0	1
16-ASH	2	234	231	2	2
02B-SBA	2	152	142	2	2
02-SBA	2	118	140	1	2
15-ASH	2	62	106	0	2
07-ASH	2	132	284	2	2
01-ASH	2	45	56	0	2
Total	25			9	25

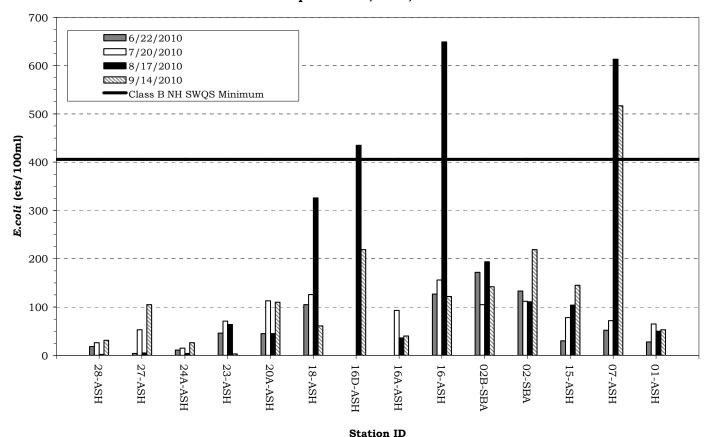


Figure 6. Escherichia coli Statistics for the Ashuelot River Watershed
June 22 - September 14, 2010, NHDES VRAP

Recommendations

- Continue collecting three samples within any 60-day period during the summer to allow for determination of geometric means. Samples need only be collected during the critical period of May 24 to September 15 for assessment purposes. This coincides with the peak contact recreation season.
- Continue to document river conditions and station characteristics (including the presence of wildlife in the area during sampling). At stations with particularly high bacteria levels volunteers can investigate further by moving upstream and taking additional measurements. This will facilitate isolating the location of the cause of the elevated bacteria levels. Those sampling should also look for any potential sources of bacteria such as emission pipes, failed septic systems, farm animals, pet waste, wildlife and waterfowl.

4.7 Total Phosphorus

Three samples were taken for total phosphorus at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 11). Of the 42 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

There is no numeric standard for total phosphorus for Class B waters. The narrative standard states that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses."

New Hampshire's surface water regulations (Env-Wq 1700) for Class B waters include narrative criteria for phosphorus which state that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses". New Hampshire does not currently have numeric nutrient criteria for rivers and streams, but is in the process of developing them. Draft numeric nutrient criteria developed for Vermont and Maine surface waters indicate a maximum allowable summer mean phosphorus level of approximately 0.035 mg/L. Although this value is approximately two to three times typical natural background levels in many rivers and streams, it is considered protective of all designated uses (i.e., swimming, aquatic life, etc). in Vermont and Maine. It's possible that phosphorus criteria for New Hampshire rivers and streams will be similar.

Table 11. Total Phosphorus Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (mg/L)	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	3	0.008 - 0.027	3
27-ASH	3	0.0095 - 0.012	3
24A-ASH	3	0.007 - 0.013	3
23-ASH	3	0.009 - 0.012	3
20A-ASH	3	0.011 - 0.013	3
18-ASH	3	0.015 - 0.020	3
16D-ASH	3	0.023 - 0.053	3
16A-ASH	3	0.036 - 0.048	3
16-ASH	3	0.033 - 0.050	3
02B-SBA	3	0.014 - 0.024	3
02-SBA	3	0.013 - 0.023	3
15-ASH	3	0.020 - 0.025	3
07-ASH	3	0.021 - 0.024	3
01-ASH	3	0.021 - 0.034	3
Total	42		42

The mean total phosphorous concentration ranged from 0.010 mg/L to 0.043 mg/L (Figure 7)

Under undisturbed natural conditions phosphorus is at very low levels in aquatic ecosystems. Of the three nutrients critical for aquatic plant growth; potassium, nitrogen, and phosphorus, it is usually phosphorus that is the limiting factor to plant growth. When the supply of phosphorus is increased due to human activity, algae respond with significant growth.

A major source of excessive phosphorus concentrations in aquatic ecosystems can be wastewater treatment facilities, as sewage typically contains relatively high levels of phosphorus detergents. However, fertilizers used on lawns and agricultural areas can also contribute significant amounts of phosphorus.

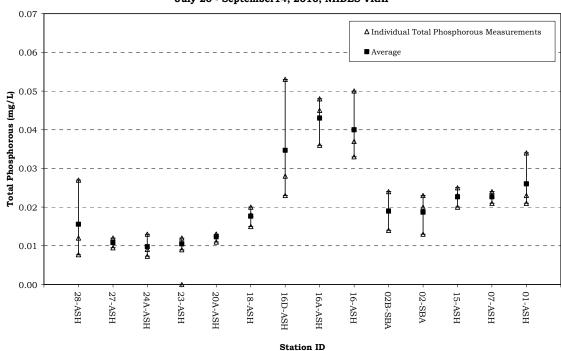


Figure 7. Total Phosphorous Statistics for the Ashuelot River Watershed July 20 - September14, 2010, NHDES VRAP

Recommendations

Continue sampling at all stations in order to develop a long-term data set to better understand trends as time goes on.

4.8 Chloride

Either four or five samples were taken for chloride at 14 stations in the Ashuelot River watershed from Washington to Hinsdale (Table 12). Of the 68 samples taken, all met quality assurance/quality control requirements and are usable for New Hampshire's 2012 surface water quality report to the US Environmental Protection Agency.

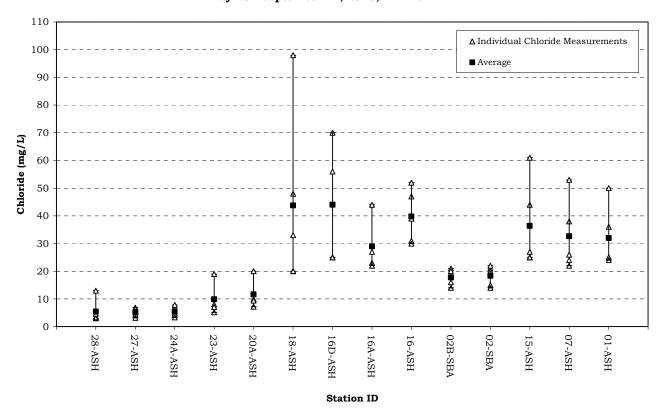
The Class B New Hampshire surface water quality standard for chloride is as follows:

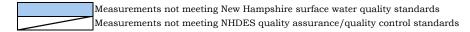
Freshwater chronic criterion 230 mg/l Freshwater acute criterion 860 mg/l

Table 12. Chloride Data Summary - Ashuelot River Watershed, 2010

Station ID	Samples Collected	Data Range (mg/l)	Acceptable Samples Not Meeting NH Class B Standards	Number of Usable Samples for 2012 NH Surface Water Quality Assessment
28-ASH	5	3.0 - 13.0	0	5
27-ASH	5	3.2 - 6.9	0	5
24A-ASH	5	3.3 - 7.8	0	5
23-ASH	5	5.2 - 19.0	0	5
20A-ASH	5	7.2 - 20.0	0	5
18-ASH	5	20.0 - 98.0	0	5
16D-ASH	4	25.0 - 70.0	0	4
16A-ASH	4	22.0 - 44.0	0	4
16-ASH	5	30.0 - 52.0	0	5
02B-SBA	5	14.0 - 21.0	0	5
02-SBA	5	14.0 - 22.0	0	5
15-ASH	5	25.0 - 61.0	0	5
07-ASH	5	22.0 - 53.0	0	5
01-ASH	5	24.0 - 50.0	0	5
Total	68		0	68

All measurements were below the state of New Hampshire Class B chronic surface water quality standard (Figure 8).




Figure 8. Chloride Statistics for the Ashuelot River Watershed May 25 - September 14, 2010, NHDES VRAP

Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. Road salt readily dissolves and enters aquatic environments in ionic forms. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans. Additional human sources of chloride can come from fertilizers, septic systems, and underground water softening systems.

Recommendations

Continue collecting chloride samples during both low-flow summer months and during snowmelt period in winter and early spring. It is critical that specific conductance be recorded when chloride samples are collected.

APPENDIX A: 2010 ASHUELOT RIVER WATERSHED VRAP DATA

 $^{^{}A}$ Specific conductance > 835 μ S/cm indicate exceedance of chronic chloride standard of 230 mg/L

28-ASH, Ashuelot River, Route 31, Washington

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	08:13	7.71	87.2	5.51	0.10	23.8	21.4				<3
6/22/2010	07:17	5.02	52.0	5.38	0.80	69.2	17.2	18			13.0
7/20/2010	07:17	6.85	81.5	5.68	0.60	22.4	24.1	26		0.012	<3
8/17/2010	07:00	6.98	76.8	5.43	0.25	27.5	20.0	2	10	0.008	3.4
9/14/2010	07:15	7.50	72.3	5.34	1.60	17.0	13.7	31	12	0.027	4.6

27-ASH, Ashuelot River, Mountain Road, Lempster

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:00	8.53	94.5	5.65	0.15	28.8	20.4				3.2
6/22/2010	07:56	7.89	83.2	5.26	0.60	33.8	17.9	4			6.9
7/20/2010	07:46	7.56	85.4	5.66	0.40	29.2	21.4	53		0.012	4.4
8/17/2010	07:33	7.50	81.0	5.48	0.25	33.7	19.2	5	10	0.010	5.2
9/14/2010	07:58	8.97	84.8	5.43	0.55	39.4	12.9	105	30	0.011	6.4

24A-ASH, Ashuelot River, Route 10, Marlow

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:40	8.18	95.7	5.61	0.40	29.7	23.0				3.3
6/22/2010	08:45	7.78	90.0	5.14	0.50	32.3	22.5	11			4.2
7/20/2010	08:22	7.11	85.5	5.66	0.30	31.1	24.7	15		0.013	4.7
8/17/2010	08:12	6.91	80.2	5.61	0.40	39.8	22.7	4	9	0.009	6.9
9/14/2010	08:37	7.89	81.0	5.68	0.30	46.9	16.6	26	12	0.007	7.8

^B Chronic water quality standard

23-ASH, Asheulot River, Route 10, Gilsum

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	10:12	8.86	97.0	6.36	0.90	38.9	22.2				5.2
6/22/2010	09:07	8.69	93.2	5.98	0.30	47.7	20.1	46			8.0
7/20/2010	09:04	7.98	91.6	6.34	0.60	43.1	22.1	71		0.012	7.1
8/17/2010	08:39	8.27	91.3	6.36	0.50	64.5	19.9	64	59	0.009	10.0
9/14/2010	09:02	9.60	94.7	6.57	0.05	109.5	14.8	3	24	ND	19.0

20A-ASH, Ashuelot River, Stone Arch Bridge, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	07:58	7.02	76.8	6.54	0.50	57.4	19.7				7.2
6/22/2010	07:55	6.90	77.2	5.80	0.70	62.3	20.6	45			9.9
7/20/2010	07:15	6.12	72.8	5.31	0.85	57.3	23.8	113		0.013	9.4
8/17/2010	07:40	6.62	74.0	5.29	0.85	80.0	21.3	45	61	0.013	12.0
9/14/2010	08:05	7.04	69.4	5.84	0.80	118.1	15.2	110	82	0.011	20.0

18-ASH, Ashuelot River, Route 101, Keene

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:03	7.49	83.0	6.60	1.70	109.1	20.4				20.0
6/22/2010	08:57	7.20	81.3	6.05	1.40	126.0	21.3	105			33.0
7/20/2010	08:10	6.61	78.0	5.54	1.20	92.1	24.1	126		0.018	20.0
8/17/2010	08:20	6.27	71.7	5.55	1.50	219.7	21.9	326	163	0.015	48.0
9/14/2010	08:51	6.28	63.2	5.84	2.80	409.1	16.9	61	136	0.020	98.0

16D-ASH, Ashuelot River, 40 Feet Upstream of Keene WWTF, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	NA	230 ^B
5/25/2010	09:30	8.47	90.0	5.90	1.90	119.0	19.0			25.0
7/20/2010	08:11	7.07	81.7	5.83	1.40	109.0	23.0		0.023	25.0
8/17/2010	07:58	6.30	69.3	5.91	3.20	214.8	20.2	435	0.053	56.0
9/14/2010	08:15	6.63	75.2	6.15	2.40	299.0	14.8	219	0.028	70.0

16A-ASH, Mouth of South Branch Ashuelot River, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	08:59	8.11	86.5	5.55	1.60	119.0	18.4				23.0
7/20/2010	09:20	6.93	79.1	5.92	1.80	130.2	22.3	93		0.036	27.0
8/17/2010	08:56	5.33	58.8	5.90	1.80	196.0	20.1	36		0.045	44.0
9/14/2010	09:20	4.55	44.6	5.88	3.30	153.2	13.7	40	51	0.048	22.0

16-ASH, Ashuelot River, Cressen Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	08:02	7.96	84.5	5.82	1.60	121.5	18.5				30.0
6/22/2010	10:55	6.96	78.0	5.85	1.50	155.0	21.1	127			39.0
7/20/2010	10:04	7.36	85.8	5.77	1.70	127.5	24.0	156		0.050	31.0
8/17/2010	09:40	7.00	77.8	5.93	2.40	192.4	20.3	649	234	0.033	47.0
9/14/2010	09:46	8.56	85.5	6.22	2.80	266.8	15.3	122	231	0.037	52.0

02B-SBA, South Branch Ashuelot River, Upstream of Monadnock Regional High School, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	10:16	7.90	85.9	6.63	1.90	87.5	19.4				14.0
6/22/2010	09:50	7.89	87.1	6.28	3.40	95.1	20.1	172			16.0
7/20/2010	09:25	6.85	77.8	5.95	2.00	112.6	22.1	105		0.024	21.0
8/17/2010	09:30	7.50	78.3	5.65	1.50	111.8	20.9	194	152	0.019	18.0
9/14/2010	09:42	7.82	77.7	5.66	1.40	118.4	15.3	142	142	0.014	20.0

02-SBA, South Branch Ashuelot River, Route 32 Bridge, Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:43	7.85	85.4	6.70	1.60	88.2	19.5				14.0
6/22/2010	09:29	7.64	84.3	6.17	1.60	98.1	20.1	133			15.0
7/20/2010	08:45	6.95	79.5	5.87	1.80	116.7	22.0	112		0.023	21.0
8/17/2010	09:00	7.05	78.3	5.83	1.70	120.3	20.8	111	118	0.020	20.0
9/14/2010	09:19	7.90	79.1	5.91	1.40	127.1	15.4	219	140	0.013	22.0

15-ASH, Ashuelot River, Thompson Covered Bridge, West Swanzey

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp.	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:40	7.70	85.5	6.01	1.40	135.5	20.4				25.0
6/22/2010	10:20	6.78	78.5	5.75	1.40	130.1	22.7	30			27.0
7/20/2010	09:17	6.65	79.6	6.19	1.60	119.2	24.5	78		0.025	25.0
8/17/2010	09:05	6.27	71.2	6.30	1.20	212.2	21.6	104	62	0.023	44.0
9/14/2010	09:20	7.92	80.0	6.40	1.60	294.8	16.3	145	106	0.020	61.0

07-ASH, Ashuelot River, Route 119, Winchester

Date	Time of Sample	DO (mg/L)	DO (% sat.)	pН	Turbidity (NTUs)	Water Temp. (°C)	Specific Conductance (uS/cm)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	09:00	7.89	87.2	6.09	0.80	115.0	20.1				22.0
6/22/2010	09:30	6.79	78.9	5.75	1.00	127.0	21.9	52			26.0
7/20/2010	08:35	6.77	81.7	6.43	1.20	117.6	24.6	72		0.023	24.0
8/17/2010	08:35	6.98	80.2	6.42	1.70	177.9	22.1	613	132	0.024	38.0
9/14/2010	08:58	8.36	85.5	6.46	2.10	240.7	16.3	517	284	0.021	53.0

01-ASH, Ashuelot River, 147 River Street, Hinsdale

Date	Time of Sample	DO (mg/L)	DO (% sat.)	рН	Turbidity (NTUs)	Specific Conductance (uS/cm)	Water Temp. (°C)	E. coli (CTS/100mL)	E.coli Geometric Mean	Total Phosphorus (mg/L)	Chloride (mg/L)
Standard	NA	>5.0	>75% Daily Average	6.5-8.0	<10 NTU above backgrd	835 μS/cm ^A	NA	<406	<126	NA	230 ^B
5/25/2010	08:00	8.29	91.9	6.46	0.75	118.1	20.0				24.0
6/22/2010	08:40	8.05	91.1	6.43	1.10	124.8	21.5	28			25.0
7/20/2010	07:55	7.90	94.0	7.02	1.20	122.4	24.0	65		0.034	25.0
8/17/2010	07:55	8.12	92.8	6.98	0.65	175.7	22.2	50	45	0.023	36.0
9/14/2010	08:15	9.57	98.2	7.19	0.90	248.4	16.7	53	56	0.021	50.0

APPENDIX B: Interpreting VRAP Water Quality Monitoring Parameters

Chemical Parameters

<u>Dissolved Oxygen</u> (DO)

- **Unit of Measurement:** concentration in milligrams per liter (mg/L) and percent saturation (%).
- **Description:** A measure of the amount of oxygen in the water: Concentration is a measure of the amount of oxygen in a volume of water; saturation is a measurement of the amount of oxygen in the water compared to the amount of oxygen the water can actually hold at full saturation. Both of these measurements are necessary to accurately determine whether New Hampshire surface water quality standards are met.
- Importance: Oxygen is dissolved into the water from the atmosphere, aided by wind and wave action, or by rocky, steep, or uneven stream beds. The presence of dissolved oxygen is vital to bottom-dwelling organisms as well as fish and amphibians. Aquatic plants and algae produce oxygen in the water during the day, and consume oxygen during the night. Bacteria utilize oxygen both day and night when they process organic matter into smaller and smaller particles.

Class A NH Surface Water Quality Standard: 6 mg/L at any place or time, or 75% minimum daily average – (unless naturally occurring).

Class B NH Surface Water Quality Standard: 5 mg/L at any place or time or 75% minimum daily average – (unless naturally occurring).

Several measurements of oxygen saturation taken in a 24-hour period must be averaged to compare to the 75 percent daily average saturation standard. The concentration of dissolved oxygen is dependent on many factors including temperature and sunlight, and tends to fluctuate throughout the day. Saturation values are averaged because a reading taken in the morning may be low due to respiration, while a measurement that afternoon may show that the saturation has recovered to acceptable levels. Water can become saturated with more than 100 percent dissolved oxygen.

pН

- **Unit of Measurement:** units (no abbreviation).
- **Description:** A measure of hydrogen ion activity in water, or, in general terms, the acidity of water. pH is measured on a logarithmic scale of 0 to 14, with 7 being neutral. A high pH indicates alkaline (or basic) conditions and a low pH indicates acidic conditions. pH is influenced by geology and soils, organic acids (decaying leaves and other matter), and human-induced acids from acid rain (which typically has a pH of 3.5 to 5.5).
- Importance: pH affects many chemical and biological processes in the water and this is important to the survival and reproduction of fish and other aquatic life. Different organisms flourish within different ranges of pH. Measurements outside of an organism's preferred range can limit growth and reproduction and lead to physiological stress. Low pH can also affect the toxicity of aquatic compounds such as ammonia and certain metals by making them more "available" for uptake by aquatic plants and animals. This can produce conditions that are toxic to aquatic life.

1

Class A/B NH Surface Water Quality Standard: Between 6.5 and 8.0 (unless naturally occurring).

Sometimes, readings that fall below this range are determined to be naturally occurring. This is often a result of wetlands near the sample station. Wetlands can lower pH because the tannic and humic acids released by decaying plants can cause water to become more acidic.

pH Units	Category
<5.0	High Impact
5.0 – 5.9	Moderate to High Impact
6.0 – 6.4	Normal; Low Impact
6.5 – 8.0	Normal;
6.1 – 8.0	Satisfactory

Specific Conductance or Conductivity

- Unit of Measurement: micromhos per centimeter (umhos/cm) or microsiemens per centimeter (uS/cm).
- Description: The numerical expression of the ability of water to carry an electrical current at 25° C and a measure of free ion (charged particles) content in the water. These ions can come from natural sources such as bedrock, or human sources such as stormwater runoff. Specific conductance can be used to indicate the presence of chlorides, nitrates, sulfates, phosphates, sodium, magnesium, calcium, iron, and aluminum ions. There is a difference between conductivity and specific conductance. Specific conductance measures the free ion content of water at a *specific* water temperature, whereas conductivity measures the free ion content of water at 25° C. VRAP uses the term "specific conductance" because our conductivity measurements account for temperature. In some studies and programs, the term "conductivity" is used. This term should only be used when the measurement *does not* adjust to a specific temperature.
- Importance: Specific conductance readings can help locate potential pollution sources because polluted water usually has a higher specific conductance than unpolluted waters. High specific conductance values often indicate pollution from road salt, septic systems, wastewater treatment plants, or urban/agricultural runoff. Specific conductance can also be related to geology. In unpolluted rivers and streams, geology and groundwater are the primary influences on specific conductance levels.

Class A/B NH Surface Water Quality Standard: No numeric standard.

Although NH surface water quality standards do not contain numeric criteria for specific conductance, the NH Consolidated Assessment and Listing Methodology (CALM) allows for instantaneous specific conductance measurements to be used as a surrogate to predict compliance with numeric water quality criteria for chloride. NHDES has developed a statewide specific conductance to chloride relationship based on simultaneous measurement of specific conductance and chloride.

The Class B New Hampshire surface water quality standard for chloride and corresponding specific conductance measurements are as follows:

Freshwater chronic criterion	230 mg/l	835 uS/cm
Freshwater acute criterion	860 mg/1	2755 uS/cm

Specific Conductance (uS/cm)	Category
0 – 100	Normal
101 – 200	Low Impact
201 – 500	Moderate Impact
> 501	High Impact
> 835	Exceeding chronic chloride standard

Turbidity

- **Unit of Measurement:** Nephelometric Turbidity Units (abbreviated at NTU).
- **Description:** A measurement of the amount of suspended material in the water. This material, which is comprised of particles such as clay, silt, algae, suspended sediment, and decaying plant material, causes light to be scattered and absorbed, rather than transmitted in straight lines through the water.
- Importance: Higher turbidity increases water temperatures because suspended particles absorb more heat. This, in turn, reduces dissolved oxygen (DO) concentrations because warm water holds less DO than cold water. Higher turbidity also reduces the amount of light that can penetrate the water, which reduces photosynthesis and DO production. Suspended materials can clog fish gills, reducing disease resistance, lowering growth rates, and affecting egg and larval development. As the particles settle, they can blanket the stream bottom, especially in slower waters, and smother fish eggs and benthic macroinvertebrates. Clean waters are generally associated with low turbidity, but there is a high degree of natural variability involved. Rain events can increase turbidity in surface waters by flushing sediment, organic matter and other materials into the water. Human activities such as vegetation removal and soil disruption can also lead to dramatic increases in turbidity levels.

Class A NH Surface Water Quality Standard: As naturally occurs.

Class B NH Surface Water Quality Standard: Shall not exceed naturally occurring conditions by more than 10 NTU.

Physical Parameters

Temperature

- Unit of Measurement: Degrees Celsius (° C)
- **Importance:** Water temperature is a critical parameter for aquatic life and has an impact on other water quality parameters such as dissolved oxygen concentrations, and bacteria activity in water. Water temperature controls the metabolic and reproductive processes of aquatic species and can determine which fish and macroinvertabrate species can survive in a given river or stream.

A number of factors can have an impact on water temperature including the quantity and maturity of riparian vegetation, the rate of flow, the percent of impervious surfaces contributing stormwater, thermal discharges, impoundments and groundwater.

Class A NH Surface Water Quality Standard: As naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard

Although there is currently no numerical water quality criteria for water temperature, NHDES is in the process of collecting biological and water temperature data that will contribute to the development of a procedure for assessing rivers and stream based on water temperature and its corresponding impact to the biological integrity of the waterbody.

Chlorophyll-a (Chlor a)

- **Unit of Measurement:** Milligrams per liter (mg/L).
- **Description:** An indicator of the biomass, or abundance, of planktonic algae in the river. The technical term "biomass" is used to represent "amount by weight." Chlorophyll-a can be strongly influenced by phosphorus, which is derived by natural and human activities.

Importance: Because algae is a plant and contains the green pigment chlorophyll-a, the concentration of chlorophyll-a found in the water gives an estimation of the concentration of algae. If the chlorophyll-a concentration increases, this indicates an increase in the algal population.

Class A NH Surface Water Quality Standard: No numeric standard.

Class B NH Surface Water Quality Standard: No numeric standard.

Chlorophyll-a (mg/L)	Category
< 3	Excellent
3 – 7	Good
7 – 15	Less than desirable
> 15	Nuisance

Total Phosphorus (TP)

- **Unit of Measurement:** Milligrams per liter (mg/L).
- **Description:** A measure of all forms of phosphorus in the water, including inorganic and organic forms. There are many sources of phosphorus, both natural and human. These include soil and rocks, sewage, animal manure, fertilizer, erosion, and other types of contamination.
- Importance: Phosphorus is a nutrient that is essential to plants and animals. However, excess amounts can cause rapid increases in the biological activity in water. Phosphorus is usually the "limiting nutrient" in freshwater streams, which means relatively small amounts can increase algae and chlorophyll-a levels. Algal blooms and/or excessive aquatic plant growth can decrease oxygen levels and make water unattractive. Phosphorus can indicate the presence of septic systems, sewage, animal waste, lawn fertilizer, road and construction erosion, other types of pollution, or natural wetlands and atmospheric deposition.

Class A/B NH Surface Water Quality Standard: There is no numeric standard for total phosphorus for Class A/B waters. The narrative standard states that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses." New Hampshire's surface water regulations (Env-Wq 1700) for Class B waters include narrative criteria for phosphorus which state that "unless naturally occurring, shall contain no phosphorus in such concentrations that would impair any existing or designated uses". New Hampshire does not currently have numeric nutrient criteria for rivers and streams, but is in the process of developing them. Draft numeric nutrient criteria developed for Vermont and Maine surface waters indicate a maximum allowable summer mean phosphorus level of approximately 0.035 mg/L. Although this value is approximately two to three times typical natural background levels in many rivers and streams, it is considered protective of all designated uses (i.e., swimming, aquatic life, etc). in Vermont and Maine. It's possible that phosphorus criteria for New Hampshire rivers and streams will be similar.

Total Phosphorus (mg/L)	Category
< 0.010	Ideal
0.011 - 0.025	Average
0.026 - 0.049	More than desirable
<u>></u> 0.050	Potential nuisance concentration

Total Kjeldahl Nitrogen (TKN)

- **Unit of Measurement:** Milligrams per liter (mg/L).
- **Description:** A measure of the amount of ammonia and organic nitrogen in the water.
- **Importance:** High nitrogen levels can increase algae and chlorophyll-a levels in the river, but is generally less of a concern in fresh water than phosphorus. Nitrogen can indicate the presence of sewage, animal waste, fertilizer, erosion, or other types of pollution.

Class A NH Surface Water Quality Standard: No numeric standard; as naturally occurs.

Class B NH Surface Water Quality Standard: No numeric standard; as naturally occurring, shall contain no nitrogen in such concentrations that would impair any existing or designated uses.

TKN (mg/L)	Category
< 0.25	Ideal
0.26 - 0.40	Average
0.41 - 0.50	More than desirable
> 0.51	Excessive (potential nuisance concentration)

Other Parameters

Chloride

- **Unit of Measurement:** Milligrams per liter (mg/L).
- **Description:** The chloride ion (Cl-) is found naturally in some surface waters and groundwater. It is also found in high concentrations in seawater. Higher-than-normal chloride concentrations in freshwater is detrimental to water quality. In New Hampshire, applying road salt for winter accident prevention is a large source of chloride to the environment. Unfortunately, this has increased over time due to road expansion and increased vehicle traffic. Road salt (most often sodium chloride) readily dissolves and enters aquatic environments in ionic forms. Although chloride can originate from natural sources, most of the chloride that enters the environment is associated with the storage and application of road salt. As such, chloride-containing compounds commonly enter surface water, soil, and groundwater during late-spring snowmelt (since the ground is frozen during much of the late winter and early spring). Sodium chloride is also used on foods as table salt, and consequently is present in human waste. Thus, sometimes chloride in water can indicate sewage pollution. Saltwater intrusion can also elevate groundwater chlorides in drinking water wells near coastlines. Chloride ions are conservative, which means they are not degraded in the environment and tend to remain in solution, once dissolved. Chloride ions that enter ground water can ultimately be expected to reach surface water and, therefore, influence aquatic environments and humans.
- Importance: Research shows elevated chloride levels can be toxic to freshwater aquatic life. Among the species tested, freshwater aquatic plants and invertebrates tend to be the most sensitive to chloride. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria.

Acute Standard: 860 mg/L.

Chronic Standard: 230 mg/L.

Escherichia Coliform Bacteria (E. coli)

- **Unit of Measurement:** Counts per 100 milliliter (cts/100 mL).
- **Description:** An indicator of the potential presence of pathogens in fresh water. *E. coli* bacteria is a normal component in the large intestines of humans and other warm-blooded animals, and can be excreted in their fecal material. Organisms causing infections or disease (pathogens) are often excreted in the fecal material of humans and other warm-blooded animals.
- **Importance:** *E.coli* bacteria is a good indicator of fecal pollution and the possible presence of pathogenic organisms. In freshwater, *E. coli* concentrations help determine if the water is safe for recreational uses such as swimming.

Several factors can contribute to elevated *E. coli* levels, including, but not limited to rain storms, low river flows, the presence of wildlife, and the presence of septic systems along the river.

Class A NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 47 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 153 *E.coli* cts/100 mL in any one sample.

Class B NH Surface Water Quality Standard: Unless naturally occurring, shall contain not more than either a geometric mean of 126 *E.coli* cts/100 mL based on at least three samples obtained over a sixty-day period, or greater than 406 *E.coli* cts/100 mL in any one sample.

Metals

Depending on the metal concentration, its form (dissolved or particulate), and the hardness of the water, trace metals can be toxic to aquatic life. Metals in dissolved form are generally more toxic than metals in the particulate form. The dissolved metal concentration is dependent on pH, as well as the presence of solids and organic matter that can bind with the metal to render it less toxic.

Hardness is primarily a measure of the calcium and magnesium ion concentrations in water, expressed as calcium carbonate. The hardness concentration affects the toxicity of certain metals. New Hampshire water quality regulations include numeric criteria for a variety of metals. Since dissolved metals are typically found in extremely low concentrations, the potential contamination of samples collected for trace metals analyses has become a primary concern of water quality managers. To prevent such contamination and to ensure reliable results, the use of "clean techniques" is becoming more and more frequent when sampling for dissolved metals. Because of this, sampling for metals may be more costly and require additional effort than in the past.

New Hampshire Volunteer River Assessment Program

29 Hazen Drive – PO Box 95 Concord, NH 03302-0095 p (603) 271-0699 – f (603) 271-7894 www.des.nh.gov

2008 (Revised 2010)

APPENDIX C:

2010 VRAP Field Audit

On August 17, 2010, VRAP staff visited volunteers from the Ashuelot River VRAP group to conduct a field audit. VRAP staff aim to visit each group annually during a scheduled sampling event to verify that volunteers successfully follow the VRAP protocols. If necessary, volunteers are re-trained during the visit, and the group is notified of the result of the verification visit. During the visit, volunteers were assessed in the following five categories:

1) Overall Sampling Procedures

Appropriate storage of meters, sample collection, laboratory sample collection and transportation, beginning and end of day meter checks, collecting a field replicate, performing QA/QC Meter Checks, and ensuring that all calibration and sampling data are properly documented on the VRAP Field Data Sheet and the Laboratory Services Login & Custody Sheet.

2) Turbidity

Inspecting and cleaning of glass turbidity vials prior to measurement of standards and samples, performing the *Initial Turbidity Meter Check*, calibrating the meter to a known standard at the beginning of the sampling day, recording the value of the DI turbidity blank (QA/QC Meter Check) once during the sampling day, and performing the End of the Day Meter Check at the conclusion of the sampling day.

3) pH

Inspecting the pH electrode prior to sampling, calibrating to both pH 7.0 and 4.0 buffers prior to each measurement, rinsing and wiping the pH electrode probe prior to and after the measurement of standards and samples, allowing the pH measurement to stabilize prior to recording the measurement, and recording the value of the 6.0 buffer (QA/QC Meter Check) once during the sampling day.

4) Water Temperature/Dissolved Oxygen

Ensuring that the meter is allowed an adequate time to stabilize prior to the first calibration, the meter is calibrated prior to each measurement, the calibration value is properly recorded, the chamber reading is properly recorded, that sufficient time is allowed for readings to stabilize, and that a zero oxygen check (QA/QC Meter Check) is completed during the sampling day.

5) Specific Conductance

Performing the *Initial Conductivity Meter Check* using a known standard, allowing for the meter to properly stabilize before recording measurements, properly cleaning the probe between stations, and performing the *End of the Day Meter Check* at the conclusion of the sampling day.

During the field sampling procedures assessment, VRAP staff offered important reminders and suggestions to ensure proper sampling techniques and re-trained volunteers in the areas needing improvement. Overall, the Ashuelot River VRAP group did an excellent job. It is important to ensure that all volunteers attend an annual VRAP training workshop prior to the sampling season and to familiarize themselves with proper sampling techniques. Please remember to schedule an annual field audit in 2011.

VRAP Receiving Water Total Phosphorus (TP) Data						
Sampling Station	Year	Samples Collected	TP Range (mg/L)	Acceptable Samples Above Level of Concern		
28-ASH	2015	3	0.009-0.015	0		
27-ASH	2015	3	0.013-0.016	0		
24A-ASH	2015	3	0.011-0.015	0		
23-ASH	2015	3	0.011-0.027	0		
20A-ASH	2015	3	0.014-0.017	0		
18-ASH	2015	3	0.015-0.019	0		
16D-ASH	2015	3	0.018-0.027	0		
16A-ASH	2015	3	0.025-0.039	0		
16-ASH	2015	3	0.018-0.023	0		
02B-SBA	2015	3	0.016-0.025	0		
02-SBA	2015	3	0.016-0.023	0		
15A-ASH	2015	3	0.016-0.031	0		
07-ASH	2015	3	0.018-0.032	0		
02-ASH	2015	4	0.019-0.020	0		
01-ASH	2015	3	0.020-0.027	0		
28-ASH	2016	3	0.009-0.011	0		
27-ASH	2016	3	0.012-0.036	0		
24A-ASH	2016	3	0.010-0.013	0		
23-ASH	2016	3	0.006-0.016	0		
20A-ASH	2016	3	0.009-0.019	0		
18-ASH	2016	3	0.018-0.022	0		
16D-ASH	2016	3	0.014-0.021	0		
16A-ASH	2016	3	0.016-0.066	1		
16-ASH	2016	3	0.015-0.026	0		
02B-SBA	2016	3	0.015-0.025	0		
02-SBA	2016	3	0.014-0.031	0		
15A-ASH	2016	3	0.014-0.029	0		
07-ASH	2016	3	0.014-0.027	0		
02-ASH	2016	4	0.014-0.020	0		
01-ASH	2016	3	0.019-0.30	0		
28-ASH	2017	2	0.008	0		
27-ASH	2017	2	0.009-0.012	0		
24A-ASH	2017	2	0.009-0.125	1		
23-ASH	2017	2	0.008-0.013	0		
20A-ASH	2017	2	0.010-0.011	0		
18-ASH	2017	2	0.011-0.014	0		
16D-ASH	2017	2	0.012-0.013	0		
16A-ASH	2017	2	0.013-0.015	0		
16-ASH	2017	2	0.012-0.016	0		
02B-SBA	2017	2	0.016	0		
02-SBA	2017	2	0.014-0.015	0		

	VRAP Receiving Water Total Phosphorus (TP) Data						
Sampling Station	Year	Samples Collected	TP Range (mg/L)	Acceptable Samples Above Level of Concern			
15A-ASH	2017	2	0.013-0.014	0			
07-ASH	2017	2	0.014-0.015	0			
02-ASH	2017	4	0.010-0.031	0			
01-ASH	2017	2	0.013-0.016	0			
28-ASH	2018	2	0.009-0.014	0			
27-ASH	2018	2	0.009-0.015	0			
24A-ASH	2018	2	0.012	0			
23-ASH	2018	2	0.014-0.040	0			
20A-ASH	2018	2	0.012-0.015	0			
18-ASH	2018	2	0.020-0.026	0			
16D-ASH	2018	4	0.019-0.026	0			
16C-ASH	2018	3	0.020-0.031	0			
16A-ASH	2018	2	0.018-0.026	0			
16-ASH	2018	2	0.024-0.025	0			
02B-SBA	2018	2	0.020-0.022	0			
07U-SBA	2018	3	0.022-0.062	1			
08-SBA	2018	3	0.022-0.061	1			
02-SHK	2018	3	0.020-0.022	0			
02-SBA	2018	2	0.020-0.026	0			
15A-ASH	2018	2	0.015-0.026	0			
14-ASH	2018	3	0.023-0.024	0			
12-ASH	2018	3	0.023-0.025	0			
07-ASH	2018	2	0.015-0.024	0			
02-ASH	2018	4	0.010-0.038	0			
01-ASH	2018	2	0.021-0.027	0			
28-ASH	2019	2	0.010	0			
27-ASH	2019	2	0.008-0.014	0			
24A-ASH	2019	2	0.008-0.012	0			
23-ASH	2019	2	0.011-0.021	0			
20A-ASH	2019	2	0.014-0.016	0			
18-ASH	2019	2	0.018-0.025	0			
16D-ASH	2019	2	0.023-0.045	0			
16A-ASH	2019	2	0.018-0.039	0			
16-ASH	2019	2	0.018-0.044	0			
02B-SBA	2019	2	0.016-0.052	1			
02-SBA	2019	2	0.017-0.045	0			
15A-ASH	2019	2	0.015-0.031	0			
07-ASH	2019	2	0.016-0.026	0			
02-ASH	2019	5	0.016-0.021	0			
01-ASH	2019	2	0.017-0.031	0			

NPDES DRAFT PERMIT COMMENTS

APPENDIX E

Total Recoverable Aluminum Sampling Parameters

2018 EPA Aluminum Criteria Sampling Parameters						
Sampling Date	рН	DOC	Calcium	Magnesium	Calculated Hardness	Sample Location
	S.U.	mg/L	mg/L	mg/L	Mg/L	
SEC112718	7.2	4.4	20.6	3.0	63.7	
ASHUP112818	5.7	4.8	n/a	n/a	n/a	bridge
SEC120318	7.2	3.4	16.1	2.5	50.6	
ASHUP120418	5.9	3.0	n/a	n/a	n/a	bridge
SEC121018	7.1	4.2	15.6	2.6	49.6	
ASHUP121118	5.4	4.1	n/a	n/a	n/a	bridge
SEC121718	7.1	4.8	17.8	2.9	56.5	
ASHUP121818	5.4	3.4	n/a	n/a	n/a	bridge
SEC122518	7.2	4.1	17.3	2.6	54.1	
ASHUP122618	5.9	3.5	1.5	0.5	5.7	bridge
SEC010119	6.9	3.1	17.7	2.8	55.6	
ASHUP010219	6.4	4.7	2.0	0.6	7.6	bridge
SEC011519	7.0	5.8	18	3.1	57.7	
ASHUP011619	5.3	3.6	3.0	0.8	10.6	bridge
SEC012219	7.0	6.7	16	2.9	51.9	
ASHUP0112319	5.8	3.1	3.2	0.9	11.5	bridge
SEC012919	7.0	5.5	17	2.1	51.1	<u> </u>
ASHUP013019	5.7	6.3	2.1	0.6	7.7	bridge
SEC020519	6.7	6.2	15	2.9	49.4	
ASHUP020619	5.8	2.7	2.6	0.64	9.1	bridge
SEC021219	7.1	5.6	16	2.6	50.7	
ASHUP021319	5.1	3.3	2.9	0.7	10.1	bridge
SEC021919	7.0	5.8	18	3	57.3	
ASHUP022019	5.3	3.9	3.1	0.8	10.9	bridge
SEC022619	7.1	6.0	14	2.6	45.7	5.14.95
ASHUP022719	5.3	1.9	3.4	0.8	11.9	bridge
SEC030519	7.2	5.5	14	3.1	47.7	5.14.95
ASHUP030619	5.4	2.2	3.5	0.86	12.3	bridge
SEC031219	7.1	5.8	16	3.4	53.9	Shage
SEC031919	7.0	6.2	20	3.8	65.6	bridge
ASHUP032019	6.6	2.8	2.4	0.66	8.7	Silago
SEC032619	7.1	4.9	20	3.7	65.2	bridge
ASHUP032719	5.6	2.8	2.8	0.66	9.7	Briago
SEC040219	7.2	4.9	16	2.8	51.5	bridge
ASHUP040319	5.3	3.2	1.5	0.44	5.6	Briago
SEC040919	7.4	4.3	17.0	3.0	54.8	bridge
ASHUP040919	5.1	3.5	1.8	0.5	6.6	Silago
SEC041619	6.5	5.1	1.6	3.3	53.5	bridge
ASHUP41719	5.7	3.4	1.5	0.45	5.6	blidge
SEC042319	7.1	4.6	1.3	3.3	58.5	bridge
ASHUP042419	5.9	3.5	1.7	0.46	6.1	blidge
SEC043019	7.0	4.1	1.7	3.2	60.6	bridge
ASHUP050119	5.8	3.7	1.5	0.44	5.6	blidge
SEC050719			1.5	3.1	55.2	bridge
	7.1	4.4				bridge
ASHUP050819	5.7	3.4	2.4	0.68	8.8	bridas
SEC051419	7.0	4.3	17	3.1	55.2	bridge
ASHUP051519	5.7	3.2	2.3	0.65	8.4	bridas
SEC060419	6.8	5.3	16	2.9	51.9	bridge

2018 EPA Aluminum Criteria Sampling Parameters						
Sampling Date	рН	DOC	Calcium	Magnesium	Calculated Hardness	Sample Location
	S.U.	mg/L	mg/L	mg/L	Mg/L	
ASHUP060519	6.0	3.5	2.5	0.67	9.0	
SEC061819	7.2	8.4	17	3.4	56.4	bridge
ASHUP061919	5.5	5.5	3.1	0.78	10.9	
SEC070919	7.2	5.2	17	3.4	56.4	
ASHWET071019	5.6	4.0	4.5	1.2	16.2	Location change -
SEC073019	7.0	4.8	16	3.3	53.5	from canoe WET location
ASHUP073119	5.9	3.1	4.9	1.3	17.6	bridge
SEC082019	7.2	4.4	19	4.1	64.3	
ASHUP082119	6.9	5.5	6.5	1.7	23.2	bridge
SEC091719	7.1	5.9	18	4.1	61.8	
ASHUP091819	5.9	3.2	6.8	1.7	24.0	bridge
SEC102919	7.0	4.2	18.0	3.8	60.6	
ASHUP103019	6.0	6.0	2.1	0.64	7.9	bridge
SEC111219	7.1	3.8	19	4.0	63.9	
ASHUP111319	4.9	4.5	2.3	0.63	8.3	bridge
SEC121019	6.8	1.9	17	3.9	58.5	
ASHUP121119	6.2	3.9	1.7	0.6	6.7	bridge
SEC011420	6.9	1.65	17	3	54.8	
ASHUP011520	6.0	3.68	1.7	0.48	6.2	bridge - high flows
SEC021120	7.2	1.90	15	3.1	50.2	
ASHUP021220	6.1	3.04	3.0	0.77	10.7	
SEC031020	7.0	2.5	15.1	3.1	50.5	
ASHUP031120	5.2	3.00	2.0	0.55	7.3	
SEC041420	6.7	2.0	17	3.1	55.2	
ASHUP041510	6.0	4.0	1.4	0.44	5.3	high flows
SEC051220	6.9	2.9	16	3.3	53.5	
ASHUP051320	5.9	1.5	2.5	0.63	8.8	
SEC060920	6.2	2.7	15	4.7	56.77	
ASHUP061020	6.2	3.0	4.7	1.2	16.67	
Median ASHUP	5.8	3.4	-	-	8.8	
Median SEC	7.0	4.85	-	-	55.2	

NPDES DRAFT PERMIT COMMENTS

APPENDIX F

1994 Metals Limit, Total Recoverable Copper

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY CEIVED APR 2 1 2008

REGION 1 1 CONGRESS STREET, SUITE 1100 BOSTON, MASSACHUSETTS 02114-2023

-> Capy to K. Blanquit
... D. Hamsen

A00 1 1 1 1

VIA CERTIFIED MAIL

John A. MacLean, City Manager City of Keene 3 Washington Street Keene, New Hampshire 03431-3191

Re:

Notice of Final Permit Decision NPDES Permit No. NH0100790

NPDES Appeal No. 07-18

Dear Mr. MacLean:

Pursuant to 40 C.F.R. § 124.19(f)(1)(i), this is a notice of the United States Environmental Protection Agency's (EPA's) final permit decision regarding NPDES Permit NH0100790 (Permit), which EPA reissued to the City of Keene, New Hampshire (City), on August 24, 2007.

On September 28, 2007, the City filed a Petition for Review of the Permit with the U.S. EPA Environmental Appeals Board (Board) pursuant to 40 C.F.R. § 124.19(a). EPA placed the uncontested and severable conditions of the Permit into effect on December 1, 2007. The contested conditions were stayed under 40 C.F.R. § 124.16(a) pending final agency action.

While the Petition for Review was pending before the Board, EPA partially withdrew the Permit's effluent limits for total recoverable copper, lead and zinc, as authorized by 40 C.F.R. § 124.19(d). See Notice of Withdrawal of Certain Contested Permit Conditions, November 20, 2007. The Board subsequently dismissed the portion of the City's appeal addressing the disputed metals limits as moot. See Order Noticing Partial Withdrawal of Permit and Dismissing Portion of Petition for Review as Moot, December 5, 2007 (Order). The corresponding limits from the City's prior permit, originally issued in 1994 and administratively continued in 1999, remain in effect. See Order at 1.

On March 25, 2008, the Board issued an Order Denying Review of the Permit. Therefore, EPA has determined and hereby notifies you that the contested portions of the Permit which had been stayed by the pending appeal (*i.e.*, the seasonal (April 1- October 31) monthly average phosphorus limit of 0.2 mg/l and the seasonal (November 1-March 31) monthly average

phosphorus limit of 1.0 mg/l) shall take effect beginning May 1, 2008. Future Discharge Monitoring Reports will reflect these new requirements.

EPA expects to issue an administrative order that will contain a reasonable compliance schedule to allow the City to complete the construction upgrade necessary to comply with the Permit.

If you have any questions regarding this correspondence, please do not hesitate to contact Samir Bukhari, EPA's legal counsel in this matter, at 617-918-1095, or Brian Pitt, in our Office of Ecosystem Protection, at 617-918-1875.

Sincerely,

Robert W. Varney

Regional Administrator

1 C u u v V

·cc:

Andrew W. Serrell, Rath, Young and Pignatelli, P.C. (via First Class US Mail) Roger Janson, EPA Mike Fedak, EPA

NPDES DRAFT PERMIT COMMENTS

APPENDIX G

Industrial Users List

2015 Keene Significant Industrial Users						
EPA Category	Industry Name and Address	Type of Business	Permitted Average Process Flow, gal/day	Type of pre- treatment		
None	Cheshire Medical Center 580 Court St. Keene, NH 03431	Hospital	30,000 combined process/domestic	Grease trap in employee cafeteria. Cyanide destruction of lab analyzer solution. Neutralization of internal scope sterilization chemical (ortho-phthalaldehyde) with glycine.		
Metal Finishing	Corning Specialty Materials, Inc. 69 island Street Keene, NH 03431	Manufacturer optical components	1165	Baffled sampling tank to aid in solids settling. Oil separator for compressor condensate. Solids separation for tumbling wastewater. Evaporation and/or hauling of all plating process wastewaters and sludges with no discharge from plating area		
Metal Finishing	EVS Metal 50 Optical Avenue. Keene, NH 03431	Sheet metal products manufacturing	80	None		
None	Janos Technology 55 Black Brook Road Keene, NH 03431	Manufacturer optical components	150	Settling and filtration for solids removal		
None	Keene Water Treatment Facility Roxbury Rd. Keene, NH 03431	Water treatment	37,000	Physical settling of flocculated solids which are then discharged to sewer. Oil separation for compressor condensate.		
None*	Markem-Imaje Corporation 150 Congress ST. Keene, NH 03431	Manufacture of ink and inking machines	1730	Oil removal from compressor condensate. Evaporation of wastestreams potentially high in zinc. Grease trap in employee cafeteria.		
Textile mill	The Mountain Corporation 18 Water Street Marlborough, NH 03455	Dying and printing tee shirts	65,000	Pretreat spent dye wastewater for color with ozone treatment. Filtration of solids from screen reclaiming process. Waste ink captured to reduce zinc- laden waste ink discharge.		

2015 Keene Significant Industrial Users						
EPA Category	Industry Name and Address	Type of Business	Permitted Average Process Flow, gal/day	Type of pre- treatment		
None	People's Linen Rental PO Box 751, 9 Tiffin St. Keene, NH 03431	Industrial laundry, restaurant and hotel linens only	80,000	Lint removal. pH- neutralization for high alkali washwaters.		
Metal Finishing	SNF Finishing	Finishing of gun parts and accessories	3,840	pH neutralization system.		
Metal Finishing	Timken Corporation, Plant 1 PO Box 547, Optical Ave. Keene, NH 03431	Manufacturer of precision bearing parts	Permitted avg. process = 16,000; avg. total = 25,000	Ultrafiltration for oil and solids removal. Settling tanks for solids removal from tumbling process. Additional settling tank and 5 um filtration for solids removal from some tumbling processes. Grease trap in employee cafeteria.		

2020 Keene Significant Industrial Users						
EPA Category	Industry Name and Address	Type of Business	Permitted Average Process Flow, gal/day	Type of pre- treatment		
None	Cheshire Medical Center 580 Court St. Keene, NH 03431	Hospital	34,000 combined process/domestic	Grease trap in employee cafeteria. Destruction of lab analyzer solution. Neutralization of internal scope sterilization chemical (orthophthalaldehyde) with glycine. Neutralization of waste formaldehyde.		
Metal Finishing	Corning Specialty Materials, Inc. 69 island Street Keene, NH 03431	Manufacturer optical components	1,280	Baffled sampling tank to aid in solids settling. Oil separator for compressor condensate. Solids separation for tumbling wastewater. Evaporation and/or hauling of all plating process wastewaters and sludges with no discharge from plating area		
Metal Finishing	EVS Metal 50 Optical Avenue. Keene, NH 03431	Sheet metal products manufacturing	90	Filtration for solids removal		
None	Janos Technology 55 Black Brook Road Keene, NH 03431	Manufacturer optical components	150	Settling and filtration for solids removal		
None	Keene Water Treatment Facility Roxbury Rd. Keene, NH 03431	Water treatment	58,000	Physical settling of flocculated solids which are then discharged to sewer. Oil separation for compressor condensate.		
None	Markem-Imaje Corporation 150 Congress ST. Keene, NH 03431	Manufacture of ink and inking machines	1,100	Oil removal from compressor condensate. Evaporation of wastestreams potentially high in zinc. Grease trap in employee cafeteria.		
Textile mill	The Mountain Corporation 18 Water Street Marlborough, NH 03455 PO Box 686 Keene, NH 03431	Dying and printing tee shirts	17,000	Pretreat spent dye wastewater for color with ozone treatment. Filtration of solids from screen reclaiming process. Waste ink captured to reduce zinc-laden waste ink discharge. Ink-wash wastewater filtered for enhanced zinc-removal.		
None	People's Linen Rental PO Box 751, 9 Tiffin St. Keene, NH 03431	Industrial laundry, restaurant and hotel linens	80,000	Lint removal. pH- neutralization for high alkali washwaters.		

2020 Keene Significant Industrial Users						
EPA Category	Industry Name and Address	Type of Business	Permitted Average Process Flow, gal/day	Type of pre- treatment		
		only				
None	People's Linen Rental II PO Box 751, 4 Forge St. Keene, NH 03431	Industrial laundry, restaurant and hotel linens only	46,000	Lint removal.		
Metal Finishing	SNF Finishing 32 Optical Ave., Keene, NH 03431	Finishing of gun parts and accessories	7,560	pH neutralization system. Evaporation of concentrated wastestreams.		
Metal Finishing	Timken Corporation, Plant 1 PO Box 547, Optical Ave. Keene, NH 03431	Manufacturer of precision bearing parts	Permitted avg. process = 16,000; avg. total = 25,000	Ultrafiltration for oil and solids removal. Settling tanks for solids removal from tumbling process. Additional settling tank and 5 um filtration for solids removal from some tumbling processes. Grease trap in employee cafeteria.		